馬拴紅,萬炯,梁瑞清,張雪海,邱小倩,孟淑君,徐寧坤,林源,黨昆泰,王琪月,趙嘉雯,丁冬,湯繼華
玉米開花期轉(zhuǎn)錄因子候選基因的關(guān)聯(lián)分析
馬拴紅1,萬炯1,梁瑞清2,張雪海1,邱小倩1,孟淑君1,徐寧坤1,林源1,黨昆泰1,王琪月1,趙嘉雯1,丁冬1,湯繼華1
1河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國家重點實驗室,鄭州 450002;2華南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,廣州 510642
【】生育期相關(guān)性狀是玉米育種研究的重點之一。作為重要的生育期性狀,開花期(抽穗期、吐絲期和散粉期)的提前,可保證玉米充分脫水,適宜機收;也為中國黃淮海地區(qū)小麥-玉米一年兩熟耕作模式下的小麥播種減輕壓力。轉(zhuǎn)錄因子是轉(zhuǎn)錄水平基因表達調(diào)控的重要上游因子,對目標基因發(fā)揮轉(zhuǎn)錄激活或轉(zhuǎn)錄抑制的作用。在全基因組水平上解析轉(zhuǎn)錄因子對玉米開花期的調(diào)控作用,獲得開花期提前且不影響產(chǎn)量的玉米轉(zhuǎn)錄因子單倍型組合,進而挖掘優(yōu)異種質(zhì)資源,可為培育開花期適宜的玉米育種研究提供基因資源。使用候選基因關(guān)聯(lián)分析方法,對開花期相關(guān)轉(zhuǎn)錄因子及顯著SNP進行分析;并利用DAP-seq技術(shù)捕獲了關(guān)鍵轉(zhuǎn)錄因子的結(jié)合位點和下游基因;隨后對轉(zhuǎn)錄因子調(diào)控的下游基因進行GO分析,探究轉(zhuǎn)錄因子通過影響其下游基因?qū)﹂_花期進行調(diào)控的基因網(wǎng)絡(luò)。玉米開花期3種性狀(吐絲期、散粉期、抽穗期)中,與吐絲期和抽穗期性狀以及吐絲期和散粉期性狀同時關(guān)聯(lián)的轉(zhuǎn)錄因子顯著SNP均為75個,與抽穗期和散粉期性狀同時關(guān)聯(lián)的顯著SNP為128個,同時關(guān)聯(lián)到3種表型的顯著SNP為58個。表明開花期3種性狀可能受相同的轉(zhuǎn)錄因子調(diào)控。選取含有3個及以上開花期相關(guān)顯著SNP的轉(zhuǎn)錄因子基因,通過DAP-seq,捕獲了這些轉(zhuǎn)錄因子結(jié)合的關(guān)鍵基序及調(diào)控的下游基因。轉(zhuǎn)錄因子結(jié)合的下游基因顯著富集于轉(zhuǎn)錄因子活性、DNA結(jié)合、RNA結(jié)合、有機氮化合物的合成代謝過程、與生殖有關(guān)的發(fā)育過程等;不同的轉(zhuǎn)錄因子存在共同調(diào)控的下游基因,生育期相關(guān)性狀關(guān)鍵調(diào)控性轉(zhuǎn)錄因子為ARF、MYB和NAC。對關(guān)鍵上游轉(zhuǎn)錄因子進行單倍型分析,發(fā)掘了玉米生育期提前,同時對產(chǎn)量無負向影響的轉(zhuǎn)錄因子最優(yōu)單倍型組合。運用DAP-seq技術(shù)并結(jié)合前人研究繪制了全基因組水平上轉(zhuǎn)錄因子對生育期相關(guān)農(nóng)藝性狀的調(diào)控網(wǎng)絡(luò),并發(fā)掘了既提前玉米生育期又對產(chǎn)量無負向影響的轉(zhuǎn)錄因子最優(yōu)單倍型組合。
玉米;轉(zhuǎn)錄因子;開花期;DAP-seq;單倍型
【研究意義】作為一年兩熟耕作制度的重要一環(huán),玉米開花期(抽穗期、吐絲期和散粉期)的長短直接影響黃淮海區(qū)域小麥正常播期[1]。玉米開花期的提前,也使玉米籽粒充分脫水,適宜機械化直收籽粒[2]。轉(zhuǎn)錄因子是轉(zhuǎn)錄水平基因表達調(diào)控的重要上游因子,對目標基因發(fā)揮轉(zhuǎn)錄激活或轉(zhuǎn)錄抑制的作用[3-4]。解析轉(zhuǎn)錄因子對玉米開花期的調(diào)控作用,獲得開花期提前且不影響產(chǎn)量的玉米品種,不僅可以加速實現(xiàn)玉米的機械化收獲,也可以在玉米-小麥的整體水平上提高糧食產(chǎn)量,有效保障中國的糧食安全?!厩叭搜芯窟M展】開花期相關(guān)性狀作為一年兩熟耕作模式的制約因素,是玉米育種研究的重點之一。Guo等[5]通過關(guān)聯(lián)分析發(fā)現(xiàn),在玉米成花基因啟動子區(qū)域存在一個與開花時間顯著關(guān)聯(lián)的SNP(SNP-1245)。Huang等[6]通過圖位克隆將開花期數(shù)量性狀基因定位在上游57 kb的Harbinger-like轉(zhuǎn)座子上,該基因負調(diào)節(jié)成花基因的表達,導(dǎo)致長日照條件下開花延遲。也是開花抑制因子,該基因的過表達將延遲玉米花期[7]。在基因表達過程中,轉(zhuǎn)錄的起始是最為重要的調(diào)控步驟[3]。轉(zhuǎn)錄因子(transcription factors,TFs)是轉(zhuǎn)錄水平基因表達調(diào)控的重要上游因子,通過與目標基因啟動子區(qū)的順式作用位點(-acting elements)相結(jié)合,對目標基因發(fā)揮轉(zhuǎn)錄激活或轉(zhuǎn)錄抑制的作用[4]。MYB轉(zhuǎn)錄因子家族規(guī)模龐大,參與控制生物和非生物脅迫反應(yīng)、發(fā)育等多種過程,已經(jīng)在擬南芥、水稻、煙草、棉花、辣椒等多個物種中被報道為花器官相關(guān)調(diào)控轉(zhuǎn)錄因子[8-13]。WRKY轉(zhuǎn)錄因子幾乎只在植物中發(fā)現(xiàn)[14],自最初從甘薯中分離出以來[15],已從幾種高等植物中鑒定出大量WRKY轉(zhuǎn)錄因子[16-19]。在擬南芥中,WRKY12和WRKY13多次被報道為開花期相關(guān)轉(zhuǎn)錄因子[20-21]。而其他轉(zhuǎn)錄因子,如PIF與VOZ也被報道為開花期相關(guān)轉(zhuǎn)錄因子[22-23]。此外,轉(zhuǎn)錄因子OsLFL1的過表達延遲了水稻的開花時間[24];轉(zhuǎn)錄因子ZmMADS1被認為是玉米開花時間調(diào)控因子[25];番茄中轉(zhuǎn)錄因子SlZFP2[26]和菠蘿中轉(zhuǎn)錄因子bHLH2(AcCIB2)也參與開花時間調(diào)節(jié)[27]。DNA親和純化測序(DNA affinity purification sequencing,DAP-seq)是一種高通量、高分辨率的技術(shù),用于鑒定全基因組轉(zhuǎn)錄因子結(jié)合位點,已成為解析基因表達調(diào)控網(wǎng)絡(luò)的有力工具[28]。由于DAP-seq使用外源表達的轉(zhuǎn)錄因子(與Halo標簽形成融合蛋白)直接捕獲基因組DNA,不需要標記的轉(zhuǎn)基因系或基因特異性抗體,同時仍然可在全基因組序列中捕獲轉(zhuǎn)錄因子結(jié)合事件,越來越多的研究人員基于該技術(shù)開展研究[29-32]?!颈狙芯壳腥朦c】目前,已有研究報道轉(zhuǎn)錄因子對表型的調(diào)控作用,然而,在全基因組解析轉(zhuǎn)錄因子對表型調(diào)控,尤其是對開花期等重要生育期相關(guān)表型調(diào)控的研究鮮見報道。【擬解決的關(guān)鍵問題】本研究以玉米開花期(抽穗期、吐絲期和散粉期)性狀作為切入點,篩選其相關(guān)候選轉(zhuǎn)錄因子,利用DAP-seq技術(shù)探究抽穗期、吐絲期和散粉期性狀相關(guān)關(guān)鍵轉(zhuǎn)錄因子的結(jié)合序列和下游基因,同時進行優(yōu)異單倍型分析,為培育開花期適宜的玉米育種研究提供基因資源。
選取20粒籽粒飽滿無破損的B73種子,于2020年在室內(nèi)種植于營養(yǎng)土內(nèi),長至兩葉一心后,轉(zhuǎn)移至暗培養(yǎng),生長至三葉期,收集黃化葉片用于DAP-seq試驗中DNA的提取。
根據(jù)前期研究,選取轉(zhuǎn)錄因子內(nèi)包含3個及以上顯著性SNP的MYB、NAC、ARF等25個家族的40個轉(zhuǎn)錄因子[33],利用TnT? SP6 High-Yield Master Mix Minus Amino Acids(Promega,美國)無細胞表達試劑盒體外表達DAP-seq試驗所需的轉(zhuǎn)錄因子蛋白。用CTAB法提取玉米B73葉片DNA,并使用微波破碎儀M220(Covaris,美國)破碎約至200 bp。對破碎后的片段進行純化,去除過大或者過小的片段。取5 μg純化后的片段DNA,利用NEXTflex? Rapid DNA-Seq Kit建庫試劑盒(Bio Scientific,美國)對片段DNA末端加poly(A),以構(gòu)建DAP DNA文庫。將體外表達的融合蛋白與Magne HaloTag Beads(Promege,美國)一起孵育,通過Beads捕獲標簽的方式固定轉(zhuǎn)錄因子,與構(gòu)建好的DAP DNA文庫進行反應(yīng)[34]。隨后捕獲并洗脫與融合蛋白特異結(jié)合的DNA片段,將DNA片段加上高通量測序用的長接頭(各轉(zhuǎn)錄因子使用特異的index接頭)進行測序。構(gòu)建好的文庫送至貝瑞基因(貝瑞和康生物技術(shù)有限公司,北京),采用Illumina Novaseq對40個文庫進行雙末端混合測序。根據(jù)特異index對測序數(shù)據(jù)進行拆分,并提供拆分后數(shù)據(jù)作為測序原始數(shù)據(jù)。
得到原始數(shù)據(jù)后,使用Trimmomatic軟件(https://github.com/usadellab/Trimmomatic)對數(shù)據(jù)進行質(zhì)控和篩選,以Q30為質(zhì)控標準,去除含有接頭序列的reads、N比例大于10%的reads以及低質(zhì)量reads。使用Bowtie2軟件(https://github.com/BenLangmead/bowtie2)將Clean data比對到B73 RefGen_v4(ftp://ftp. ensemblgenomes.org/pub/release-50/plants/fasta/zea_mays/ dna/Zea_mays.B73_RefGen_v4.dna.toplevel.fa.gz)參考基因組。使用空白HALO標簽(未融合轉(zhuǎn)錄因子)與DAP DNA文庫結(jié)合的測序文件作為空白對照,使用MACS2軟件(https://hbctraining.github.io/Intro-to- ChIPseq/lessons/05_peak_calling_macs.html)對每個轉(zhuǎn)錄因子的結(jié)合片段分別進行結(jié)合峰的捕捉。并利用R軟件的ChIPseeker包(https:// bioconductor.org/packages/ release/bioc/html/ChIPseeker.html)對富集的結(jié)合峰進行注釋。根據(jù)結(jié)合峰最高點上下游200 bp的物理位置,使用Bedtools軟件(https://bedtools. readthedocs.io/en/ latest/index.html)提取峰上下游200 bp的序列,使用MEME-ChIP軟件(https://meme-suite.org/meme/tools/ meme-chip)對每一個轉(zhuǎn)錄因子分別進行保守motif分析。篩選了位于基因啟動子區(qū)域(轉(zhuǎn)錄起始位點上游2 000 bp)的結(jié)合峰,并使用植物基因功能分類數(shù)據(jù)庫AgriGO對這些基因進行GO富集分析(http://systemsbiology.cau.edu.cn/agriGOv2),使用R軟件ggplot2包(https://ggplot2.tidyverse.org/)進行數(shù)據(jù)結(jié)果可視化。
候選基因關(guān)聯(lián)分析所用到的重測序數(shù)據(jù)[35]和21個表型數(shù)據(jù)[36-37]均由華中農(nóng)業(yè)大學(xué)作物遺傳改良國家重點實驗室嚴建兵教授提供。根據(jù)候選基因關(guān)聯(lián)分析和DAP-seq分析結(jié)果,本研究篩選、和3個基因中和表型性狀相關(guān)的顯著SNP。根據(jù)該位點不同的SNP類型,將關(guān)聯(lián)群體劃分為不同的單倍型并和表型值一一對應(yīng)。根據(jù)表型值,通過單因素方差分析,以<0.01為閾值檢驗單倍型之間的差異。利用R語言繪制單倍型圖。
開花期性狀是玉米生長發(fā)育的重要性狀。抽穗期、吐絲期和散粉期不僅通過影響玉米的正常授粉而影響玉米產(chǎn)量,同時,縮短玉米生長期,培育生育期適宜玉米的關(guān)鍵之一。前期研究中,對玉米關(guān)聯(lián)群體的21個農(nóng)藝及產(chǎn)量性狀進行了全基因組關(guān)聯(lián)分析[36-37],并結(jié)合全基因組范圍內(nèi)的81個轉(zhuǎn)錄因子家族的2 034個轉(zhuǎn)錄因子序列,進行了候選基因關(guān)聯(lián)分析[33]。本研究在此基礎(chǔ)上,進一步分析開花期相關(guān)性狀顯著性SNP和顯著性轉(zhuǎn)錄因子。
抽穗期、吐絲期和散粉期3種性狀共關(guān)聯(lián)到122個轉(zhuǎn)錄因子,涉及551個顯著SNP。在這三種性狀中,與吐絲期和抽穗期性狀以及吐絲期和散粉期性狀同時關(guān)聯(lián)的顯著SNP均為75個,與抽穗期和散粉期表型同時關(guān)聯(lián)的顯著SNP為128個,同時關(guān)聯(lián)到3種表型性狀的顯著SNP為58個(表1)。表明開花期3種性狀可能受相同的轉(zhuǎn)錄因子調(diào)控。
開花期相關(guān)轉(zhuǎn)錄因子包含的顯著SNP數(shù)量從1到70不等。將轉(zhuǎn)錄因子按基因內(nèi)包含顯著SNP數(shù)目進行分類,包含2個及以上顯著SNP的轉(zhuǎn)錄因子有70個;包含3個及以上顯著SNP轉(zhuǎn)錄因子有47個;包含5個及以上顯著SNP轉(zhuǎn)錄因子有20個。選取轉(zhuǎn)錄因子內(nèi)包含3個及以上顯著SNP的轉(zhuǎn)錄因子共40個(電子附表1)進行了DAP-seq分析,以捕獲其下游基因。
表1 開花期性狀相關(guān)顯著的SNP數(shù)目及轉(zhuǎn)錄因子統(tǒng)計
抽穗/吐絲:抽穗期和吐絲期表型共同關(guān)聯(lián)到的SNP、轉(zhuǎn)錄因子等;抽穗/散粉:抽穗期和散粉期表型共同關(guān)聯(lián)到的SNP、轉(zhuǎn)錄因子等;吐絲/散粉:吐絲期和散粉期表型共同關(guān)聯(lián)到的SNP、轉(zhuǎn)錄因子等;抽穗/吐絲/散粉:抽穗期、吐絲期和散粉期表型共同關(guān)聯(lián)到的SNP、轉(zhuǎn)錄因子等
Heading date/Silking time: SNPs and TFs associated with the phenotype at both heading date and silking time; Heading date/Pollen shed: SNPs and TFs associated with the phenotypes at both heading date and pollen shed; Silking time/Pollen shed: SNPs and TFs associated with the phenotypes at both silking time and pollen shed;Heading/silking/loose powder: SNPs and TFs associated with all the phenotypes of heading date, silking time and pollen shed
通過高通量測序,獲得DAP-seq原始數(shù)據(jù)。參考B73 RefGen_v4基因組序列,得到轉(zhuǎn)錄因子結(jié)合的peaks。對所有轉(zhuǎn)錄因子結(jié)合的peaks進行匯總和分類,總計513 960個peaks分布在基因間區(qū),占總數(shù)目的74.49%;74 575個peaks分布在啟動子區(qū),占總數(shù)目的10.81%(圖1-A)。對位于基因啟動子區(qū)域的peaks進一步統(tǒng)計分析,其中51.59%的peaks位于轉(zhuǎn)錄起始位點(transcription starting site,TSS)上游500 bp范圍內(nèi)(圖1-B)。鑒于轉(zhuǎn)錄因子不僅可以在基因啟動子區(qū)域的近端發(fā)揮表達調(diào)控作用,也可在基因間區(qū)以及基因遠端發(fā)揮作用[38],這些抽穗期、吐絲期和散粉期相關(guān)轉(zhuǎn)錄因子結(jié)合peaks的分布符合轉(zhuǎn)錄因子結(jié)合位點的分布規(guī)律。
對DAP-seq結(jié)果進行分析發(fā)現(xiàn),有22個轉(zhuǎn)錄因子結(jié)合peaks數(shù)目超過1 000。為得到準確的轉(zhuǎn)錄因子的結(jié)合基序(motif)信息,對這22個轉(zhuǎn)錄因子進行了分析。22個轉(zhuǎn)錄因子分屬于bZIP、HB、NAC、MYB、ARF、AP2-EREBP、C2C2-GATA、C2H2、G2-like、WRKY、GRF、PLATZ、NLP和MADS 14個轉(zhuǎn)錄因子家族。ARF25和ARF14結(jié)合的基序為TGTCGG;bZIP7和bZIP90結(jié)合的序列為TGACCTGA;NAC3結(jié)合的序列為CCCTNNNNNNNACGGC;NAC16結(jié)合的序列為CTTNNNNNNNAAGCT;NAC57結(jié)合的序列為CAAGCAA;NAC114結(jié)合的序列為TTGCGTGT。MYB36在2個重復(fù)中捕捉到相同的序列,其序列為TAACTGAC;而MYB23結(jié)合的序列與之略有差異,為CAACTAC。對HB家族的2個成員來說,HB62結(jié)合的序列為AATNATTA,而HB123結(jié)合的序列為ATCAATCA。EREBP207、C2H2、ZmGATA20、GLK39、WRKY117、GRF14、PLATZ9、NLP2和MADS73轉(zhuǎn)錄因子均僅檢測到單一的家族成員,其結(jié)合的基序分別為GGCGGCGGCGGCG、TTTGTCTTTT、GATC、ATTCT、AAAGTCAAA、TGTCAG、TANAATT、AAACGTCATA和CCAAAAANGGAAA(圖2)。
A:所有peaks在全基因組的分布;B:轉(zhuǎn)錄起始位點上游2 000 bp范圍內(nèi)的peaks的分布
對單個轉(zhuǎn)錄因子進行注釋,并篩選結(jié)合峰位于啟動子區(qū)域的基因作為該轉(zhuǎn)錄因子調(diào)控的下游基因(電子附表2)。對這些轉(zhuǎn)錄因子下游基因進行GO(gene ontology)富集分析發(fā)現(xiàn),這些下游基因顯著富集在生殖發(fā)育、細胞分裂、植物器官發(fā)育等過程;在生物學(xué)過程中被顯著富集的是有機氮化合物的合成代謝過程、減數(shù)分裂過程、與生殖有關(guān)的發(fā)育過程等;在分子功能中顯著富集的是RNA結(jié)合、轉(zhuǎn)錄因子活性、序列特異性DNA結(jié)合、絲氨酸/蘇氨酸蛋白激酶活性等(圖3)。
對不同轉(zhuǎn)錄因子DAP-seq結(jié)合的下游基因進行了功能注釋。結(jié)果顯示,不同的轉(zhuǎn)錄因子可結(jié)合在共同的下游基因啟動子區(qū)域,也許協(xié)同調(diào)控下游基因的轉(zhuǎn)錄。編碼不依賴于光周期的早花蛋白,該基因啟動子被ARF、MYB、HB和NAC等9個轉(zhuǎn)錄因子家族的成員共同調(diào)控。此外,、、等注釋為早花蛋白基因,它們受到ARF、MYB和NAC轉(zhuǎn)錄因子的結(jié)合與調(diào)控。暗示開花期相關(guān)性狀關(guān)鍵共性調(diào)控性轉(zhuǎn)錄因子為ARF、MYB和NAC,它們通過影響早花蛋白基因等下游基因的表達控制玉米開花期(表2)。
對ARF、MYB和NAC成員、和進行分析,結(jié)果顯示,基因區(qū)域中相鄰的SNP之間具有較強的相關(guān)性。由于3種開花期性狀之間存在共同關(guān)聯(lián)的顯著SNP,對、和分別選取16、2和6個顯著SNP進行單倍型分析。定義開花期提前的單倍型為優(yōu)異單倍型,中,抽穗期和散粉期的優(yōu)異單倍型為單倍型1,吐絲期的優(yōu)異單倍型為單倍型2(圖4-A);中,抽穗期和散粉期的優(yōu)異單倍型均為單倍型1(圖4-B);中,抽穗期、吐絲期和散粉期的優(yōu)異單倍型均為單倍型3(圖4-C)。為探究最優(yōu)單倍型組合和產(chǎn)量的關(guān)系,將不同單倍型進行組合。A、B、C分別代表、和,1代表優(yōu)異單倍型,2代表非優(yōu)單倍型(表3)。與508份自交系的平均值相比,最優(yōu)單倍型開花期3種表型均明顯提前,而單穗產(chǎn)量也明顯下降。在非優(yōu)單倍型的簡單組合(A2B2C2)中,開花期表型均無明顯提前,而單穗產(chǎn)量也無明顯變化;在最優(yōu)單倍型的簡單組合(A1B1C1)中,開花期表型均明顯提前,而單穗產(chǎn)量卻明顯下降;相反,A1B2C2組合中,開花期表型均明顯提前,而單穗產(chǎn)量也略有升高(表3)。因此,在育種過程中,為獲得開花期與產(chǎn)量的平衡,可使用分子標記跟蹤篩選具有A1B2C2基因型組合的玉米品系。
圖2 不同轉(zhuǎn)錄因子DAP-seq結(jié)合的motif
轉(zhuǎn)錄因子結(jié)合基序(Motif)是一段典型的序列或者結(jié)構(gòu),是包含序列特異性的結(jié)合位點,或者是涉及某一個特定生物學(xué)過程的共性序列區(qū)段?;趍otif序列的提取,可以預(yù)測潛在的結(jié)合位點等,有助于進一步理解各生物學(xué)過程中涉及的蛋白質(zhì)-DNA互作事件,進而解析基因的表達調(diào)控。通過對開花期相關(guān)轉(zhuǎn)錄因子開展DAP-seq,捕捉到了轉(zhuǎn)錄因子與下游基因的結(jié)合序列。為研究轉(zhuǎn)錄因子家族在不同作物之間的結(jié)合序列保守性,結(jié)合擬南芥已公布的motif信息(http://neomorph.salk.edu/dap_web/pages)與本研究捕獲的玉米轉(zhuǎn)錄因子motif進行了比對分析。bZIP家族(TGACNTNA)、NAC家族(CTT(CGT)NNNNNNNACG(AAG))、MYB家族(NAACTNNC)、ARF家族(TGTCGG)、GLK家族(ATTCT)、GRF家族(TGTCAG)等家族成員在玉米中結(jié)合的motif序列均與擬南芥一致;PLATZ9(TANAATT)和NLP2(AAACGTCATA)序列和擬南芥中(GAANNTTC TAGA、CAGCA)相應(yīng)motif不一致(圖5)。以上結(jié)果說明,轉(zhuǎn)錄因子與下游的結(jié)合位點有些是進化保守的,如MYB、NAC等家族,少數(shù)轉(zhuǎn)錄因子家族則存在單/雙子葉植物間的差別。
圖3 DAP-seq結(jié)合下游基因的GO分析
通過對DAP-seq捕捉到的下游基因進行GO分析,發(fā)現(xiàn)轉(zhuǎn)錄因子結(jié)合的下游基因富集于玉米生殖生長通路。編碼光周期非依賴性早花基因在NAC、MYB、ARF等9個家族結(jié)合的下游基因中被發(fā)現(xiàn)。前人研究發(fā)現(xiàn),光周期素依賴性早花1()的突變抑制了開花位點C(FLC)介導(dǎo)的開花延遲,突變導(dǎo)致非依賴性光周期中的早期開花,與FLC無關(guān)[39];編碼多梳蛋白胚胎花2的基因在NAC和MYB家族結(jié)合的下游基因中被檢測到。Bai等[40]發(fā)現(xiàn)擬南芥胚胎花1()基因的突變影響胚芽頂端發(fā)育,導(dǎo)致胚芽生長為花序,暗示了在調(diào)節(jié)營養(yǎng)生長向生殖生長轉(zhuǎn)換中起作用。水稻編碼一種假定的EMF蛋白,突變導(dǎo)致水稻植株提前開花[41]。此外,2個編碼早花蛋白2()的基因也在多個轉(zhuǎn)錄因子家族(NAC、MYB、ARF)的下游基因中被檢出。早花蛋白在擬南芥中多次被報道與晝夜節(jié)律光周期的調(diào)控相關(guān),導(dǎo)致植株開花時間的改變[42-44]。在水稻中,OsELF3-1通過激活Ehd1的表達參與藍光信號,促進短日照條件下的水稻開花;還抑制開花抑制子從而在長日照下間接促進開花[45]。在木薯中為晚間表達基因,該基因是4的直系同源基因,互補轉(zhuǎn)基因可恢復(fù)擬南芥的生長習性,表現(xiàn)開花提前[46]。Huang等[47]發(fā)現(xiàn)二穗短柄草和狗尾草盡管在1.8億年前已經(jīng)分離,但其擬南芥同源基因和仍能在分子和生理水平上拯救擬南芥中的缺失。這些結(jié)果證明是在不同物種間保守的調(diào)控光周期和開花時間的功能基因。
表2 轉(zhuǎn)錄因子調(diào)控的下游基因
編碼LNK1蛋白的基因是AP2-EREBP、C2C2- GATA、C2H2、G2-like、MYB和NAC轉(zhuǎn)錄因子共同調(diào)控的下游基因。LNK缺乏已知的DNA結(jié)合域,然而,LNK1和LNK2作為輔助因子,通過與RVE4(REVEILLE)和RVE5相互作用與和()的啟動子結(jié)合,從而調(diào)控光周期反應(yīng),控制開花時間[48]。胼胝質(zhì)合成酶是控制胼胝質(zhì)合成的關(guān)鍵酶,在植物生長發(fā)育和抗逆脅迫中具有重要作用[49]。胼胝質(zhì)在多種作物中被報道與小孢子及花粉發(fā)育相關(guān),胼胝質(zhì)沉積異常,過多沉積或沉積量不足,提前降解或延遲降解都會導(dǎo)致花粉敗育,從而造成植物雄性不育[50]。擬南芥中,ARF17能直接結(jié)合到胼胝質(zhì)合酶基因CALLOSESYNTHASE5()啟動子上,調(diào)控胼胝質(zhì)合成和初生外壁形成,從而影響生長素信號途徑調(diào)控的花粉壁和花藥發(fā)育[51]。本研究中,胼胝質(zhì)合酶基因是C2H2、G2-like、WRKY、GRF、NAC和MYB轉(zhuǎn)錄因子共同的下游基因。暗示轉(zhuǎn)錄因子可能通過與的啟動子結(jié)合,調(diào)控玉米開花和花粉發(fā)育?;陂_花期性狀相關(guān)基因的功能,構(gòu)建了依賴轉(zhuǎn)錄因子的玉米開花期性狀相關(guān)基因表達調(diào)控網(wǎng)絡(luò)(圖6)。
A:ARF14;B:MYB64;C:NAC3。hap1—hap5:單倍型1—5 A: ARF14; B: MYB64; C: NAC3. hap1- hap5: haplotype 1-5
圖5 擬南芥與玉米不同轉(zhuǎn)錄因子結(jié)合的motif
表3 關(guān)鍵轉(zhuǎn)錄因子不同單倍型組合對應(yīng)的產(chǎn)量和開花期表型
A、B、C分別代表、和;508份自交系百粒重、抽穗期、吐絲期和散粉期平均值分別為44.74 g、67.34 d、70.20 d和72.18 d
A, B and C represent,andrespectively; The average values of 100 kernels weight, heading date, silking time and pollen shed of 508 inbred lines were 44.74 g, 67.34 d, 70.20 d and 72.18 d, respectively
作物種質(zhì)資源中包含了大量的優(yōu)異基因,發(fā)掘這些優(yōu)異等位基因,可以鑒別與表型性狀相關(guān)的候選基因核苷酸變異,以及優(yōu)異單倍型的利用。本研究中,通過候選基因關(guān)聯(lián)分析,獲得大量和表型直接相關(guān)的SNP,且大多SNP高度連鎖不平衡。對得到的顯著SNP進行單倍型分析。結(jié)合產(chǎn)量數(shù)據(jù),篩選出育種中可利用的優(yōu)異單倍型組合(A1B2C2),證明在實際生產(chǎn)中可以實現(xiàn)既提前開花期,又對產(chǎn)量無負面影響的最佳田間表現(xiàn);而根據(jù)這些單倍型開發(fā)的分子標記,可應(yīng)用于追蹤和預(yù)測目的性狀的田間表現(xiàn)。
圖中實線表示已有文獻報道,虛線表示根據(jù)已有報道推測。黑色線條和紅色線條表示不同的具體通路
基于前期玉米轉(zhuǎn)錄因子候選基因關(guān)聯(lián)分析結(jié)果進一步分析,發(fā)現(xiàn)開花期3種表型可能受相同的遺傳調(diào)控,且開花期相關(guān)性狀關(guān)鍵調(diào)控性轉(zhuǎn)錄因子為ARF、MYB和NAC;最優(yōu)單倍型組合抽穗期和散粉期的表型值分別提前4.87和6.47 d,其對應(yīng)的單穗產(chǎn)量則提高0.32 g,可以通過轉(zhuǎn)錄因子的優(yōu)異單倍型組合獲得最佳田間表現(xiàn)。
[1] 周寶元, 馬瑋, 孫雪芳, 高卓晗, 丁在松, 李從鋒, 趙明. 播/收期對冬小麥-夏玉米一年兩熟模式周年氣候資源分配與利用特征的影響. 中國農(nóng)業(yè)科學(xué), 2019, 52(9): 1501-1517.
ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2019, 52(9): 1501-1517. (in Chinese)
[2] 柴宗文, 王克如, 郭銀巧, 謝瑞芝, 李璐璐, 明博, 侯鵬, 劉朝巍, 初振東, 張萬旭, 張國強, 劉廣周, 李少昆. 玉米機械粒收質(zhì)量現(xiàn)狀及其與含水率的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[3] MENG C A, FAZAL F M, BLOCK S M. Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nature communications, 2017, 8(1): 1-9.
[4] YANAGISAWA S. Transcription factors in plants: physiological functions and regulation of expression. Journal of Plant Research, 1998, 111(3): 363-371.
[5] GUO L, WANG X, ZHAO M, HUANG C, LI C, LI D, YANG C J, YORK A M, XUE W, XU G H, LIANG Y M, CHEN Q Y, DOEBLEY J F, TIAN F. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Current biology, 2018, 28(18): 3005-3015.
[6] HUANG C, SUN H, XU D, CHEN Q, LIANG Y M, WANG X F, XU G H, TIAN J G, WANG C L, LI D, WU L S, YANG X H, JIN W W, DOEBLEY J F, TIAN F. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the USA, 2018, 115(2): E334-E341.
[7] STEPHENSON E, ESTRADA S, MENG X, OURADA J, MUSZYNSKI M G, HABBEN J E, DANILEVSKAYAET O N. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PloS one, 2019, 14(2): e0203728.
[8] LI Y, JIANG J, DU M L, LI L, WANG X L, LI X B. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant and cell physiology, 2013, 54(6): 893-906.
[9] SHEN X P, HU Z W, XIANG X, XU L A, CAO J S. Overexpression of a stamen-specific R2R3-MYB gene BcMF28 causes aberrant stamen development in transgenic. Biochemical and biophysical research communications, 2019, 518(4): 726-731.
[10] AYA K, UEGUCHI-TANAKA M, KONDO M, HAMADA K, YANO K, NISHIMURA M, MATSUOKA M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell, 2009, 21(5): 1453-1472.
[11] RAHIM M A, RESENTINI F, DALLA VECCHIA F, TRAINOTTI L. Effects on plant growth and reproduction of a peach R2R3-MYB transcription factor overexpressed in tobacco. Frontiers in plant science, 2019, 10: 1143.
[12] SUN B M, ZHU Z S, CHEN C J, CHEN G J, CAO B H, CHEN C M, LEI J J. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum. Journal of agricultural and food chemistry, 2019, 67(39): 10891-10903.
[13] HU R, YUAN C, NIU Y, TANG Q, WEI D, WANG Z. Regulation of plant MYB transcription factors in anther development. Chinese Journal of Biotechnology, 2020, 36(11): 2277-2286.
[14] LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q. Functional characterization ofWRKY39 in heat stress. Molecules and cells, 2010, 29(5): 475-483.
[15] ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics, 1994, 244(6): 563-571.
[16] üLKER B, SOMSSICH I E. WRKY transcription factors: from DNA binding towards biological function. Current opinion in plant biology, 2004, 7(5): 491-498.
[17] PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity. Plant physiology, 2009, 150(4): 1648-1655.
[18] WEI K F, CHEN J, CHEN Y F, WU L J, XIE D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA research, 2012, 19(2): 153-164.
[19] RUSHTON D L, TRIPATHI P, RABARA R C, LIN J, RINGLER P, BOKEN A K, LANGUM T J, SMIDT L, BOOMSMA D D, EMME N J, CHEN X F, FINER J J, SHEN Q J, RUSHTON P J. WRKY transcription factors: key components in abscisic acid signalling. Plant biotechnology journal, 2012, 10(1): 2-11.
[20] MA Z, LI W, WANG H, YU D Q. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age‐mediated flowering. Journal of integrative plant biology, 2020, 62(11): 1659-1673.
[21] Li W, Wang H, Yu D.WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular plant, 2016, 9(11): 1492-1503.
[22] Kumar S V, Lucyshyn D, Jaeger K E, Alós e, Alvey e, Harberd n p, Wiggem p a. Transcription factor PIF4 controls the chemosensory activation of flowering. Nature, 2012, 484(7393): 242-245.
[23] CELESNIK H, ALI G S, ROBISON F M, REDDY A S N.VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biology open, 2013, 2(4): 424-431.
[24] PENG L T, SHI Z Y, LI L, SHENC G Z, ZHANG J L. Overexpression of transcription factor OsLFL1 delays flowering time in. Journal of plant physiology, 2008, 165(8): 876-885.
[25] ALTER P, BIRCHENEDER S, ZHOU L Z, SCHLüTER U, GAHRTZ M, SONNEWALD U, DRESSELHAUS T. Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant physiology, 2016, 172(1): 389-404.
[26] WENG L, BAI X D, ZHAO F F, LI R, XIAO H. Manipulation of flowering time and branching by overexpression of the tomato transcription factor Sl ZFP 2. Plant biotechnology journal, 2016, 14(12): 2310-2321.
[27] ASLAM M, JAKADA B H, FAKHER B, GREAVES J G, NIU X P, SU Z X, CHENG Y, CAO SJ, WANG X M, QIN Y. Genome-wide study of pineapple (L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (Ac CIB2) participates in flowering time regulation and abiotic stress response. BMC genomics, 2020, 21(1): 1-13.
[28] O’MALLEY R C, HUANG S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER G R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016, 165(5): 1280-1292.
[29] BARTLETT A, O'MALLEY R C, HUANG S C, GALLI M, NERY J R, GALLAVOTTI A, ECKER J R. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature protocols, 2017, 12(8): 1659.
[30] STIGLIANI A, MARTIN-AREVALILLO R, LUCAS J, BESSY A, VINOS-POYO T, MIRONOVA V, VERNOUX T, DUMAS R, PARCY F. Capturing auxin response factors syntax using DNA binding models. Molecular plant, 2019, 12(6): 822-832.
[31] Galli M, Khakhar A, Lu Z, Sen S, Joshi T, Nemhauser J L, Schmitz R J, Gallavotti A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nature communications, 2018, 9(1): 1-14.
[32] LIANG S, GAO X X, WANG Y J, ZHANG H L, YIN K X, CHEN S L, ZHANG M, ZHAO R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochemical and biophysical research communications, 2020, 526(4): 1100-1105.
[33] 丁冬, 馬拴紅, 林源, 邱小倩, 萬炯, 孟淑君, 王琪月, 張雪海, 湯繼華. 玉米轉(zhuǎn)錄因子候選基因關(guān)聯(lián)分析. 分子植物育種, 2021, 19(13):4206-4215.
DING D, MA S H, LI Y, QIU X Q, WAN J, MENG S J, WANG Q Y, ZHANG X H, TANG J H. Candidate genes association analysis of transcription factors in maize. Molecular Plant Breeding, 2021, 19(13): 4206-4215. (in Chinese)
[34] O’ MALLEY R C, HUANG S-S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER J R, Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016. 165(5): 1280-1292.
[35] YANG N, LIU J, GAO Q, GUI S T, CHEN L, YANG L F, HUANG J, DENG T Q, LUO J Y, HE L J, WANG Y B, XU P W, PENG Y, SHI Z X, LAN L, MA Z Y, YANG X, ZHANG Q Q, BAI M Z, LI S, LI W Q, LIU L, JACKSON D, YAN J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature genetics, 2019, 51(6): 1052-1059.
[36] XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome‐wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1106.
[37] YANG N, LU Y L, YANG X H, HUANG J, ZHOU Y, ALI F, WEN W W, LIU J, LI J S, YAN J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573.
[38] HENDELMAN A, ZEBELL S, RODRIGUEZ-LEAL D, DUKLER N, ROBITAILLE G, WU X L, KOSTYUN J, TAL L, WANG P P, BARTLETT M E, ESHED Y, EFRONI I, LIPPMAN Z B. Conserved pleiotropy of an ancient planthomeobox gene uncovered by cis-regulatory dissection. Cell, 2021, 184(7): 1724-1739.
[39] NOH Y S, AMASINO R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in. The Plant Cell, 2003, 15(7): 1671-1682.
[40] BAI S, SUNG Z R. The role of EMF1 in regulating the vegetative and reproductive transition in(Brassicaceae). American journal of botany, 1995, 82(9): 1095-1103.
[41] YAN D W, ZHANG X M, ZHANG L, YE S H, ZENG L J, LIU J Y, LI Q, HE Z H. CURVED CHIMERIC PALEA 1 encoding an EMF 1‐like protein maintains epigenetic repression of O s MADS 58 in rice palea development. The Plant Journal, 2015, 82(1): 12-24.
[42] KIM W Y, HICKS K A, SOMERS D E. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant physiology, 2005, 139(3): 1557-1569.
[43] DIXON L E, KNOX K, KOZMA-BOGNAR L, SOUTHERN M M, POKHILKO A, MILLAR A J. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in. Current Biology, 2011, 21(2): 120-125.
[44] KIM Y, YEOM M, KIM H, LIM J, KOO H J, HWANG D, SOMERS D, NAM H J. GIGANTEA and EARLY FLOWERING 4 inexhibit differential phase-specific genetic influences over a diurnal cycle. Molecular plant, 2012, 5(3): 678-687.
[45] ZHAO J M, HUANG X, OUYANG X H, CHEN W L, DU A P, ZHU L, WANG S G, DENG X W, LI S G. OsELF3-1, an ortholog ofearly flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One, 2012, 7(8): e43705.
[46] ADEYEMO O S, KOLMOS E, TOHME J, CHAVARIAGA P, FREGENE M, DAVIS S J. Identification and characterization of the cassava core-clock gene EARLY FLOWERING 4. Tropical Plant Biology, 2011, 4(2): 117-125.
[47] Huang H, Gehan M A, Huss S E, Alvarez S, Lizarraga C, Gruebbling E L, Gierer J, Naldrett M J, Bindbeutel R K, Evans B S, Mockler T C, Nusinow D A. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant direct, 2017, 1(4): e00018.
[48] XIE Q G, WANG P, LIU X, YUAN L, WANG L B, ZHANG C G, LI Y L, XING H Y, ZHI L Y, YUE Z L, ZHAO C S, MCCLUNG C R, XU X D. LNK1 and LNK2 are transcriptional coactivators in thecircadian oscillator. The Plant Cell, 2014, 26(7): 2843-2857.
[49] 張慶雯, 祁靜靜, 謝宇, 謝竹, 彭蘊, 李強, 彭愛紅, 鄒修平, 何永睿, 陳善春, 姚利曉. 黃龍病菌脅迫下‘錦橙’CsCalS 表達和胼胝質(zhì)沉積的初步分析. 園藝學(xué)報, 2021, 48(2): 276-288.
ZHANG Q W, QI J J, XIE Y, XIE Z, PENG Y, LI Q, PENG A H, ZOU X P, HE Y R, CHEN S C, YAO L X. Preliminary analysis of CsCalS5 and callose deposition in citrus sinensis infected with candidatus liberibacter asiaticus. Acta Horticulturae Sinica, 2021, 48(2): 276-288. (in Chinese)
[50] 崔海芳, 張凡, 尹俊龍, 郭瑛琪, 岳艷玲. 胼胝質(zhì)沉積與花粉發(fā)育. 云南農(nóng)業(yè)大學(xué)學(xué)報: 自然科學(xué)版, 2017, 32(3): 551-557.
CUI H F, ZHANG F, YIN J L, GUO Y Q, YUE Y L. Callose deposition and pollen development. Journal of Yunnan Agricultural University, 2017, 32(3): 551-557. (in Chinese)
[51] 楊俊. 擬南芥生長素響應(yīng)因子ARF17調(diào)控花粉壁模式形成[D]. 上海: 上海師范大學(xué), 2013.
YANG J.auxin response factor ARF17 regulates pollen wall pattern formation[D]. Shanghai: Shanghai Normal University, 2013. (in Chinese)
附表1 進行DAP-seq的轉(zhuǎn)錄因子信息
Supplementary Table 1 Transcription factor information for DAP seq
注:“附表2 22個玉米轉(zhuǎn)錄因子結(jié)合下游基因”因容量過大,不再贅列。如確有需要,請直接與作者聯(lián)系。謝謝。
Candidate Gene Association Analysis of Maize Transcription Factors in flowering Time
MA ShuanHong1, WAN Jiong1, LIANG RuiQing2, ZHANG XueHai1, QIU XiaoQian1, MENG ShuJun1, XU NingKun1, LIN Yuan1, DANG KunTai1, WANG QiYue1, ZHAO JiaWen1, DING Dong1, TANG JiHua1
1College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002;2College of Agronomy, South China Agricultural University, Guangzhou 510642
【】Maize growth period traits, including flowering time, are the ones of most important in maize breeding. The advancement of heading date, silking time, and the pollen shed can ensure maize kernels fully dehydrated and thus suited to machinery harvesting. Moreover, the saved time can also leave for wheat sowing under the Maize-Wheat farming mode in Huang-Huai-Hai area. Transcription factors are important up-stream trans-action factors of gene expression regulation, which play roles in transcriptional activation or inhibition on target genes by binding to and driving their promoters. It is of great significance to analyze the regulatory effects of transcription factors on maize flowering time at the whole genome scale, it is also emergence to obtain the maize transcription factor haplotypes which associated with earlier flowering and higher yield. The haplotypes, or the haplotype combinations, will be served as excellent germplasm resources for maize breeding. 【】In this study, candidate gene association analysis was performed to analyze maize flowering time related transcription factors and significant SNPs. DAP-seq was carried out to obtain the binding sites and down-stream genes of the key transcription factors. Followed by GO analysis on the down-stream genes to explore the transcription factor dependent gene expression regulatory network. 【】There are 75, 75, and 128 significant SNPs detected in combinations of the traits Silking time and Heading date, the traits Silking time and Pollen shed, and the traits Heading date and Pollen shed, respectively. Altogether, there are 58 significant SNPs associated with all three flowering time traits. These results suggest that the three traits of flowering time may be regulated by the same transcription factors. Flowering time associated transcription factor genes that containing 3 or more significant SNPs were selected for DAP-seq to capture the key motifs and down-stream genes. Down-stream genes bound by flowering time associated transcription factors are significantly enriched in transcription factor activity, DNA binding, RNA binding, organonitrogen compound metabolic process, reproduction-related developmental processes, etc. Different transcription factors have co-regulated downstream genes related to flowering time. The key regulatory transcription factors for flowering time traits are ARF, MYB and NAC. Through haplotype analysis, the optimal TF haplotype combination that shows earlier flowering and no negative impact on yield was selected. 【】In this research, through candidate gene association and DAP-seq, the regulatory network of transcription factors on the flowering time related agronomic traits were established at the whole genome scale. The optimal haplotype combination of transcription factors that not only advances the flowering time, but also has no negative impact on yield was selected for further use in maize breeding.
maize; transcription factor; flowering time; DAP-seq; haplotype
10.3864/j.issn.0578-1752.2022.01.002
2021-07-07;
2021-09-03
國家自然科學(xué)基金面上項目(31871641,31971961)、作物遺傳與種質(zhì)創(chuàng)新國家重點實驗室開放課題(ZW202001)、河南省科技攻關(guān)項目(202102110164,202102110012)
馬拴紅,E-mail:18838916904@163.com。通信作者丁冬,Tel:0371-56990336;E-mail:dingdong0216@hotmail.com。通信作者湯繼華,Tel:0371-56990336;E-mail:tangjihua1@163.com
(責任編輯 李莉)