• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      芝麻產(chǎn)量相關(guān)性狀的多位點(diǎn)全基因組關(guān)聯(lián)分析及候選基因預(yù)測(cè)

      2022-02-22 09:25:14崔承齊劉艷陽(yáng)江曉林孫知雨杜振偉武軻梅鴻獻(xiàn)鄭永戰(zhàn)
      關(guān)鍵詞:主莖芝麻單株

      崔承齊,劉艷陽(yáng),江曉林,孫知雨,杜振偉,武軻,梅鴻獻(xiàn),鄭永戰(zhàn)

      芝麻產(chǎn)量相關(guān)性狀的多位點(diǎn)全基因組關(guān)聯(lián)分析及候選基因預(yù)測(cè)

      崔承齊1,劉艷陽(yáng)1,江曉林1,孫知雨2,杜振偉1,武軻1,梅鴻獻(xiàn)1,鄭永戰(zhàn)1

      1河南省農(nóng)業(yè)科學(xué)院芝麻研究中心,鄭州 450008;2華南師范大學(xué)生命科學(xué)學(xué)院,廣州 510631

      【】通過(guò)對(duì)芝麻產(chǎn)量相關(guān)性狀的全基因組關(guān)聯(lián)分析,挖掘與產(chǎn)量性狀關(guān)聯(lián)的SNP位點(diǎn)及預(yù)測(cè)候選基因,為通過(guò)分子標(biāo)記輔助選擇育種等方式提高芝麻產(chǎn)量提供技術(shù)基礎(chǔ)。以363份不同遺傳背景和地理來(lái)源的芝麻種質(zhì)資源構(gòu)成的自然群體為研究對(duì)象,調(diào)查2年2點(diǎn)4環(huán)境下8個(gè)產(chǎn)量相關(guān)性狀(單株產(chǎn)量、單株蒴數(shù)、蒴粒數(shù)、千粒重、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù))的表型值,借助覆蓋全基因組的42 781個(gè)SNP標(biāo)記,利用多位點(diǎn)SNP隨機(jī)效應(yīng)混合線(xiàn)性模型(multi-locus random-SNP-effect mixed linear model,mrMLM)對(duì)8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行全基因組關(guān)聯(lián)分析,檢測(cè)與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)的SNP位點(diǎn),并預(yù)測(cè)候選基因。在4個(gè)不同環(huán)境下,8個(gè)產(chǎn)量相關(guān)性狀表現(xiàn)出廣泛的表型變異,變異系數(shù)為6.51%—33.57%;相關(guān)性分析表明單株產(chǎn)量與單株蒴數(shù)、株高、主莖果軸長(zhǎng)、表觀(guān)收獲指數(shù)呈極顯著正相關(guān);方差分析表明產(chǎn)量相關(guān)性狀的基因型效應(yīng)、環(huán)境效應(yīng)、基因型與環(huán)境互作效應(yīng)均達(dá)到了極顯著水平。通過(guò)多位點(diǎn)全基因組關(guān)聯(lián)分析共檢測(cè)到210個(gè)與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)的SNP,在2018年南陽(yáng)環(huán)境下檢測(cè)到47個(gè)SNP,解釋表型變異的1.63%—17.29%;在2019年南陽(yáng)環(huán)境下檢測(cè)到35個(gè)SNP,解釋表型變異的1.94%—11.90%;在2018年平輿環(huán)境下檢測(cè)到35個(gè)SNP,解釋表型變異的2.15%—15.90%;在2019年平輿環(huán)境下檢測(cè)到53個(gè)SNP,解釋表型變異的1.25%—11.13%;在4個(gè)環(huán)境的綜合BLUP條件下檢測(cè)到75個(gè)SNP,解釋表型變異的1.44%—13.58%。上述210個(gè)SNP涉及到175個(gè)位點(diǎn),其中10個(gè)位點(diǎn)在3個(gè)及以上環(huán)境中被重復(fù)檢測(cè)到。在這10個(gè)位點(diǎn)基因組區(qū)域內(nèi),共鑒定到214個(gè)候選基因,其中156個(gè)候選基因具有功能注釋?zhuān)饕婕爸参锎x、生物調(diào)控、生長(zhǎng)發(fā)育等生物學(xué)過(guò)程。根據(jù)功能注釋篩選出4個(gè)可能與芝麻產(chǎn)量相關(guān)的候選基因,其中SIN_1006338編碼1-氨基環(huán)丙烷-1-羧酸合酶3(1-aminocyclopropane-1-carboxylate synthase 3-like),參與乙烯的生物合成;SIN_1024330編碼堿性螺旋-環(huán)-螺旋(basic helix-loop-helix)轉(zhuǎn)錄因子,負(fù)向調(diào)控植物細(xì)胞和器官的伸長(zhǎng);SIN_1014512編碼吲哚-3-乙酸-酰胺合成酶GH3.6(indole-3-acetic acid-amido synthetase GH3.6),參與調(diào)控莖和下胚軸細(xì)胞的伸長(zhǎng)生長(zhǎng);SIN_1011473編碼泛素受體蛋白DA1(protein DA1-like),參與調(diào)節(jié)植物細(xì)胞增殖周期。通過(guò)多位點(diǎn)SNP隨機(jī)效應(yīng)混合線(xiàn)性模型的全基因組關(guān)聯(lián)分析,檢測(cè)到175個(gè)與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)的位點(diǎn),篩選出4個(gè)可能與產(chǎn)量相關(guān)的重要候選基因。

      芝麻;產(chǎn)量性狀;多位點(diǎn)全基因組關(guān)聯(lián)分析;功能注釋?zhuān)缓蜻x基因

      0 引言

      【研究意義】芝麻是古老的特色優(yōu)質(zhì)油料作物,也是重要的優(yōu)質(zhì)食用油和蛋白質(zhì)來(lái)源[1-2]。隨著人民生活水平的不斷提高,現(xiàn)有芝麻產(chǎn)量難以滿(mǎn)足日益增長(zhǎng)的市場(chǎng)需求,因此,如何穩(wěn)定提高芝麻產(chǎn)量成為芝麻育種最重要的目標(biāo)。單株蒴數(shù)、蒴粒數(shù)和粒重是芝麻產(chǎn)量的重要構(gòu)成因子,株高、主莖果軸長(zhǎng)、始蒴高度、表觀(guān)收獲指數(shù)等與芝麻產(chǎn)量密切相關(guān)[3-4]。解析產(chǎn)量相關(guān)性狀的遺傳基礎(chǔ),挖掘優(yōu)異等位基因,對(duì)于芝麻產(chǎn)量提升具有重要意義。【前人研究進(jìn)展】由于芝麻產(chǎn)量性狀是多基因控制的數(shù)量性狀,受環(huán)境影響非常顯著。Wu等[3]分別利用多重區(qū)間作圖法和混合線(xiàn)性模型的復(fù)合區(qū)間作圖法定位了13和17個(gè)芝麻產(chǎn)量性狀相關(guān)QTL位點(diǎn)。Wang等[5]利用連鎖作圖定位了41個(gè)與株高相關(guān)的QTL位點(diǎn)。由于連鎖作圖受雙親遺傳差異或分子標(biāo)記密度的限制,鑒定的位點(diǎn)相對(duì)有限[6]。全基因組關(guān)聯(lián)分析是以自然群體長(zhǎng)期重組交換保留下來(lái)的位點(diǎn)間連鎖不平衡(linkage disequilibrium,LD)為基礎(chǔ),采用關(guān)聯(lián)模型分析表型和基因型之間的有效關(guān)聯(lián)進(jìn)而鑒定變異位點(diǎn)[7-8]。與連鎖作圖相比,全基因組關(guān)聯(lián)分析作圖精度更高,可同時(shí)檢測(cè)多個(gè)等位基因位點(diǎn)[9-10]。因此,全基因組關(guān)聯(lián)分析方法被廣泛應(yīng)用于玉米[11]、水稻[12]、小麥[13]、棉花[14]、大豆[15]、油菜[16]、芝麻[17]等作物復(fù)雜農(nóng)藝性狀的遺傳解析。但是現(xiàn)有的全基因組關(guān)聯(lián)分析模型多是基于群體結(jié)構(gòu)和多基因背景控制的單標(biāo)記掃描,需采用較為嚴(yán)格的邦費(fèi)羅尼(Bonferroni)校正等方法控制關(guān)聯(lián)結(jié)果的假陽(yáng)性率,導(dǎo)致部分真實(shí)關(guān)聯(lián)位點(diǎn)的丟失[18]。為解決上述問(wèn)題,華中農(nóng)業(yè)大學(xué)章元明教授提出了多位點(diǎn)SNP隨機(jī)效應(yīng)混合線(xiàn)性模型(multi-locus random-SNP-effect mixed linear,mrMLM)[19]的全基因組關(guān)聯(lián)分析方法。與單位點(diǎn)全基因組關(guān)聯(lián)分析模型相比,多位點(diǎn)SNP隨機(jī)效應(yīng)混合線(xiàn)性模型更加接近真實(shí)的動(dòng)植物遺傳模型[20],即使應(yīng)用了較為寬松的關(guān)聯(lián)閾值,也具有更高的統(tǒng)計(jì)功效和更低的假陽(yáng)性率[21]?!颈狙芯壳腥朦c(diǎn)】盡管已有芝麻產(chǎn)量相關(guān)性狀的連鎖分析和全基因組關(guān)聯(lián)分析的報(bào)道,但鮮見(jiàn)多位點(diǎn)的全基因組關(guān)聯(lián)分析的報(bào)道。【擬解決的關(guān)鍵問(wèn)題】本研究采用363份不同遺傳背景和地理來(lái)源的芝麻種質(zhì)資源,結(jié)合基于SLAF-seq(specific locus amplified fragment sequencing)技術(shù)[22]開(kāi)發(fā)的42 781個(gè)SNP標(biāo)記及2年2點(diǎn)共4環(huán)境下的表型數(shù)據(jù),對(duì)芝麻單株產(chǎn)量、單株蒴數(shù)、蒴粒數(shù)、千粒重、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù)進(jìn)行了多位點(diǎn)全基因組關(guān)聯(lián)分析,旨在挖掘與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)的SNP位點(diǎn)和候選基因,為通過(guò)分子標(biāo)記輔助選擇育種等方式提高芝麻產(chǎn)量提供技術(shù)基礎(chǔ)。

      1 材料與方法

      1.1 試驗(yàn)材料和田間試驗(yàn)設(shè)計(jì)

      試驗(yàn)材料為363份種質(zhì)資源組成的關(guān)聯(lián)分析群體,來(lái)源于國(guó)內(nèi)18個(gè)省份和國(guó)外11個(gè)國(guó)家和地區(qū),由河南省農(nóng)業(yè)科學(xué)院芝麻研究中心提供[23-24]。在溫帶地區(qū)自然條件下,363份種質(zhì)資源可正常開(kāi)花與結(jié)實(shí),保證了表型鑒定的準(zhǔn)確性。試驗(yàn)材料于2018年和2019年種植在河南平輿(2018PY、2019PY)和南陽(yáng)(2018NY、2019NY)試驗(yàn)基地。田間試驗(yàn)采用完全隨機(jī)區(qū)組設(shè)計(jì),2次重復(fù),單行區(qū),行長(zhǎng)3 m,行距0.4 m,株距0.17 m,采用常規(guī)田間管理。

      1.2 表型鑒定

      在終花期,每小區(qū)隨機(jī)選取并標(biāo)記10株單株,分別調(diào)查株高、主莖果軸長(zhǎng)、始朔高度和單株蒴數(shù);收獲前,在標(biāo)記的10株單株上隨機(jī)收獲30個(gè)大小、成熟均勻一致的芝麻蒴,曬干后,調(diào)查每蒴粒數(shù)和千粒重;收獲時(shí),依照標(biāo)記按單株貼近地表整株收獲,自然曬干后,稱(chēng)重獲得單株表觀(guān)生物量和籽粒重量,表觀(guān)收獲指數(shù)=籽粒重/成熟時(shí)地上部生物重量。

      1.3 數(shù)據(jù)處理和分析

      利用Excel 2017對(duì)4個(gè)環(huán)境下8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行雙因素方差分析。利用R語(yǔ)言的corrplot函數(shù)對(duì)不同環(huán)境下產(chǎn)量相關(guān)性狀進(jìn)行相關(guān)性分析[25]。利用R語(yǔ)言包lme4[26]的混合線(xiàn)性模型對(duì)4個(gè)環(huán)境下群體的單株產(chǎn)量、單株蒴數(shù)、蒴粒數(shù)、千粒重、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù)等8個(gè)性狀進(jìn)行BLUP(best linear unbiased prediction)分析,BLUP值也用于后續(xù)的全基因組關(guān)聯(lián)分析。采用R語(yǔ)言計(jì)算廣義遺傳力,計(jì)算公式[27]如下:

      1.4 全基因組關(guān)聯(lián)分析和候選基因功能注釋

      利用SLAF-seq技術(shù)[22]對(duì)363份關(guān)聯(lián)群體基因組DNA進(jìn)行簡(jiǎn)化測(cè)序,利用BWA軟件[28]進(jìn)行序列比對(duì),利用GATK4.0軟件[29]進(jìn)行SNP標(biāo)記開(kāi)發(fā),獲得89 924個(gè)最小等位基因頻率(minor allele frequency,MAF)大于0.01和完整度≥70%的SNP標(biāo)記,然后估算該關(guān)聯(lián)群體的LD衰減距離為99 kb[23]。本文在上述基礎(chǔ)上,利用VCFtools軟件[30]篩選出42 781個(gè)MAF≥0.05,完整度≥70%的高質(zhì)量SNP標(biāo)記。利用GCTA軟件[31]進(jìn)行主成分分析(principal component analysis,PCA),利用TASSEl 5.0軟件[32]估算群體材料間的親緣關(guān)系。利用R語(yǔ)言包mrMLM v4.0[19]的多位點(diǎn)全基因組關(guān)聯(lián)分析方法mrMLM進(jìn)行芝麻產(chǎn)量相關(guān)性狀的全基因組關(guān)聯(lián)分析,參數(shù)設(shè)置為默認(rèn),關(guān)聯(lián)閾值設(shè)置為L(zhǎng)OD=3。利用R語(yǔ)言包mrMLM v4.0繪制曼哈頓圖和Q-Q圖?;贚D衰減距離為99 kb[23],定義一個(gè)顯著SNP標(biāo)記上下游99 kb范圍內(nèi)為一個(gè)位點(diǎn),并在位點(diǎn)內(nèi)搜尋候選基因,利用eggNOG-Mapper[33]在線(xiàn)注釋基因功能,使用WEGO 2.0在線(xiàn)軟件(https:// wego.genomics.cn/)進(jìn)行基因功能富集分析。

      2 結(jié)果

      2.1 產(chǎn)量相關(guān)性狀表型數(shù)據(jù)的描述統(tǒng)計(jì)

      在4個(gè)不同環(huán)境中,分別對(duì)單株產(chǎn)量、單株蒴數(shù)、蒴粒數(shù)、千粒重、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù)等8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行調(diào)查和統(tǒng)計(jì)分析(表1),結(jié)果表明,8個(gè)性狀均表現(xiàn)出廣泛的表型變異,變異系數(shù)為6.51%—33.57%。除2019年南陽(yáng)蒴粒數(shù)和BLUP蒴粒數(shù)偏度值的絕對(duì)值>1外,其余環(huán)境性狀偏度值的絕對(duì)值均<1(表1),并且8個(gè)性狀的BLUP值呈連續(xù)性分布(圖1)。表明上述8個(gè)產(chǎn)量性狀符合正態(tài)分布,是典型的數(shù)量性狀,受多基因控制。

      相關(guān)性分析表明(表2),在不同環(huán)境中,單株產(chǎn)量與單株蒴數(shù)、株高、主莖果軸長(zhǎng)、表觀(guān)收獲指數(shù)均表現(xiàn)出極顯著正相關(guān);單株蒴數(shù)與株高、主莖果軸長(zhǎng)和表觀(guān)收獲指數(shù)極顯著正相關(guān);千粒重與株高、主莖果軸長(zhǎng)極顯著正相關(guān),與蒴粒數(shù)極顯著負(fù)相關(guān);株高與主莖果軸長(zhǎng)和始蒴高度極顯著正相關(guān),而主莖果軸長(zhǎng)和始蒴高度呈現(xiàn)極顯著負(fù)相關(guān)。說(shuō)明各產(chǎn)量性狀之間相互影響,相互協(xié)同,從而影響芝麻產(chǎn)量。

      方差分析表明關(guān)聯(lián)群體8個(gè)產(chǎn)量相關(guān)性狀的基因型效應(yīng)、環(huán)境效應(yīng)、基因型與環(huán)境互作效應(yīng)均達(dá)到極顯著水平(表3),說(shuō)明關(guān)聯(lián)群體材料間的產(chǎn)量性狀存在顯著的遺傳變異,且受環(huán)境影響較大;單株產(chǎn)量、單株蒴數(shù)、蒴粒數(shù)、千粒重、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù)的廣義遺傳率分別為42.30%、61.12%、71.71%、81.67%、79.02%、72.55%、82.96%和52.28%。

      表1 芝麻8個(gè)產(chǎn)量相關(guān)性狀的描述統(tǒng)計(jì)分析

      SY:?jiǎn)沃戤a(chǎn)量;CN:?jiǎn)沃贻魯?shù);SN:蒴粒數(shù);SW:千粒重;PH:株高;CAL:主莖果軸長(zhǎng);FCH:始蒴高度;HI:表觀(guān)收獲指數(shù)。下同

      SY: seed yield per plant; CN: capsule number per plant; SN: seed number per capsule; SW: 1000-seed weight; PH: plant height; CAL: capsule axis length; FCH: first capsule height; HI: apparent harvest index. The same as below

      表2 關(guān)聯(lián)群體產(chǎn)量性狀的相關(guān)性分析

      **和*:分別指在=0.01和=0.05水平差異顯著。下同

      ** and * indicate significant at the=0.01 and=0.05 level, respectively. The same as below

      表3 4個(gè)環(huán)境產(chǎn)量相關(guān)性狀的方差分析

      SY:?jiǎn)沃戤a(chǎn)量;CN:?jiǎn)沃贻魯?shù);SN:蒴粒數(shù);SW:千粒重;PH:株高;CAL:主莖果軸長(zhǎng);FCH:始蒴高度;HI:表觀(guān)收獲指數(shù)。下同

      2.2 產(chǎn)量相關(guān)性狀的全基因組關(guān)聯(lián)分析

      利用mrMLM方法對(duì)363份關(guān)聯(lián)群體的單株產(chǎn)量、單株蒴數(shù)、千粒重、蒴粒數(shù)、株高、主莖果軸長(zhǎng)、始蒴高度和表觀(guān)收獲指數(shù)等8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行了全基因組關(guān)聯(lián)分析(圖2),在閾值LOD=3的水平下,5個(gè)環(huán)境(4個(gè)環(huán)境和BLUP)共檢測(cè)到210個(gè)與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)SNP,涉及175個(gè)位點(diǎn)。在2018年南陽(yáng),共檢測(cè)到47個(gè)SNP,解釋表型變異的1.63%—17.29%;在2019年南陽(yáng),共檢測(cè)到35個(gè)SNP,解釋表型變異的1.94%—11.90%;在2018年平輿,共檢測(cè)到35個(gè)SNP,解釋表型變異的2.15%—15.90%;在2019年平輿,共檢測(cè)到53個(gè)SNP,解釋表型變異的1.25%—11.13%;在4個(gè)環(huán)境的BLUP條件下,共檢測(cè)到75個(gè)SNP,解釋表型變異的1.44%—13.58%。

      灰色水平虛線(xiàn)對(duì)應(yīng)右側(cè)縱坐標(biāo)表示閾值LOD=3,紅色圓點(diǎn)表示在LOD=3條件下,與性狀顯著關(guān)聯(lián)的SNP

      在175個(gè)位點(diǎn)中,有10個(gè)位點(diǎn)在3個(gè)以上環(huán)境中被重復(fù)檢測(cè)到(表4),其中位點(diǎn)1、位點(diǎn)2和位點(diǎn)7分別與單株蒴數(shù)、蒴粒數(shù)和始蒴高度顯著關(guān)聯(lián),共定位于第4連鎖群的12.08—12.27 Mb區(qū)間內(nèi),分別解釋表型變異的4.52%—7.38%、4.65%—12.85%和2.03%—6.95%;位點(diǎn)3與千粒重顯著關(guān)聯(lián),定位于第6連鎖群的20.30—20.50 Mb區(qū)間內(nèi),解釋2.39%—3.88%的表型變異;位點(diǎn)4和位點(diǎn)5與株高顯著關(guān)聯(lián),分別定位于第4連鎖群的2.87—3.06 Mb區(qū)間和第6連鎖群的3.85—4.04 Mb區(qū)間內(nèi),解釋表型變異的2.87%—9.70%和4.21%—10.37%;位點(diǎn)6、位點(diǎn)8和位點(diǎn)9與始蒴高度顯著關(guān)聯(lián),分別定位于第1連鎖群的5.56—5.76 Mb區(qū)間內(nèi),第10連鎖群的3.34—3.53 Mb區(qū)間和第12連鎖群的7.40—7.60 Mb區(qū)間內(nèi),解釋表型變異的5.46%-6.52%、2.17%—17.29%和2.68%—8.91%;位點(diǎn)10與收獲指數(shù)顯著關(guān)聯(lián),定位于第5連鎖群的18.44—20.42 Mb區(qū)間內(nèi),解釋2.14%—8.11%的表型變異。

      表4 在3種以上環(huán)境同時(shí)檢測(cè)到的10個(gè)顯著關(guān)聯(lián)位點(diǎn)

      2.3 候選基因預(yù)測(cè)及功能分析

      為了保證關(guān)聯(lián)位點(diǎn)的可靠性,選取至少在3個(gè)環(huán)境下重復(fù)檢測(cè)到的10個(gè)位點(diǎn)進(jìn)行后續(xù)分析。依據(jù)該群體的LD衰減距離[23],在10個(gè)位點(diǎn)的基因組區(qū)段內(nèi)共檢測(cè)到214個(gè)基因,其中156個(gè)基因是具有功能注釋的基因。功能富集分析可將上述156個(gè)基因分為3大功能類(lèi)別:細(xì)胞組分(cell component)、分子功能(molecular function)和生物學(xué)過(guò)程(biological process)(圖3)。在細(xì)胞組分功能類(lèi)別中,細(xì)胞、細(xì)胞組分、細(xì)胞器3個(gè)功能亞類(lèi)占比最高,分別包含82、82和63個(gè)基因。在分子功能類(lèi)別中,45個(gè)基因具有催化活性功能,40個(gè)基因具有結(jié)合功能,6個(gè)基因具有轉(zhuǎn)運(yùn)活性功能,其余基因涉及信號(hào)轉(zhuǎn)導(dǎo)、結(jié)構(gòu)分子活性等功能。在生物學(xué)過(guò)程類(lèi)別中,71個(gè)基因涉及植物體內(nèi)細(xì)胞進(jìn)程,53個(gè)基因參與植物體內(nèi)的代謝過(guò)程,36個(gè)基因與植物應(yīng)激反應(yīng)的代謝途徑有關(guān),33個(gè)基因參與植物體內(nèi)的生物調(diào)節(jié)過(guò)程,其余基因涉及植物生長(zhǎng)發(fā)育、信號(hào)等過(guò)程。根據(jù)基因的功能注釋篩選到4個(gè)可能與芝麻產(chǎn)量性狀相關(guān)的候選基因,其中,候選基因SIN_1006338()編碼1-氨基環(huán)丙烷-1-羧酸合酶3(1-aminocyclopropane-1-carboxylate synthase 3-like),與擬南芥是同源基因;SIN_1024330編碼堿性螺旋-環(huán)-螺旋(basic helix-loop-helix,bHLH)轉(zhuǎn)錄因子INCREASED LEAF INCLINATION1 BINDING bHLH1-LIKE1(IBL1);候選基因SIN_1014512編碼吲哚-3-乙酸-酰胺合成酶GH3.6(indole-3-acetic acid-amido synthetase GH3.6);候選基因SIN_1011473編碼一類(lèi)泛素受體蛋白DA1(protein DA1-like)。

      圖3 候選基因的功能富集分析

      3 討論

      3.1 芝麻產(chǎn)量性狀的相關(guān)性分析

      芝麻產(chǎn)量是一個(gè)復(fù)雜的數(shù)量性狀,其構(gòu)成比較復(fù)雜,與多個(gè)性狀(如:?jiǎn)沃贻魯?shù)、千粒重、株高、主莖果軸長(zhǎng)等)密切相關(guān)[3-5]。Biabani等[4]認(rèn)為株高、株蒴數(shù)、果軸長(zhǎng)和主莖株蒴數(shù)是芝麻產(chǎn)量的重要影響因素。Wang等[5]研究發(fā)現(xiàn)株高與始蒴高度、果軸長(zhǎng)、千粒重顯著相關(guān),而單株蒴數(shù)和千粒重顯著負(fù)相關(guān)。本研究以363份遺傳性豐富的芝麻核心資源為研究對(duì)象,相關(guān)性分析發(fā)現(xiàn)單株產(chǎn)量與單株蒴數(shù)、株高、主莖果軸長(zhǎng)、表觀(guān)收獲指數(shù)呈極顯著正相關(guān);株高與千粒重、主莖果軸長(zhǎng)和始蒴高度極顯著正相關(guān);其余部分產(chǎn)量相關(guān)性狀之間也存在相關(guān)性,說(shuō)明產(chǎn)量相關(guān)性狀之間相互影響,相互協(xié)同,從而影響芝麻產(chǎn)量的高低。因此,在芝麻高產(chǎn)育種過(guò)程中,不僅要重視單株蒴數(shù)、蒴粒數(shù)和粒重等單株產(chǎn)量組成因子,也要兼顧株高、主莖果軸長(zhǎng)和始蒴高度等性狀。

      3.2 芝麻產(chǎn)量相關(guān)性狀的全基因組關(guān)聯(lián)分析

      連鎖分析和關(guān)聯(lián)分析是挖掘數(shù)量性狀QTL的有效方法。Wu等[3]調(diào)查了芝麻近等基因系群體的7個(gè)產(chǎn)量相關(guān)性狀,利用不同作圖法分別定位了13和17個(gè)與產(chǎn)量性狀相關(guān)的QTL位點(diǎn)。Wang等[5]利用連鎖分析定位了41個(gè)與株高、主莖果軸長(zhǎng)、始蒴高度等性狀相關(guān)的QTL位點(diǎn)。Mei等[34]利用BC1群體,通過(guò)連鎖分析定位了46個(gè)與產(chǎn)量性狀相關(guān)的QTL位點(diǎn)。Wei等[17]和Zhou等[35]利用全基因組關(guān)聯(lián)分析分別鑒定了549個(gè)與農(nóng)藝性狀關(guān)聯(lián)的SNP和547個(gè)與產(chǎn)量相關(guān)性狀關(guān)聯(lián)的QTL位點(diǎn)。本研究利用多位點(diǎn)混合線(xiàn)性模型(mrMLM)對(duì)關(guān)聯(lián)群體的8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行了全基因組關(guān)聯(lián)分析,共檢測(cè)到210個(gè)與產(chǎn)量相關(guān)性狀顯著關(guān)聯(lián)的SNP,涉及175個(gè)位點(diǎn),其中有10個(gè)位點(diǎn)能夠在3個(gè)環(huán)境下被重復(fù)檢測(cè)到,表明這些位點(diǎn)受環(huán)境影響較小,可在不同環(huán)境下穩(wěn)定遺傳。同時(shí),也有些位點(diǎn)同時(shí)與多個(gè)性狀顯著關(guān)聯(lián),比如位點(diǎn)1、位點(diǎn)2和位點(diǎn)7分別與單株蒴數(shù)、蒴粒數(shù)和始蒴高度顯著相關(guān),共定位于第4連鎖群的12.08—12.27 Mb區(qū)間內(nèi)。在這10個(gè)位點(diǎn)中,位點(diǎn)1、位點(diǎn)2、位點(diǎn)7和位點(diǎn)9與以往定位結(jié)果基本一致(電子附表1)[17, 35]。這些結(jié)果為進(jìn)一步利用和克隆目的基因提供了有價(jià)值的信息。

      3.3 芝麻產(chǎn)量相關(guān)性狀的候選基因預(yù)測(cè)

      本研究在上述10個(gè)關(guān)聯(lián)位點(diǎn)區(qū)域內(nèi)共檢測(cè)到214個(gè)候選基因,其中156個(gè)基因具有功能注釋?zhuān)饕婕爸参锎x、生物調(diào)控、生長(zhǎng)發(fā)育等生物學(xué)途徑。其中SIN_1006338位于位點(diǎn)1(2或3)內(nèi),與單株蒴數(shù)、蒴粒數(shù)和始蒴高度顯著相關(guān),它編碼1-氨基環(huán)丙烷-1-羧酸合酶3-like,是擬南芥的同源基因。受生長(zhǎng)素誘導(dǎo)表達(dá),參與乙烯的生物合成[36];過(guò)表達(dá)可導(dǎo)致植株矮小和葉片縮小[37]。Wei等[17]和Zhou等[35]發(fā)現(xiàn)SIN_1006338與芝麻葉腋蒴數(shù)、葉寬、主莖產(chǎn)量、主莖有效蒴數(shù)和分枝有效蒴數(shù)顯著相關(guān);序列比對(duì)分析發(fā)現(xiàn)SIN_1006338外顯子上存在非同義突變(T/C),并且T等位變異基因型的主莖株蒴數(shù)顯著高于C等位變異基因型主莖株蒴數(shù)。因此SIN_1006338可能是控制芝麻單株蒴數(shù)、蒴粒數(shù)和始蒴高度的重要候選基因。SIN_1024330位于位點(diǎn)5上,與株高顯著關(guān)聯(lián),編碼一類(lèi)bHLH轉(zhuǎn)錄因子IBL1,負(fù)向調(diào)控油菜素內(nèi)酯信號(hào)和細(xì)胞伸長(zhǎng),過(guò)表達(dá)可導(dǎo)致植株明顯矮化[38]。SIN_1014512定位于位點(diǎn)9上,與始蒴高度顯著相關(guān),它編碼吲哚-3-乙酸-酰胺合成酶GH3.6,參與調(diào)節(jié)植物內(nèi)源生長(zhǎng)素的平衡[39]。的功能缺失突變會(huì)抑制擬南芥細(xì)胞的伸長(zhǎng),導(dǎo)致植物矮小[40]。因此,SIN_1014512可能是通過(guò)調(diào)節(jié)植物體內(nèi)生長(zhǎng)素濃度控制細(xì)胞的伸長(zhǎng),從而參與芝麻始蒴高度的調(diào)控。SIN_1011473定位于位點(diǎn)10上,與收獲指數(shù)顯著相關(guān),它編碼一種泛素受體蛋白DA1,負(fù)向調(diào)控植物種子和器官的大小;擬南芥突變體的籽粒變大、粒重提高;另外各類(lèi)器官組織,如花、葉片明顯變大,莖稈變粗[41-43]。在油菜中異源表達(dá)突變型能夠抑制內(nèi)源基因的表達(dá),并提高轉(zhuǎn)基因油菜種子的大小和重量[44]。在小麥中,過(guò)表達(dá)會(huì)降低小麥種子的大小和重量,而沉默會(huì)提高小麥種子的大小和重量[45]。以上研究表明,在植物器官發(fā)育中發(fā)揮重要作用,由此推測(cè),SIN_1011473可能通過(guò)調(diào)節(jié)芝麻各器官的大小進(jìn)而調(diào)節(jié)產(chǎn)量相關(guān)性狀。

      4 結(jié)論

      利用多位點(diǎn)全基因組關(guān)聯(lián)分析方法(mrMLM)對(duì)8個(gè)產(chǎn)量相關(guān)性狀進(jìn)行了全基因組關(guān)聯(lián)分析,在4個(gè)環(huán)境和綜合BLUP值條件下共檢測(cè)到210個(gè)與性狀顯著關(guān)聯(lián)的SNP位點(diǎn),涉及175個(gè)位點(diǎn)。其中,10個(gè)位點(diǎn)在3個(gè)以上環(huán)境中被同時(shí)檢測(cè)到,在這10個(gè)位點(diǎn)的基因組區(qū)段中,共發(fā)現(xiàn)214個(gè)候選基因,結(jié)合基因功能注釋?zhuān)Y選出4個(gè)重要的產(chǎn)量相關(guān)性狀候選基因。

      [1] ANILAKUMAR K R, PAL A, KHANUM F, BAWA A S. Nutritional, medicinal and industrial uses of sesame (L.) seeds: An overview. Agriculturae Conspectus Scientificus, 2010, 75(4): 159-168.

      [2] DOSSA K, WEI X, NIANG M, LIU P, ZHANG Y, WANG L, LIAO B, CISSE N, ZHANG X, DIOUF D. Near-infrared reflectance spectroscopy reveals wide variation in major components of sesame seeds from Africa and Asia. The Crop Journal, 2018, 6: 202-206.

      [3] WU K, LIU H, YANG M, TAO Y, MA H, WU W, ZUO Y, ZHAO Y. High-density genetic map construction and QTLs analysis of grain yield-related traits in sesame (L.) based on RAD-Seq technology. BMC Plant Biology, 2014, 14: 274.

      [4] BIABANI A R, PAKNIYAT H. Evaluation of seed yield-related characters in sesame (L.) using factor and path analysis. Pakistan Journal of Biological Sciences, 2008, 11(8): 1157-1160.

      [5] WANG L, XIA Q, ZHANG Y, ZHU X, ZHU X, LI D, NI X, GAO Y, XIANG H, WEI X, YU J, QUAN Z, ZHANG X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 2016, 17(1): 31.

      [6] MORRELL P L, BUCKLER E S, ROSS-IBARRA J. Crop genomics: advances and applications. Nature Reviews Genetics, 2012, 13(2): 85-96.

      [7] MACKAY I, POWELL W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2): 57-63.

      [8] MACKAY T F C, STONE E A, AYROLES J F. The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577.

      [9] FLINT-GARCIA S A, THUILET A C, YU J, PRESSOIR G, ROMERO S M, MITCHELL S E, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Maize association population: A high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44(6): 1054-1064.

      [10] YU J, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.

      [11] LI H, PENG Z, YANG X, WANG W, FU J, WWANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON ML, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.

      [12] HUANG X, ZHAO Y, WEI X, LI C, WWANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONGG, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39.

      [13] LIU Y, LIN Y, GAO S, LI Z, MA J, DENG M, CHEN G, WEI Y, ZHENG Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. The Plant Journal, 2017, 91(5): 861-873.

      [14] FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B, MEI G, SUN J, PAN Z, HE S, XIAO S, SHI W, GONGW, LIU J, MA J, CAI C, ZHU X, GUO W, DU X, ZHANG T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7): 1089-1098.

      [15] Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S H, Wang W, Tian Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.

      [16] Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (L.). DNA Research, 2016, 23(1): 43-52.

      [17] Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6: 8609.

      [18] ZHANG Y M, JIA Z, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2019, 10: 100.

      [19] Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S, Zhang Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.

      [20] CUI Y, ZHANG F, ZHOU Y. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science, 2018, 9: 1464.

      [21] Zhang Y W, Lwaka Tamba C, Wen Y J, Li P, Ren W L, Ni Y L, Gao J, Zhang Y M. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinformatics, 2020, 18(4): 481-487.

      [22] Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H.SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 2013, 8: e58700.

      [23] Cui C, Mei H, Liu Y, Zhang H, Zheng Y. Genetic diversity, population structure, and linkage disequilibrium of an association- mapping panel revealed by genome-wide SNP markers in sesame. Frontiers in Plant Science, 2017, 8: 1189.

      [24] 劉艷陽(yáng), 梅鴻獻(xiàn), 杜振偉, 武軻, 鄭永戰(zhàn), 崔向華, 鄭磊. 基于表型和SSR分子標(biāo)記構(gòu)建芝麻核心種質(zhì). 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(13): 2433-2441.

      LIU Y Y, MEI H X, DU Z W, WU K, ZHENG Y Z, CUI X H, ZHENG L. Construction of core collection of sesame based on phenotype and molecular markers. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441. (in Chinese)

      [25] MCKENNA S, MEYER M, GREGG C, GERBER S. CorrPlot: An Interactive scatterplot for exploring correlation. Journal of Computational & Graphical Statistics, 2015, 25(2): 445-463.

      [26] Bates D, M?chler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67: 1-48.

      [27] Kaler A S, Ray J D, Schapaugh W T, King C A, Purcell L C. Genome-wide association mapping of canopy wilting in diverse soybean genotypes. Theoretical & Applied Genetics, 2017, 130: 2203-2217.

      [28] LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26:589-595.

      [29] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULERl D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

      [30] Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics, 2011, 27(15): 2156-2158.

      [31] Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.

      [32] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.

      [33] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. eggNOG-mapper: Fast genome-wide functional annotation through orthology assignment. Molecular Biology & Evolution, 2017, 34(8): 2115-2122.

      [34] MEI H, LIU Y, CUI C, HU C, XIE F, ZHENG L, DU Z, WU K, JIANG X, ZHENG Y, MA Q. QTL mapping of yield?related traits in sesame. Molecular Breeding, 2021, 41: 43.

      [35] Zhou R, Dossa K, Li D, Yu J, You J, Wei X, Zhang X r. Genome-wide association studies of 39 seed yield-related traits in sesame (L.). International Journal of Molecular sciences, 2018, 19(9): 1-18.

      [36] Tsuchisaka A, Theologis A. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by thegene family. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 2275-2280.

      [37] Plett J M, Williams M, LeClair G, Regan S, Beardmore T. Heterologous over-expression of() in×clone 717-1B4 results in elevated levels of ethylene and induces stem dwarfism and reduced leaf size through separate genetic pathways. Frontiers in Plant Science, 2014, 5: 514.

      [38] ZHIPONOVA M K, MOROHASHI K, VANHOUTTE I, MACHEMER- NOONAN K, REVALSKA M, VAN MONTAGU M, GROTEWOLD E, RUSSINOVA E. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation inthrough an apparent incoherent feed-forward loop. Proceedings of the National Academy of Sciences of the United States of America, 2014, 18, 111(7): 2824-2829.

      [39] Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. Characterization of anenzyme family that conjugates amino acids to indole-3- acetic acid. The Plant Cell, 2005, 17(2): 616-627.

      [40] Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M., an auxin- responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. The Plant Journal, 2001, 25(2): 213-221.

      [41] Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by thegene family in. Genes & Development, 2008, 22(10): 1331-1336.

      [42] Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in. The Plant Cell, 2013, 25(9): 3347-3359.

      [43] Vanhaeren H, Nam Y J, De Milde L, Chae E, Storme V, Weigel D, Gonzalez N, Inzé D. Forever Young: the role of ubiquitin receptor DA1 and E3 ligase BIG BROTHER in controlling leaf growth and development. Plant Physiology, 2017, 173(2): 1269-1282.

      [44] Wang J L, Tang M Q, Chen S, Zheng X F, Mo H X, Li S J, Wang Z, Zhu K M, Ding L N, Liu S Y, Li Y H, Tan X L. Down-regulation of, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in. Plant Biotechnology Journal, 2017, 15(8): 1024-1033.

      [45] Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X., a conserved negative regulator of kernel size, has an additive effect withL.). Plant Biotechnology Journal, 2020, 18(5): 1330-1342.

      附表1 關(guān)聯(lián)分析位點(diǎn)與已報(bào)道關(guān)聯(lián)位點(diǎn)比對(duì)

      Supplementary Table 1 The results of GWAS were compared with reported loci

      位點(diǎn)1、2 和7 共定位于第4 連鎖群的12.08—12.27 Mb 區(qū)間內(nèi)

      The loci 1, 2, and 7 were co-located in the 12.08-12.27 Mb of linkage group 4

      Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (L.)

      CUI ChengQi1, LIU YanYang1, JIANG XiaoLin1, SUN ZhiYu2, DU ZhenWei1, WU Ke1, MEI HongXian1, ZHENG YongZhan1

      1Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008;2College of Life Sciences, South China Normal University, Guangzhou 510631

      【】Genome-wide association studies (GWAS) were performed using multi-locus random-SNP-effect mixed linear (mrMLM) model to identify the significantly associated SNPs and candidate genes with yield traits, and lay a foundation for molecular marker-assisted selection breeding for sesame high yield.【】In this study, 363 diverse sesame lines were assembled into an association-mapping panel. Eight yield-related traits, including seed yield per plant, capsule number per plant, seed number per capsule, 1000-seed weight, plant height, capsule axis length, first capsule height and apparent harvest index, were investigated. Genome-wide association studies were performed using mrMLM to detect significantly associated SNPs and predict important candidate genes related to yield traits.【】Eight yield-related traits measured in four environments exhibited extensive phenotypic variation with 1.63%-17.29% of phenotypic variation coefficients. The seed yield per plant was positively correlated with capsule number per plant, plant height, capsule axis length, and apparent harvest index respectively. Analysis of variance indicated that significant variations were observed across environment, genotype, and the genotype × environment interaction. GWAS were performed and a total of 210 SNPs were detected for yield traits. Among these SNPs, 47, 35, 35, 53, and 75 SNPs were detected in 2018NY, 2019NY, 2018PY, 2019PY and BLUP, explaining 1.63%-17.29%, 1.94%-11.90%, 2.15%-15.90%, 1.25%-11.13% and 1.44%-13.58% of phenotypic variation, respectively. These 210 SNPs corresponded to 175 loci, and 10 loci were detected in more than 3 environments. A total of 214 candidate genes were identified, including 156 genes involved in metabolism, biological regulation, and developmental and growth process. Among these genes, 4 genes were selected as important candidate genes. SIN_1006338, encoding 1-aminocyclopropane-1-carboxylate synthase 3-like protein, was involved in ethylene biosynthesis. SIN_1024330, encoding transcription factor IBH1-like 1, was involved in regulating cell and organ elongation. SIN_1014512, encoding indole-3-acetic acid-amido synthetase GH3.6, was involved in shoot and hypocotyl cell elongation. SIN_1011473, encoding protein DA1-like, was involved in restricting the period of cell proliferation.【】One hundred and seventy-five loci were identified by mrMLM, and 4 important genes related to yield traits were selected.

      L.; yield-related traits; genome-wide association studies; function annotation; candidate gene

      10.3864/j.issn.0578-1752.2022.01.018

      2021-06-23;

      2021-09-18

      財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-14-1-01)、河南省重大科技專(zhuān)項(xiàng)(201300110600)、河南省重點(diǎn)研發(fā)與推廣專(zhuān)項(xiàng)(202102110026)、河南省農(nóng)業(yè)科學(xué)院優(yōu)秀青年科技基金(2020YQ26)、河南省農(nóng)業(yè)科學(xué)院科技創(chuàng)新創(chuàng)意項(xiàng)目(2020CX25)、河南省農(nóng)業(yè)科學(xué)院基礎(chǔ)性科研項(xiàng)目(2020JC008,2021JC013)、河南省農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)(2021ZC69)

      崔承齊,E-mail:chengqicui_1986@126.com。劉艷陽(yáng),E-mail:liuyanyang001@163.com。崔承齊和劉艷陽(yáng)為同等貢獻(xiàn)作者。通信作者梅鴻獻(xiàn),E-mail:meihx2003@126.com。通信作者鄭永戰(zhàn),E-mail:sesame168@163.com

      (責(zé)任編輯 李莉)

      猜你喜歡
      主莖芝麻單株
      不同來(lái)源小麥品種主要產(chǎn)量性狀的比較分析
      金蕎麥?zhǔn)占抵晷拖嚓P(guān)性狀遺傳變異分析
      無(wú)為市太平山楓香樹(shù)不同單株葉片性狀多樣性分析
      香噴噴的芝麻
      中老年保健(2021年3期)2021-08-22 06:51:16
      甘藍(lán)型油菜雙主莖YD 4899的選育及表型性狀比較分析
      種子(2021年7期)2021-08-19 01:46:58
      一品芝麻狐 第四回
      一品芝麻狐 第二回
      一品芝麻狐 第五回
      種植密度與行距對(duì)秋閑田飼用甜高粱單株生產(chǎn)力的影響
      馬鈴薯品種‘荷蘭15號(hào)’主莖密度與植株性狀及塊莖產(chǎn)量的關(guān)系
      佛坪县| 宝丰县| 图木舒克市| 鹤岗市| 新郑市| 肥乡县| 河西区| 全州县| 杭锦后旗| 安岳县| 黄骅市| 紫金县| 奎屯市| 衢州市| 江川县| 嘉善县| 陆丰市| 社会| 喀喇沁旗| 乐陵市| 崇礼县| 射阳县| 衡山县| 雷波县| 陕西省| 读书| 宁晋县| 汉川市| 新乡县| 永寿县| 渭源县| 兰州市| 山东| 伽师县| 安塞县| 克什克腾旗| 沐川县| 郧西县| 永新县| 和林格尔县| 遂川县|