• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    干擾山羊KLF12促進皮下脂肪細胞分化

    2022-02-22 07:38:34杜宇王永孟慶勇朱江江林亞秋
    中國農(nóng)業(yè)科學(xué) 2022年1期
    關(guān)鍵詞:皮下脂肪結(jié)構(gòu)域山羊

    杜宇,王永,孟慶勇,朱江江,林亞秋

    干擾山羊促進皮下脂肪細胞分化

    1西南民族大學(xué)青藏高原動物遺傳資源保護與利用教育部/四川省重點實驗室,成都 610041;2西南民族大學(xué)畜牧獸醫(yī)學(xué)院,成都 610041;3中國農(nóng)業(yè)大學(xué)生物學(xué)院農(nóng)業(yè)生物技術(shù)國家重點實驗室,北京 100193

    脂肪組織分為皮膚下的皮下脂肪組織(subcutaneous adipose tissue,SAT)和腹部內(nèi)器官周圍的內(nèi)臟脂肪組織(visceral adipose tissue,VAT),皮下脂肪作為影響肉類美味與否的重要因素,探究皮下脂肪沉積分子調(diào)控機制對于育種改良和畜牧業(yè)的發(fā)展至關(guān)重要。Krüppel-like factors12 ()是一個進化保守的轉(zhuǎn)錄因子,可以在多種細胞類型中表達并控制著廣泛的細胞過程?!尽垦芯揩@得山羊的分子特征并進行生物信息學(xué)分析,同時明確在山羊組織和細胞中的表達模式以及干擾對山羊皮下脂肪細胞分化的調(diào)控作用,為進一步研究在脂肪沉積過程中的潛在作用提供理論依據(jù)。利用逆轉(zhuǎn)錄PCR(reverse transcription PCR,RT-PCR)方法克隆山羊完整編碼序列(coding sequence,CDS)區(qū),使用在線生物信息學(xué)分析軟件對山羊核苷酸序列和氨基酸序列進行分析。利用實時熒光定量PCR(Quantitative Real-time PCR,qRT-PCR)技術(shù)檢測在山羊心臟、肝臟、腹部脂肪、皮下脂肪、臂三頭肌、背最長肌等14個組織中的表達水平,以及誘導(dǎo)分化不同時間段在皮下前體脂肪細胞中的表達水平。隨后,試驗通過化學(xué)合成山羊小干擾RNA(si-),使用Lipofectamine RNAiMAX轉(zhuǎn)染試劑將山羊si-序列轉(zhuǎn)染到體外培養(yǎng)的山羊皮下前體脂肪細胞中。使用100 μmol·L-1油酸導(dǎo)液誘導(dǎo)脂肪細胞分化。利用油紅O以及Bodipy染色方法和qRT-PCR技術(shù)分別從形態(tài)學(xué)以及分子生物學(xué)的角度闡明干擾對皮下前體脂肪細胞脂滴積聚和脂肪分化標(biāo)志基因mRNA表達水平的影響。試驗成功獲得包含開放閱讀框(open reading frame,ORF)(1 209 bp)的山羊(1 315 bp,編碼402個氨基酸)。亞細胞定位結(jié)果顯示KLF12主要位于細胞核,此外,KLF12無跨膜結(jié)構(gòu)域和信號肽,且在317—341、347—371及377—399氨基酸處存在3個典型的鋅指結(jié)構(gòu)域(ZnF_C2H2)。組織表達譜結(jié)果顯示在山羊心臟和脾臟的表達水平極顯著高于其他組織(<0.01)。此外,在山羊皮下前體脂肪細胞分化過程中表達水平在誘導(dǎo)分化60 h時達到峰值。于山羊皮下前體脂肪細胞中轉(zhuǎn)染si-后利用油紅O以及Bodipy染色法從形態(tài)學(xué)觀察發(fā)現(xiàn)脂肪細胞脂滴聚積明顯增加,同時qRT-PCR結(jié)果顯示,脂肪分化標(biāo)志基因脂蛋白脂肪酶(lipoprteinlipase,)和過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ,)的表達水平顯著升高(<0.05)而前脂肪細胞生長因子(preadipocyte factor 1,)的表達水平極顯著降低(<0.01)。結(jié)合形態(tài)學(xué)觀察結(jié)果以及脂肪分化標(biāo)志基因表達水平變化情況,推測在皮下脂肪細胞分化過程中起到負調(diào)控作用。通過對山羊的分子生物學(xué)特征、組織細胞間的表達規(guī)律以及對山羊皮下脂肪細胞分化過程的潛在調(diào)控作用的研究表明,是山羊皮下脂肪細胞分化過程中的負調(diào)控因子,并且這種作用可能是通過調(diào)控、和實現(xiàn)的,為進一步探究在調(diào)控脂肪細胞分化過程中的分子機制奠定了基礎(chǔ)。

    山羊;;分子特征;干擾;皮下脂肪細胞

    0 引言

    【研究意義】脂肪組織分為皮膚下的皮下脂肪組織和腹部內(nèi)器官周圍的內(nèi)臟脂肪組織[1-2]。研究表明,皮下脂肪與調(diào)節(jié)胰島素敏感性[3],保護葡萄糖耐量[4]和糖尿病[5]等密切相關(guān)。此外,皮下脂肪與肌肉和肌內(nèi)脂肪一樣,也是決定肉類美味與否的重要因素之一[6]。羊肉因其味道鮮美,口感獨特從而越來越受廣大消費者的青睞。因此,研究皮下脂肪沉積的分子調(diào)控機制對于育種改良和畜牧業(yè)的發(fā)展至關(guān)重要?!厩叭搜芯窟M展】Krüppel-like factors()是一個進化保守的轉(zhuǎn)錄因子簇,其C端區(qū)域包含3個可以與靶基因結(jié)合的Cys2-His2鋅指DNA結(jié)合結(jié)構(gòu)域,現(xiàn)有研究證實KLFs在多種細胞類型中表達并控制著廣泛的細胞過程,包括細胞增殖、分化和胚胎的發(fā)育等[7–9]。近年來,已經(jīng)確定哺乳動物KLFs家族的成員是調(diào)控前脂肪細胞形成、脂肪細胞分化和脂肪形成和肥胖的關(guān)鍵參與者[10-12]。例如,Banerjee等[13]研究發(fā)現(xiàn)在3T3-L1脂肪細胞中高度表達,并通過有效抑制脂肪生成標(biāo)志基因過氧化物酶體增殖物激活的受體γ(PPARγ)的表達起到抑制脂肪細胞分化和脂肪生成的調(diào)控作用。郭紅芳[14]研究表明,干擾和的表達均可抑制牛脂肪細胞中甘油三酯的積累。此外,牛脂肪細胞中可以促進啟動子的轉(zhuǎn)錄活性,即對存在正向調(diào)節(jié)作用。是家族成員之一,最早被確定為激活蛋白2α(AP-2α)的阻遏物[15]。近年來關(guān)于的研究多集中于對卵巢癌[16]、胰腺癌[17]、胃癌[18]以及子宮內(nèi)膜蛻化[19]等疾病的調(diào)控研究,而關(guān)于在調(diào)控脂代謝和脂肪沉積的相關(guān)報道較少?,F(xiàn)有研究如Mei等[20]通過GWAS途徑分析表明與糖尿病性狀有顯著關(guān)聯(lián)。Shen等[21]研究指出tRNA衍生片段(tRF)在肥胖大鼠中可以直接靶標(biāo)并促進3T3-L1前脂肪細胞增殖而抑制前脂肪細胞的分化。以上研究提示可能與脂代謝和脂肪細胞分化有關(guān)。【本研究切入點】本研究團隊前期利用高通量測序發(fā)現(xiàn)是山羊皮下脂肪細胞分化前后的差異表達基因,推測其具有調(diào)控山羊皮下脂肪細胞分化的作用,所以明確山羊的分子特征、組織細胞表達模式以及在脂肪細胞分化過程中的轉(zhuǎn)錄調(diào)控機制對最終揭示的基因功能尤為重要?!緮M解決的關(guān)鍵問題】擬克隆山羊序列并在此基礎(chǔ)上利用在線軟件對山羊進行生物信息學(xué)分析。利用實時熒光定量PCR(real-time quantitative PCR,qRT-PCR)技術(shù)檢測該基因在山羊各組織和皮下前體脂肪細胞分化過程中的表達模式。使用油紅O染色和RNA干擾等方法從形態(tài)學(xué)及分子生物學(xué)角度檢測抑制的表達對山羊皮下前體脂肪細胞分化的影響。進一步通過檢測干擾后脂肪標(biāo)志基因的表達情況,從而推測其在山羊皮下前體脂肪細胞分化過程中的潛在作用機制。為進一步研究在脂肪沉積過程中的潛在作用提供基礎(chǔ)資料。

    1 材料與方法

    1.1 試驗材料

    I-5TM2×High-Fidelity Master Mix酶、TB GreenTMPremix Ex TaqTMⅡ、TRIzol和pMDTM19-T Vector Cloning載體購自寶生物工程(大連)有限公司; TreliefTM5α感受態(tài)細胞購于擎科新業(yè)生物技術(shù)有限公司(中國);膠回收試劑盒購于天根生化科技有限公司(中國);反轉(zhuǎn)錄試劑盒RevertAid First Strand cDNA Synthesis Kit和熒光染料Bodipy購自Thermo(美國);血清購自Gemini(美國);青鏈霉素、DME/F12培養(yǎng)基和0.25%胰酶購自Hyclone(美國);油酸購于Sigma(美國),轉(zhuǎn)染試劑RNAi MAX Reagent購自Invitrogen(美國)。

    1.2 試驗方法

    1.2.1 試驗樣品采集 試驗所用組織樣品在2018年12月于四川省簡陽大哥大牧業(yè)有限公司完成采樣。試驗選用1周歲(公羊)健康大耳山羊(Jianzhou goat)(n=4),清晨空腹屠宰放血后立即取其各個內(nèi)臟和肌肉等組織,用已滅菌的DEPC水處理組織后用錫箔紙包裹組織樣品后置于凍存管中迅速放置液氮中儲存。

    1.2.2 山羊CDS序列克隆 以山羊脾臟cDNA為模板,根據(jù)GenBank中山羊預(yù)測序列(登錄號:XM_005687692.3),利用Primer 5.0設(shè)計克隆引物(表1)。RT-PCR反應(yīng)體系:I-5TM2×High- Fidelity Master Mix 12.5 μL,10 μmol·L-1上、下游引物各1 μL,模板cDNA 1 μL,ddH2O 9.5 μL。RT-PCR擴增程序:預(yù)變性98℃ 2 min;變性98℃ 10 s;退火58℃ 15 s;延伸72℃ 15 s;延伸72℃ 5 min;設(shè)定35個循環(huán)。1%瓊脂糖凝膠電泳檢測擴增片段,利用膠回收試劑盒收獲預(yù)期片段,連接到pMDTM19-T Vector Cloning載體后轉(zhuǎn)化于TreliefTM5α感受態(tài)細胞中培養(yǎng),LB固體培養(yǎng)基培養(yǎng)10—12 h后挑取單菌落于干凈的EP管中,加入含AMP的LB液體培養(yǎng)基培養(yǎng)4—6 h,進行菌液PCR鑒定,將符合預(yù)期片段的菌液送至成都擎科梓熙生物技術(shù)有限公司測序。

    表1 引物信息

    S.正義鏈引物;A.反義鏈引物;.廣泛表達轉(zhuǎn)錄子基因(Ubiquitously-expressed transcript gene)

    S. Sense primer;A. Antisense primer;Ubiquitously-expressed transcript gene

    1.2.3 山羊生物信息學(xué)分析 利用NCBI對獲得的序列進行開放閱讀框預(yù)測,并翻譯為氨基酸序列;利用NCBI中CD-search工具以及SMART在線軟件進行蛋白結(jié)構(gòu)域預(yù)測;使用MegAlign軟件進行同源性分析。利用PSORT Ⅱ進行亞細胞定位;利用NPSA預(yù)測蛋白二級結(jié)構(gòu);利用TMHMM預(yù)測跨膜結(jié)構(gòu)域,SignalIP4.1預(yù)測信號肽;使用Swiss-model預(yù)測蛋白三級結(jié)構(gòu);利用STRING進行蛋白構(gòu)建蛋白互作網(wǎng)絡(luò);使用MEGA 7.0軟件中鄰接法(Neighbor-Joining,NJ)進行系統(tǒng)進化樹分析。

    1.2.4 構(gòu)建山羊組織表達譜 根據(jù)克隆獲得的山羊CDS區(qū)序列基因設(shè)計特異的qRT-PCR引物(表1),利用qRT-PCR技術(shù)檢測該基因在山羊13種組織中的表達水平。qRT-PCR反應(yīng)體系:10 μmol·L-1的上下游引物各1 μL、組織cDNA 1 μL、TB GreenTMPremix Ex TaqTMⅡ 10 μL、ddH2O 7 μL。qRT-PCR運行程序:預(yù)變性:95℃ 3 min,變性:95℃ 10 s,退火(:61℃,:60℃)10 s,延伸72℃ 15 s,38個循環(huán)。

    1.2.5 山羊siRNA化學(xué)合成 根據(jù)克隆獲得的山羊序列(KX247669.1)設(shè)計特異性siRNA,交由Invitrogen公司合成凍干粉,使用前12 000 r/min離心10 min后按照說明書加入1 mL RNase Free H2O溶解為終濃度20 μmol·L-1的溶液,于- 20℃保存。siRNA序列如下:siRNA 1: 5′-CAAACUGAGCCAG UGGACUUGUCCA-3′;siRNA 2: 5′-UGGACAAGUC CACUGGCUCAGUUUG-3′。陰性對照(Negative Control,NC)由Invitrogen公司提供。

    1.2.6 山羊皮下前體脂肪的培養(yǎng)與si-RNA轉(zhuǎn)染 37℃水浴鍋復(fù)蘇實驗室儲存的山羊皮下前體脂肪細胞,使用含10% FBS和0.1%青鏈霉素的完全培養(yǎng)基,F(xiàn)1代細胞接種于25 cm2細胞培養(yǎng)瓶中,F(xiàn)3代細胞接種于12孔板中,于37℃含5% CO2的細胞恒溫培養(yǎng)箱培養(yǎng)。待F3代細胞鋪板至80%時開始誘導(dǎo)分化并分別于誘導(dǎo)0、12、24、48、60和96 h后加TRIzol收細胞,提取細胞RNA。同時,F(xiàn)3代細鋪板只80%左右開始轉(zhuǎn)染(每組3個生物學(xué)重復(fù)),轉(zhuǎn)染前4 h更換無血清培養(yǎng)基Opti饑餓細胞,轉(zhuǎn)染6 h后更換100 μmol·L-1油酸導(dǎo)液。誘導(dǎo)分化48 h后收集細胞用于提取RNA。

    1.2.7 油紅O及Bodipy染色 用于染色的細胞接種于24孔板,處理方式同1.2.6。細胞用PBS緩沖液緩慢清洗2次,用10%甲醛固定細胞30 min,再用PBS緩沖液清洗2次之后加入油紅O工作液染色30 min。用于Bodipy染色的細胞接種于24孔板,細胞轉(zhuǎn)染及固定方法同上,PBS緩沖液清洗2次之后加入Bodipy染色工作液,避光染色15 min。染色結(jié)束后棄去油紅/Bodipy工作液用并用PBS清洗數(shù)次直至顯微鏡下觀察清晰,拍照記錄結(jié)果。每個試驗組3個重復(fù)。染色后的細胞按照每孔 1 mL 用量加入異丙醇以溶解細胞誘導(dǎo)分化產(chǎn)生的脂滴,混勻后等量加至 96 孔板中于 490 nm 波長測定OD 值。每組設(shè)置 5 個重復(fù)。

    1.2.8 qRT-PCR檢測 TRIzol法提取細胞總RNA后,使用Revert Aid First Strand cDNA Synthesis Kit反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄cDNA,qRT-PCR檢測si-轉(zhuǎn)染效率以及脂肪分化標(biāo)志基因的表達變化。脂肪標(biāo)志基因和si-引物信息見表2。

    1.2.9 數(shù)據(jù)統(tǒng)計分析 qRT-PCR數(shù)據(jù)使用2-ΔΔCt法分析,利用SPSS 18軟件單因素方差分析法進行差異顯著性分析。利用GraphPad Prism 5軟件繪圖,數(shù)據(jù)表示為≧4個獨立試驗的均值±標(biāo)準(zhǔn)誤即“Mean±SEM”。試驗中所有數(shù)據(jù)均進行3次重復(fù)性檢驗。*:<0.05;**:<0.01。

    表2 引物信息

    S.正義鏈引物;A.反義鏈引物;.廣泛表達轉(zhuǎn)錄子基因

    S. Sense primer;A. Antisense primer;. Ubiquitously-expressed transcript gene

    2 結(jié)果

    2.1 山羊KLF12克隆

    以山羊脾臟組織cDNA為模板,RT-PCR擴增獲得基因序列1 315 bp(圖1),其中包括5'UTR 序列52 bp、3'UTR序列54 bp和開放閱讀框1 209 bp,基因編碼402個氨基酸(圖2-A)。提交GenBank獲得登錄號為:KX247669.1。使用NetPhos 3.1、CD-search及SMART在線軟件預(yù)測山羊KLF12磷酸化位點以及結(jié)構(gòu)域,結(jié)果發(fā)現(xiàn)在第9、15、33、38、42、48、77、91和92等處存在酪氨酸(Tyr)、絲氨酸(Ser)和蘇氨酸(Thr)的磷酸化位點。此外,在第228—401氨基酸之間存在結(jié)構(gòu)域,其中分別于317—341、347—371及377—399氨基酸之間存在3個典型的鋅指結(jié)構(gòu)域(ZnF_C2H2)(圖2-B)。

    M:Marker D2000;1:KLF12基因擴增序列 The amplified sequence of KLF12

    2.2 山羊KLF12生物信息學(xué)分析

    使用PSORT Ⅱ進行亞細胞定位發(fā)現(xiàn)山羊KLF12有95.7%存在于細胞核,4.3%存在于線粒體,無信號肽剪切位點。使用TMHMM預(yù)測跨膜結(jié)構(gòu)域發(fā)現(xiàn)山羊KLF12無跨膜結(jié)構(gòu)域。比較物種間KLF12典型結(jié)構(gòu)域發(fā)現(xiàn),野牛、綿羊、馬、人和豬等均存在與山羊KLF12相同結(jié)構(gòu)域(圖3-A)。NPSA二級結(jié)構(gòu)預(yù)測結(jié)果顯示山羊KLF12蛋白序列60個(14.93%)可能形成α螺旋,253個(62.94%)可能形成無規(guī)卷曲,89個(22.14%)可能形成延伸鏈(圖3-B)。利用Swiss-model在線軟件預(yù)測獲得山羊KLF12蛋白三級結(jié)構(gòu)如(圖3-C)。進一步利用STRING構(gòu)建山羊KLF12蛋白互作網(wǎng)絡(luò),結(jié)果顯示KLF12可能與FSBP、SRBD1、MAGEB10、TYWS、TANC2、PARD3B和TFAP2A等蛋白發(fā)生相互作用(圖3-D)。

    A:核苷酸序列與氨基酸序列對比;黑色三角表示磷酸化位點;結(jié)構(gòu)域用灰色底紋表示,方框表示ZnF_C2H2區(qū)域;起始密碼子ATG和終止密碼子TGA用方框表示;擴增引物用紅色下劃線標(biāo)出;B:山羊KLF12結(jié)構(gòu)域預(yù)測

    2.3 KLF12同源性比對與系統(tǒng)進化樹構(gòu)建

    利用NCBI及MegAlign軟件對山羊核苷酸序列與野牛、綿羊、白鯨、馬、豬、人、鼠、雞、黑猩猩、狗和貓的核苷酸序列進行同源性分析如(圖4-A),結(jié)果發(fā)現(xiàn)山羊與白鯨的同源性最高達到95.7%,此外與野牛、貓和馬的同源性分別為92.2%、94.8%和95.3%。根據(jù)KLF12的氨基酸序列利用MEGA7.0構(gòu)建了KLF12的氨基酸序列構(gòu)建系統(tǒng)進化樹,結(jié)果顯示KLF12在哺乳動物之間屬同一分支,山羊KLF12與綿羊和野牛親緣關(guān)系較近(圖4-B)。

    2.4 山羊KLF12組織與細胞時序表達譜

    qRT-PCR檢測山羊各組織中mRNA表達水平(圖5-A)。選擇UXT為內(nèi)參基因[22-23],以瘤胃表達水平作對照。結(jié)果顯示,廣泛表達于山羊各個組織,其中心臟和脾臟的表達水平最高,極顯著高于其他組織(<0.01),此外在皮下和腹部脂肪也有較高表達。檢測mRNA在山羊皮下前體脂肪細胞誘導(dǎo)分化0—96 h的表達水平變化。結(jié)果顯示,山羊在皮下前體脂肪細胞中的表達總體呈先上升后下降再上升的趨勢,于誘導(dǎo)分化第60小時表達量達到峰值(圖5-B)。

    A:不同物種KLF12結(jié)構(gòu)域比對;B:山羊KLF12二級結(jié)構(gòu)預(yù)測;C:山羊KLF12蛋白三級結(jié)構(gòu)預(yù)測;D:山羊KLF12蛋白相互作用預(yù)測

    2.5 干擾KLF12促進山羊皮下前體脂肪細胞分化

    為進一步探究在山羊皮下脂肪細胞中參與的分子機制,體外培養(yǎng)山羊皮下前體脂肪細胞,待F3代細胞鋪板至80%時轉(zhuǎn)染化學(xué)合成的- siRNA,轉(zhuǎn)染完成后更換油酸誘導(dǎo)液誘導(dǎo)分化48 h后收集細胞。qRT-PCR檢測siRNA干擾效率為50%,如圖6-A。于490 nm處檢測轉(zhuǎn)染si-后OD值變化,結(jié)果顯示,干擾后皮下脂肪細胞甘油三酯含量顯著升高(<0.05),如圖6-B,表明轉(zhuǎn)染si-后脂質(zhì)堆積能力顯著增強。與此同時,油紅O染色以及Bodipy染色從形態(tài)學(xué)上觀察發(fā)現(xiàn)抑制的表達可促進山羊皮下前體脂肪細胞脂滴聚積(圖6-C)。

    2.6 干擾KLF12對脂肪分化標(biāo)志基因的影響

    收集轉(zhuǎn)染si-后誘導(dǎo)分化48 h的細胞,qPCR檢測脂肪標(biāo)志基因表達水平變化(圖7)。結(jié)果顯示,與對照組相比,山羊皮下前體脂肪細胞中干擾顯著上調(diào)LPL和(<0.05)的mRNA表達水平,而顯著下調(diào)了(<0.01)的mRNA表達水平。

    3 討論

    3.1 KLFs是脂肪細胞分化重要的轉(zhuǎn)錄調(diào)控因子

    脂肪組織是一種高度動態(tài)的器官,可以介導(dǎo)系統(tǒng)體內(nèi)的穩(wěn)態(tài)。成人中,主要的脂肪組織庫由白色脂肪組成,而白色細胞膨脹是肥胖癥的標(biāo)志[24-25]。研究表明,脂肪沉積是由脂肪細胞的數(shù)量和脂滴積累程度決定的,其中脂肪細胞的增殖和分化是高度協(xié)調(diào)的過程并受到大量轉(zhuǎn)錄因子以及多種細胞因子的調(diào)控[26-28]。KLFs家族是一類具有鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子,大量研究已經(jīng)證實KLFs在調(diào)控脂肪細胞分化過程中的重要作用。例如,豬前體脂肪細胞分化過程中干擾的表達,可顯著抑制、CCATT/增強子結(jié)合蛋白α(CCATT/enhancer binding protein alpha,)和脂肪型脂肪酸結(jié)合蛋白(adipocyte fatty acid binding protein,)的表達進而抑制甘油三酯含量和脂滴聚積[29]。張娟娟[30]研究發(fā)現(xiàn),miR- 20a-5p可直接靶標(biāo)并通過靶向抑制3的表達促進小鼠原代骨髓間充質(zhì)干細胞向脂肪細胞分化。

    圖4 不同物種KLF12同源性比對與系統(tǒng)進化樹

    用Duncan法表示差異顯著性,不同字母表示P<0.01. n=6

    A:siRNA干擾效率;B:甘油三酯含量;C:油紅O和Bodipy染色;*:P<0.05;**:P<0.01

    圖7 皮下前體脂肪細胞中干擾KLF12對脂肪分化標(biāo)志基因表達的影響

    3.2 KLF12序列分析以及在山羊不同組織的相對表達量

    本次試驗基于NCBI上山羊預(yù)測序列設(shè)計引物克隆獲得山羊序列1 315 bp,編碼的402個氨基酸,預(yù)測發(fā)現(xiàn)山羊KLF12氨基酸序列具有9個磷酸化位點,并存在3個連續(xù)的典型鋅指結(jié)構(gòu),與其他物種同源性較高。蛋白互作網(wǎng)絡(luò)結(jié)果顯示KLF12可能與FSBP、SRBD1、MAGEB10、TYWS、TANC2、PARD3B和TFAP2A等蛋白發(fā)生相互作用。其中Zheng等[31]使用全基因組關(guān)聯(lián)分析(GWAS)研究表明,2是鯉魚肌肉脂肪含量相關(guān)的潛在候選基因。Kim等[32]利用遺傳力分析(GCTA)和GWAS等方法對豬和人肥胖性狀研究表明是具有與2型糖尿病相關(guān)的證據(jù)的肥胖候選基因。此外,TFAP2A被證明與葡萄糖穩(wěn)態(tài)平衡相關(guān)遺傳變異轉(zhuǎn)化為2型糖尿病有顯著相關(guān)性[33]。物種之間同源性比較發(fā)現(xiàn)山羊與野牛、綿羊、馬和白鯨等均有較高同源性,分別為92.2%、85%、95.3%和95.7%。與此同時,系統(tǒng)進化樹結(jié)果顯示與綿羊和野牛親緣關(guān)系最近,這些結(jié)果提示在進化過程中有較高保守性。為闡明山羊功能,本論文利用qRT- PCR技術(shù)構(gòu)建其在山羊各組織中的表達水平,結(jié)果顯示,在心臟和脾臟的表達顯著高于其他組織,并且在皮下脂肪和腹部脂肪也有較高的表達。研究發(fā)現(xiàn),在腺病毒介導(dǎo)的人子宮內(nèi)膜基質(zhì)細胞(HESCs)中過表達可顯著抑制胰島素樣生長因子結(jié)合蛋白-1(IGFBP-1)的表達和分泌[34]。如今,IGFBP家族已被確定為與一系列生理過程有關(guān)的推定信號分子,可以高親和力結(jié)合胰島素生長因子(IGF),并在肥胖、糖尿病和心血管疾病中起到重要作用[35-37]。

    3.3 KLF12是山羊皮下前體脂肪細胞的負調(diào)控因子

    以上研究提示在脂代謝和脂肪細胞分化過程中可能扮演重要角色,本次研究利用qRT-PCR方法檢測在山羊皮下前體脂肪細胞誘導(dǎo)分化第60小時的表達量達到峰值。為進一步確認調(diào)控脂肪細胞分化的分子機制,將si-轉(zhuǎn)染到體外培養(yǎng)的山羊皮下前體脂肪細胞中,形態(tài)學(xué)觀察結(jié)果顯示,干擾表達可顯著促進脂肪細胞脂滴聚積,推測在成脂分化過程中起到負調(diào)控因子作用。此外,qRT-PCR檢測脂肪分化標(biāo)志基因表達變化情況,結(jié)果顯示,山羊皮下脂肪細胞中干擾的表達可顯著上調(diào)和的表達水平(<0.05),而極顯著抑制的表達水平(<0.01)。研究表明,在脂肪組織中廣泛分布,在棕色脂肪組織中與機體產(chǎn)熱有關(guān),在白色脂肪組織中的活性升高有助于脂質(zhì)儲存[38-40]。是葡萄糖和脂質(zhì)體內(nèi)穩(wěn)態(tài)的核心核受體,是促進脂質(zhì)攝取和脂滴形成的促脂肪生成因子[41-42]。是抑制脂肪生成的小鼠脂肪細胞祖細胞的既定標(biāo)記,此外,也是成年女性皮下腹部脂肪基質(zhì)細胞閑脂肪形成得到負調(diào)節(jié)劑[43-44]。本次試驗中轉(zhuǎn)染siRNA后表達水平極顯著降低,結(jié)合形態(tài)學(xué)觀察結(jié)果以及脂肪分化標(biāo)志基因表達水平變化情況,推測在脂肪細胞分化過程中起到負調(diào)控作用。

    4 結(jié)論

    克隆獲得具有典型鋅指結(jié)構(gòu)包含完整開放閱讀框的山羊序列1 315 bp,編碼402個氨基酸,無跨膜結(jié)構(gòu)域和信號肽。山羊在心臟,皮下和腹部脂肪中存在較高水平表達,且在誘導(dǎo)分化60 h的山羊皮下前體脂肪細胞中存在高水平表達。干擾促進山羊皮下前體脂肪細胞脂滴聚積,并且這種作用是通過調(diào)節(jié)脂肪細胞分化標(biāo)志基因、和的表達實現(xiàn)的。

    [1] FUJISAWA T, KAGAWA K, HISATOMI K, KUBOTA K, SATO H, NAKAJIMA A, MATSUHASHI N. Obesity with abundant subcutaneous adipose tissue increases the risk of post-ERCP pancreatitis. Journal of Gastroenterology, 2016, 51(9): 931-938. doi: 10.1007/s00535-016-1160-x.

    [2] LUO L, LIU M. Adipose tissue in control of metabolism. The Journal of Endocrinology, 2016, 231(3): R77-R99. doi: 10.1530/ JOE-16-0211.

    [3] FOSTER M T, SOFTIC S, CALDWELL J, KOHLI R, DE KLOET A D, SEELEY R J. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1(2): e00015. doi: 10.1002/phy2.15.

    [4] BOOTH A D, MAGNUSON A M, FOUTS J, WEI Y, WANG D, PAGLISSOTTI M J, FOSTER M T. Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte, 2018, 7(4): 261-272. doi: 10.1080/21623945. 2018.1525252.

    [5] CHEN P, HOU X, HU G, WEI L, JIAO L, WANG H, CHEN S, WU J, BAO Y, JIA W. Abdominal subcutaneous adipose tissue: A favorable adipose depot for diabetes?. Cardiovascular Diabetology, 2018, 17(1): 93. doi: 10.1186/s12933-018-0734-8.

    [6] SONG B, DI S, CUI S, CHEN N, WANG H, WANG X, GAO Q, TONG G, WANG H, HUANG X, DING L, GAO Y, LIU J, WANG X. Distinct patterns of PPARγ promoter usage, lipid degradation activity, and gene expression in subcutaneous adipose tissue of lean and obese swine. International Journal of Molecular Sciences, 2018, 19(12): 3892. doi: 10.3390/ijms19123892.

    [7] FERNANDEZ-ZAPICO M E, LOMBERK G A, TSUJI S, DEMARS C J, BARDSLEY M R, LIN Y H, ALMADA L L, HAN J J, MUKHOPADHYAYD, ORDOG T, BUTTAR N S, URRUTIA R. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. The Biochemical Journal, 2011, 435(2): 529-537. doi: 10.1042/ BJ20100773.

    [8] GHALEB A M, NANDAN M O, CHANCHEVALAP S, DALTON W B, HISAMUDDIN I M, YANG V W. Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Research, 2005, 15(2): 92-96. doi: 10.1038/sj.cr.7290271.

    [9] RANE M J, ZHAO Y, CAI L. Kr?ppel-like factors (KLFs) in renal physiology and disease. EBioMedicine, 2019, 40: 743-750. doi: 10.1016/j.ebiom.2019.01.021.

    [10] HASHMI S, ZHANG J, SIDDIQUI S S, PARHAR R S, BAKHEET R, AL-MOHANNA F. Partner in fat metabolism: Role of KLFs in fat burning and reproductive behavior. 3 Biotech, 2011, 1(2): 59-72. doi: 10.1007/s13205-011-0016-6.

    [11] GUO H, KHAN R, RAZA S H A, NING Y, WEI D, WU S, HOSSEINI S M, ULLAH I, GARCIA M D, ZAN L. KLF15 promotes transcription of KLF3 gene in bovine adipocytes. Gene, 2018, 659: 77-83. doi: 10.1016/j.gene.2018.03.049.

    [12] MATSUBARA Y, AOKI M, ENDO T, SATO K. Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2013, 165(3): 189-195. doi: 10.1016/j.cbpb.2013.04.002.

    [13] BANERJEE S S, FEINBERG M W, WATANABE M, GRAY S, HASPEL R L, DENKINGER D J, KAWAHARA R, HAUNER H, JAIN M K. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. The Journal of Biological Chemistry, 2003, 278(4): 2581-2584. doi: 10.1074/jbc.M210859200.

    [14] 郭紅芳. KLF3和KLF15基因?qū)εG绑w脂肪細胞分化和脂質(zhì)代謝調(diào)控研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.

    GUO H F. The function of KLF3 and KLF15 in Bovine preadipocyte differentiation and lipid metabolism[D]. Yangling: Northwest A&F University, 2018. (in Chinese)

    [15] GODIN-HEYMANN N, BRABETZ S, MURILLO M M, SAPONARO M, SANTOS C R, LOBLEY A, EAST P, CHAKRAVARTY P, MATTHEWS N, KELLY G, JORDAN S, CASTELLANO E, DOWNWARD J. Tumour-suppression function of KLF12 through regulation of anoikis. Oncogene, 2016, 35(25): 3324-3334. doi: 10.1038/onc.2015.394.

    [16] MAK C S L, YUNG M M H, HUI L M N, LEUNG L L, LIANG R, CHEN K, LIU S S, QIN Y, LEUNG T H Y, LEE K F, CHAN K K L, NGAN H Y S, CHAN D W. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Molecular Cancer, 2017, 16(1): 11. doi: 10.1186/s12943-017-0582-2.

    [17] HE Z, GUO X, TIAN S, ZHU C, CHEN S, YU C, JIANG J, SUN C. MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): 126. doi: 10.1186/s13046-019- 1105-3.

    [18] XUN J, WANG C, YAO J, GAO B, ZHANG L. Long non-coding RNA HOTAIR modulates KLF12 to regulate gastric cancer progression via PI3K/ATK signaling pathway by sponging miR-618. OncoTargets and Therapy, 2019, 12: 10323-10334. doi: 10.2147/OTT.S223957.

    [19] HUANG C, JIANG Y, ZHOU J, YAN Q, JIANG R, CHENG X, XING J, DING L, SUN J, YAN G, SUN H. Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reproductive Biology and Endocrinology: RB&E, 2017, 15(1): 25. doi: 10.1186/ s12958-017-0243-8.

    [20] MEI H, LI L, GRISWOLD M, MOSLEY T. Gene expression meta-analysis of seven candidate gene sets for diabetes traits following a GWAS pathway study. Frontiers in Genetics, 2018, 9: 52. doi: 10.3389/fgene.2018.00052.

    [21] SHEN L, TAN Z, GAN M, LI Q, CHEN L, NIU L, JIANG D, ZHAO Y, WANG J, LI X, ZHANG S, ZHU L. tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating adipogenesis. Biomolecules, 2019, 9(7). doi: 10.3390/biom9070274.

    [22] HE C, WANG Y, XU Q, XIONG Y, ZHU J, LIN Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat. Animal Science Journal, 2021, 92(1): e13514. doi: 10.1111/asj.13514.

    [23] 池永東, 王永, 胡萌, 何小芳, 朱江江, 趙越, 林亞秋. 山羊不同組織器官的內(nèi)參基因篩選. 基因組學(xué)與應(yīng)用生物學(xué), 2020, 39(2): 561-567. doi: 10.13417/j.gab.039.000561.

    CHI Y D, WANG Y, GU M, HE X F, ZHU J J, ZHAO Y, LIN Y Q. Screening of internal reference genes in different tissues and organs of goats. Genomics and Applied Biology, 2020, 39(2): 561-567. doi: 10.13417/ j.gab.039.000561. (in Chinese)

    [24] ORCI L, COOK W S, RAVAZZOLA M, WANG M Y, PARK B H, MONTESANO R, UNGER R H. Rapid transformation of white adipocytes into fat-oxidizing machines. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 2058-2063. doi: 10.1073/pnas.0308258100.

    [25] GAO Z, DAQUINAG A C, SU F, SNYDER B, KOLONIN M G. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge, England), 2018, 145(1). doi: 10.1242/dev.155861.

    [26] 苑洪霞, 駱金紅, 馮文武, 陳祥. 豬LYRM1基因?qū)χ境练e的影響研究. 畜牧獸醫(yī)學(xué)報, 2019, 50(4): 677-687. doi: 10.11843/j.issn. 0366-6964.2019.04.001.

    YUAN H X, LUO J H, FENG W W, CHEN X. Study on the effect of LYRM1 gene on the fat deposition of pig. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4): 677-687. doi: 10.11843/j.issn.0366- 6964.2019.04.001. (in Chinese)

    [27] 王香明. DNMT3A對豬肌內(nèi)前體脂肪細胞增殖與分化的作用機制研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.

    WANG X M. The mechanism of DNMT3A in proliferation and differentiation of porcine intramuscular preadipocytes[D]. Yangling: Northwest A&F University, 2018. (in Chinese)

    [28] MEHTA F, THEUNISSEN R, POST M J. Adipogenesis from bovine precursors. Methods in Molecular Biology (Clifton, N.J.), 2019, 1889: 111-125. doi: 10.1007/978-1-4939-8897 -6_8.

    [29] 柴孟龍, 李青瑩, 姜昊, 劉紅羽, 張嘉保, 呂文發(fā). 鋅指蛋白15在豬前體脂肪細胞分化中的作用. 吉林農(nóng)業(yè)大學(xué)學(xué)報, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143.

    CHAI M L, LI Q Y, JIANG H, LIU H Y, ZHANG J B, Lü W F. Role of zinc finger protein15 in differentiation of porcine preadipocyte. Journal of Jilin Agricultural University, 2016, 38(3): 325-329+335. doi: 10.13327/j.jjlau.2016.3143. (in Chinese)

    [30] 張娟娟. miR-20a-5p通過靶向Klf3調(diào)控小鼠骨髓間充質(zhì)干細胞成脂分化的研究[D]. 天津: 天津醫(yī)科大學(xué), 2018.

    ZHANG J J. MiR-20a-5p Modulates adipogenic differentiation in mouse bone marrow derived stromal cells by targeting Klf3[D]. Tianjin: Tianjin Medical University, 2018. (in Chinese)

    [31] ZHENG X, KUANG Y, LV W, CAO D, SUN Z, SUN X. Genome-wide association study for muscle fat content and abdominal fat traits in common carp (). PloS One, 2016, 11(12): e0169127. doi: 10.1371/journal.pone.0169127.

    [32] KIM J, LEE T, KIM T H, LEE K T, KIM H. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: Evidence for candidate genes on human chromosome 2. BMC Genomics, 2012, 13: 711. doi: 10.1186/1471- 2164-13-711.

    [33] PALMER N D, GOODARZI M O, LANGEFELD C D, WANG N, GUO X Q, TAYLOR K D, FINGERLIN T E, NORRIS J M, BUCHANAN T A, XIANG A H,. Genetic variants associated with quantitative glucose homeostasistraits translate to type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium[EB/OL]. Diabetes, 2015, 64(5): 1853-1866. doi:10.2337/ db14-0732.

    [34] SHEN X, HU Y, JIANG Y, LIU H, ZHU L, JIN X, SHAN H, ZHEN X, SUN L, YAN G, SUN H. Krüppel-like factor 12 negatively regulates human endometrial stromal cell decidualization. Biochemical and Biophysical Research Communications, 2013, 433(1): 11-17. doi: 10.1016/j.bbrc.2013.02.078.

    [35] HAYWOOD N J, SLATER T A, DROZD M, WARMKE N, MATTHEWS C, CORDELL P A, SMITH J, RAINFORD J, CHEEMA H, MAHER C, BRIDGE K I, YULDASHEVA N Y, CUBBON R M, KEARNEY M T, WHEATCROFT S B. IGFBP-1 in cardiometabolic pathophysiology-insights from Loss-of-Function and Gain-of-Function studies in male mice. Journal of the Endocrine Society, 2020, 4(1): bvz006. doi: 10.1210/jendso/bvz006.

    [36] WHEATCROFT S B, KEARNEY M T. IGF-dependent and IGF- independent actions of IGF-binding protein-1 and -2: Implications for metabolic homeostasis. Trends in Endocrinology and Metabolism: TEM, 2009, 20(4): 153-162. doi: 10.1016/j.tem.2009.01.002.

    [37] HAYWOOD N J, SLATER T A, MATTHEWS C J, WHEATCROFT S B. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes[EB/OL]. Molecular Metabolism, 2019, 19:86-96. doi:10.1016/j.molmet.2018.10.008.

    [38] PéREZ-TORRES I, GUTIéRREZ-ALVAREZ Y, GUARNER-LANS V, DíAZ-DíAZ E, MANZANO PECH L, CABALLERO-CHACóN S D C. Intra-Abdominal Fat Adipocyte Hypertrophy through a progressive alteration of lipolysis and lipogenesis in metabolic syndrome rats. Nutrients, 2019, 11(7). doi: 10.3390/nu11071529.

    [39] RUPPERT P M M, KERSTEN S. A lipase fusion feasts on fat. The Journal of Biological Chemistry, 2020, 295(10): 2913-2914. doi: 10.1074/jbc.H120.012744.

    [40] NIMONKAR A V, WELDON S, GODBOUT K, PANZA D, HANRAHAN S, CUBBON R, XU F, TRAUGER J W, GAO J, VOZNESENSKY A. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: Implications for managing familial chylomicronemia syndrome. The Journal of Biological Chemistry, 2020, 295(10): 2900-2912. doi: 10.1074/jbc.RA119.011079.

    [41] JEON Y G, LEE J H, JI Y, SOHN J H, LEE D, KIM D W, YOON S G, SHIN K C, PARK J, SEONG J K, CHO J Y, CHOE S S, KIM J B. RNF20 functions as a transcriptional coactivator for PPARγ by promoting NCoR1 degradation in adipocytes. Diabetes, 2020, 69(1): 20-34. doi: 10.2337/db19-0508.

    [42] MORáN-SALVADOR E, LóPEZ-PARRA M, GARCíA-ALONSO V, TIOS E, MARTíNEZ-CLEMENTE M, GONZáLEZ-PéRIZ A, LóPEZ-VICARIO C, BARAK Y, ARROYO V, CLáRIA J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2011, 25(8): 2538-2550. doi: 10.1096/ fj.10-173716.

    [43] RODEHEFFER M S, BIRSOY K, FRIEDMAN J M. Identification of white adipocyte progenitor cells. Cell, 2008, 135(2): 240-249. doi: 10.1016/j.cell.2008.09.036.

    [44] MITTERBERGER M C, LECHNER S, MATTESICH M, KAISER A, PROBST D, WENGER N, PIERER G, ZWERSCHKE W. DLK1 (PREF1) is a negative regulator of adipogenesis in CD105+/CD90+/ CD34+/CD31?/FABP4?adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women. Stem Cell Research, 2012, 9(1): 35-48. doi: 10.1016/j.scr.2012.04.001.

    Knockdown Goatto Promote Subcutaneous Adipocytes Differentiation

    1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041;2College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041;3State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193

    【】Subcutaneous adipose tissue (SAT) under the skin is an important factor affecting the taste of meat. Exploring the molecular regulation mechanisms of SAT deposition is very important for breeding improvement and the development of animal husbandry. Krüppel-like factors 12 () is a conserved transcription factor that evolutionarily conserved, and it was found that it could be expressed in a variety of cell types and control a wide range of cellular processes. 【】This study aimed to obtain the coding sequence (CDS) of goatand to explore its molecular characteristics. Moreover, the study also intended to clarify the expression pattern of, so as to provide a theoretical basis for further research on the potential role of【】In this study, the goatCDS sequence was cloned by Reverse Transcription PCR ( RT-PCR) method, and the nucleotide sequence and amino acid sequence of goatwere analyzed on online bioinformatics analysis software. The Quantitative Real-time PCR (qRT-PCR) technology was used to detect the expression levels ofsmall interfering RNA (si-) was chemically synthesized and transfected into goat subcutaneous preadipocyte in vitro by using Lipofectamine RNAiMAX transfection reagent. Subsequently, 100 μmol·L-1oleic acid induced adipocyte differentiation. Oil red O and Bodipy staining methods and qRT-PCR techniques were used to clarify the effects of interferenceon the accumulation of lipid droplets in subcutaneous preadipocytes and the mRNA expression levels of adipose differentiation marker genes from the perspectives of morphology and molecular biology. 【】The goat(1 315 bp) were successfully obtained, which contained an Open Reading Frame (ORF) (1 209 bp) and encoded 402 amino acids. The subcellular localization results showed that KLF12 was mainly located in the nucleus. In addition, KLF12 had no transmembrane domain and signal peptide but 3 typical zinc finger domains (ZnF_C2H2) at amino acids 317-341, 347-371 and 377-399. Tissue expression profile showed that the expression level of12 in goats’ heart and spleen were significantly higher than that in other tissues (<0.01). Moreover, during subcutaneous preadipocytes differentiation, the expression level of12 was peaked at 60 h. After transfection of si-into goat subcutaneous preadipocytes, the results of oil red O and Bodipy saining showed that accumulation of lipid droplets in adipocytes were significantly increased. At the same time, the results of qRT-PCR showed that the expression levels of key adipogenic regulatory genes like lipoprotein lipase () and peroxisome proliferator-activated receptor γ () were significantly increased (<0.05), while the expression level of preadipocyte growth factor () was extremely significantly reduced (<0.01). Combined with the morphological observation results and the changes in the expression levels of key adipogenic regulatory genes, it was speculated thatplayed a negative regulatory role in the differentiation of subcutaneous adipocytes. 【】By investigating the basic molecular biological characteristics and its expression pattern between tissues and cells of goatand analyzing the potential regulatory effects ofon differentiation process of goat subcutaneous adipocytes, the results suggested thatplayed a negative role in goats subcutaneous preadipocytes differentiation, and this effect achieved by regulating,and, which laid a foundation for further exploring the molecular mechanism of.

    goat;; molecular characteristics; knockdown; subcutaneous adipocytes

    10.3864/j.issn.0578-1752.2022.01.015

    2020-11-10;

    2021-10-31

    國家自然科學(xué)基金(32072723,31672395)、四川省應(yīng)用基礎(chǔ)研究計劃重點項目(2018JY0036)、西南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費專項資金(2020PTJS15004)

    杜宇,E-mail:dy17882230767@163.com。通信作者林亞秋,E-mail:linyq1999@163.com

    (責(zé)任編輯 林鑒非)

    猜你喜歡
    皮下脂肪結(jié)構(gòu)域山羊
    定量CT評估內(nèi)臟脂肪及皮下脂肪與結(jié)直腸腺瘤的相關(guān)性
    夏季如何讓山羊增膘
    蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務(wù)綜述
    山羊受騙
    聰明的山羊
    患者皮下脂肪厚度與丙泊酚麻醉應(yīng)用劑量相關(guān)性的臨床觀察
    重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
    組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
    泛素結(jié)合結(jié)構(gòu)域與泛素化信號的識別
    日本推出新款皮下脂肪儀 檢測精度達毫米級
    家電科技(2014年5期)2014-04-16 03:11:28
    白朗县| 靖江市| 金阳县| 昆山市| 社旗县| 灵宝市| 乐至县| 集贤县| 白沙| 和平区| 长宁区| 治县。| 古交市| 华宁县| 秦皇岛市| 仁怀市| 平安县| 天津市| 土默特左旗| 稷山县| 长顺县| 响水县| 神池县| 日照市| 安图县| 万源市| 和林格尔县| 闵行区| 茌平县| 台南市| 平安县| 彝良县| 报价| 江阴市| 信丰县| 江北区| 集安市| 鱼台县| 桂阳县| 原阳县| 吉首市|