• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?

    2016-11-24 11:59:31HuaCHENWenbinLShaohuaWUSchoolofMathematicsandStatisticsComputationalScienceHubeiKeyLaboratoryWuhanUniversityWuhan430072Chinamailchenhuawhueducnlvwenbinwhueducnwush8sinacom
    關鍵詞:開花期采收期基部

    Hua CHENWenbin LShaohua WUSchool of Mathematics and Statistics; Computational Science Hubei Key Laboratory,Wuhan University,Wuhan 430072,China E-mail:chenhua@whu.edu.cn;lvwenbin@whu.edu.cn;wush8@sina.com

    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?

    In this paper,we use contraction mapping principle,operator-theoretic approach and some uniform estimates to establish local solvability of the parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional domain.In addition,local solvability of the free boundary problem is considered by straightening the free boundary.

    parabolic-hyperbolic system;free boundary;chemotaxis model;local existence

    2010 MR Subject Classification35A01;35K57;35M10;35L10;47D03

    1 Introduction

    Isolated from decaying leaves collected in a hardwood forest of the North Carolina mountains in the summer of 1933,the cellular slime mold Dictyostelium discoideum was discovered by Raper in 1935[18].

    During its life cycle a myxamoebae population of the Dictyostelium grows by cell division as long as there is sufficient nutriment.When the food resources become rare,the myxamoebae spread over the entire domain available to them.After a while one cell starts to secrete cyclic Adenosine Monophosphate(cAMP)which create a chemical gradient attracting the other myxamoebae.The myxamoebae begin to move towards the so-called founder cell and are also stimulated to exude cAMP.At this stage a collective behavior takes place during which these organisms aggregate and start to differentiate.At the end of the aggregation the myxamoebae form a pseudoplasmoid,with each cell maintaining its individual integrity.This self-organized multicellular structure increases in fact the chance of survival with the lack of food.This pseudoplasmoid moves then towards light sources,after a time a fruiting body is formed,spores are spread and the cycle begins again[16].

    The aggregation of the Dictyostelium is a typical example of a chemotaxis process(from the Greek Chemo=chemical,taxis=arrangement),which may be defined as the influence of chemical substances on the movement of mobile species.This can lead to strictly orientedmovement or to partially oriented and tumbling movement.The movement towards a higher (resp.lower)concentration of the chemical substance is termed positive chemotaxis movement (resp.negative).

    Understanding of the partially oriented movement of cells in response to chemical signals, chemotaxis,is of great significance in various contexts.

    In those days it was hard for Raper to imagine,that more than many years later this discovery would have attracted a large group of mathematicians[1,4–8,12,14,15,2o,24,27–29,31]to lay their scientific focus on a model proposed by Keller and Segel[19]in 197o to describe the aggregation phase of the Dictyostelium discoideum.

    Suzuki[25]discussed the chemotaxis model

    carefully,where ???nis a bounded domain with smooth boundary??,n is the outer unit vector on??,and f=lnW stands for the potential of the outer force,W=W(x)>o is a smooth function of x∈?.Here u=u(x,t)and v=v(x,t)are unknown functions of (x,t)∈?×[o,T)and they stand for the density of cellular slime molds and the concentration of chemical substances secreted by themselves,respectively.The operator A can be?Δ+a with the Neumann boundary condition,where a>o is a constant.It may be?Δ with the Neumann boundary condition under the constraintR?·dx=o,that is,vt+Av=u if and only if

    In the third case,it is?Δ with the Dirichlet boundary condition.These cases were studied by [9,17,21].

    Suzuki studied the classical theory for this system in his book.First,the fundamental theorem,the unique existence of the solution locally in time,was proved in Chapter 3.Then the threshold for the existence of the solution globally in time,which was eventually explained in a unified way by the quantized blowup mechanism,was established in Chapters 4 and 5.

    Chen and Wu[1,3]studied the following parabolic-hyperbolic type chemotaxis system:

    here the hyperbolic equation describes the property of the field generated by the external stimulus,the light or the electromagnetic wave.The results of[1,3]gave the existence and uniqueness of the solution for the system with Neumann boundary value condition on a smoothly bounded open domain.

    In this paper,we replace the control equation(the second equation of system(1.1))by a hyperbolic equation

    where a>o is a constant.

    As we all know,in a standard setting for many partial differential equations,we usually assume that the process being described occurs in a fixed domain of the space.But in the real world,the following phenomenon may happen.At the initial state,a kind of amoeba occupied some areas.When foods become rare,they begin to secrete chemical substances on their own. Since the biological time scale is much slower than the chemical one,the chemical substances are full filled with whole domain and create a chemical gradient attracting the cells.In turn, the areas of amoeba may change according to the chemical gradient from time to time.In other words,a part of whose boundary is unknown in advance and that portion of the boundary is called a free boundary.In addition to the standard boundary conditions that are needed in order to solve the PDEs,an additional condition must be imposed at the free boundary.One then seeks to determine both the free boundary and the solution of the differential equations. The theory of free boundaries saw great progress in the last thirty years;for the state of the field we refer to[1o].

    Chen and Wu[2]studied the free boundary value problem and established the existence and uniqueness of the solution of system(1.2)with one dimensional space in some suitable conditions(one of them reads that the mass flow ratio is a positive constant).However,to the best of our knowledge,no results are available for the mass flow ratio being a non-constant coefficient.In the present paper,we consider the corresponding problem with the mass flow ratio to be a positive function.In view of the biological relevance,we find it worthwhile to clarify these questions.

    2 Main Results

    In this paper,we focus on the following system:

    where ΔNdenotes the differential operator Δ provided with the Neumann boundary condition. We are going to consider two typical problems:fixed boundary system and free boundary system under some suitable conditions.

    2.1Fixed Boundary Problem

    We consider the following system with fixed boundary:

    Our main result is

    Theorem 2.1(local existence of solutions)Under the condition n=1,if the initial valueis taken as

    then system(2.1)admits a unique solution(u,v)locally in time,that is,

    Furthermore,u(x,t)>o holds for(x,t)∈?×(o,T]if uo(x)/≡o.

    Remark 2.2Let Tmaxbe the supermum of the existence time T>o of the solution to system(2.1).If o

    If Tmax<+∞,we have

    Remark 2.3We integrate the first equation of(2.1)and use Green’s formula to obtain

    from which it follows that

    2.2Free Boundary Problem

    We consider the following system with free boundary:

    ·???nis a bounded open set with smooth boundary?? and n is unit outer normal vector of??;

    ·k(x,t)is a Lipschitz function on x,namely there exists a constant L>o,such that

    Besides,k(x,t)is bounded on t∈[o,+∞).In other words,there exists a constant c(x)>o, such that

    ·u=u(x,t)is an unknown function of(x,t)∈?t×(o,T)and it stands for the density of cellular slime molds.In other words,the density u(x,t)occupies the domain ?t,an open subset of ?,in time t and u(x,t)=o in the outside of ?t;

    ·v=v(x,t)is an unknown function of(x,t)∈?×(o,T)and it stands for the concentration of chemical substances secreted by the slime molds;

    ·Γt:Φ(x,t)=o is an unknown free boundary.

    Remark 2.4If n=1 and Φ(x,t)=x?h(t)=o,then?Φ=1,and the conditions of the free boundary convert into

    Moreover,if u>o on Γt,then(2.5)is equivalent to

    by equation(2.4).

    Our approach here is to find a radially symmetric solution for the problem.Without loss of generality,we had better assume that ?=(o,1)and ?o=(o,b)with o

    For simplicity,we define the spaces as follows

    where Moand σ satisfying Moand 1<σ<2 are constants.

    Our main result is

    春季最先發(fā)病的部位是花序或新梢基部,然后從這些發(fā)病中心逐步向周圍的葉片、新梢以及果實蔓延。從開花期到采收期均可發(fā)生,具有多次再侵染特性。

    Theorem 2.5(Local existence of solutions)Under the conditions of(2.2)and(2.3),if

    then there exist a pair(u,v)and a curve Γt:x=h(t)∈B which are the solutions of(2.6)for 1<σ<2 and some to>o small enough.

    2.3The Organization of the Paper

    This paper is arranged as follows.

    In Section 3,we discuss a parabolic-hyperbolic type chemotaxis system with fixed boundary in 1-dimensional space.Making use of contraction mapping principle and operator-theoretic approach,we prove the local existence of system(2.1)in Sobolev space.In addition,the local existence of system(2.6)with free boundary is established in Section 4.

    3 Fixed Boundary Problem

    In this section,we use contraction mapping principle and operator-theoretic approach to establish the local solution of system(2.1),i.e.,Theorem 2.1.In what follows,we denote by C various constants which may change from the line to line.

    3.1The Unique Existence of the Solution Locally in Time

    system(2.1)is transformed into

    Let P=(v,V),then they are reduced to the system of integral equations here and henceforth,{etΔN}and{etA}denote the semigroups generated by ΔNand A,respectively.Noticing that(uo,vo)∈H1(?)×H2(?),we can easily get Uo∈H1(?).

    Now,we consider some operator theorems which we will use in the following.

    Lemma 3.1(operator-theoretic features of?ΔN)For operator?ΔN,we have three conclusions

    ·

    ·There is a constant C>o such that

    The proof of Lemma 3.1 can be found in[23,26,3o].Here,we should know that the normis defined to be the L2(?)norm,i.e.,

    Lemma 3.2(operator-theoretic feature of A)Operator A=is a generator of a strongly continuous contractive semigroup,that is,

    In the following,we only use the case n=1,i.e.,? is an interval.The proof of Lemma 3.2 can be found in[1,11].Actually,as the restriction and extension ofare also satisfied with estimate(3.4).

    Step 2Getting the solution by contraction mapping principle. To get the solution by contraction mapping principle,we take

    Lemma 3.3We have L,T>o satisfying

    ProofFirst,we can show that(3.5)is satisfied for L≥1,arbitrarily if T>o is taken to be sufficiently small.

    Using Lemma 3.1,the first and the second terms of the right-hand side are estimated from above by respectively.

    By Sobolev Imbedding Theorem,it holds that

    For(U,P)∈B(L,T)this implies

    Therefore,we get

    If we take L>o as large as

    and then take T>o as small as

    it holds that

    By Lemma 3.2 and Minkovski inequality,we have

    for(U,P)∈B(L,T).Similar with Step 2.1,it holds that

    for T>o sufficiently small.

    Step 2.3Estimate

    The function Y=F1(U,P)solves

    The first and the second terms of the right-hand side are estimated from above by

    respectively.

    This implies

    for(U,P)∈B(L,T).Similar with Step 2.1,it holds that for T>o sufficiently small.

    Step 2.4Estimate dt,where Z=F2(U,P).

    We note

    Hence we can conclude

    The function Z=F2(U,P)solves

    Combining(3.1o),this implies

    for(U,P)∈B(L,T).Thus,we have

    for T>o sufficiently small.

    Now,we show that(3.6)is satisfied for L≥1,arbitrarily if T>o is taken to be sufficiently small.

    To achieve the goal,we only to check the following four inequalities:

    Step 2.5We note

    By Sobolev Imbedding Theorems,it holds that

    For(U1,P1),(U2,P2)∈B(L,T),this implies

    Taking T>o as small as

    we obtain(3.11).

    Step 2.6Through simple calculation,we can get

    for(U1,P1),(U2,P2)∈B(L,T).Taking T>o as small as

    we get(3.12).

    Step 2.7The functions Y1=F1(U1,P1),Y2=F1(U2,P2)solve

    respectively.Therefore,the first equation of(3.18)minus the first equation of(3.19),we obtain

    Testing(Y1?Y2)tand integrating,we get

    The first and the second terms of the right-hand side are estimated from above by

    respectively.Combining(3.15)and(3.16),we get

    we can obtain(3.13).

    Step 2.8We note

    Hence we can conclude

    The functions Z1=F2(U1,P1),Z2=F2(U2,P2)solve

    respectively.Combining(3.2o)and(3.17),we obtain

    for(U1,P1),(U2,P2)∈B(L,T).Thus,we have(3.14)for T>o sufficiently small.

    The positivity of u(x,t)follows from the strong maximum principle applied to the first equation of(2.1).

    4 Free Boundary Problem

    In this section,we establish the local solution of system(2.6),i.e.,Theorem 2.5.At first, we use a classical transform to straighten the free boundary.Then,we make use of contraction mapping principle to get the solution to the free boundary problem(2.6).

    4.1Some Basic Lemmas

    In this section,we shall establish some lemmas which are essential in our later deduction. For any fixed h(t)∈B,we consider following problems

    Lemma 4.1For h(t)∈B,uo(x)∈H2(o,b)and vsystem(4.1)admits a unique solution u∈and for each 1<σ<2 and tosmall enough,we have

    where C depends on Mobut is independent of toand h∈B.

    ProofTake the transform

    Freezing the coefficient,the equation can be written as

    for o<ξ<1,o<τ

    X=L2(o,1),??

    is Lipschitz,where D(L(o))=Y.Hence system(4.4)has a unique solution

    for each to.Thus u=is the unique solution of system(4.1).

    Let t1>o and Tt1(τ)represent the operator semigroup on X which is generated by

    We know that Tt1(τ)is a holomorphic semigroup on X and

    If t′>o,then take t1=t′in(4.5),we have

    In particular we have

    So we can obtain

    If h(t)∈B,then

    For f∈Hλ,one has

    where C is dependent on Mobut independent of t1.

    Using(4.6)and(4.7),the terms on the right-hand side are estimated from above by

    respectively,where C depends on Mobut is independent of t′and h∈B.Thus,for t′small enough,it holds that

    In case of t′=o,then for each o≤t2≤to,we have

    From(4.8)and(4.9),we can easily obtain estimate(4.3),Lemma 4.1 is proved. For system(4.2),we have the following lemma.

    Lemma 4.2For each T>o,if

    then system(4.2)has a unique solution v which satisfies

    Moreover,we have

    for 1<σ<2 and o≤t≤T≤1,where C>o is a constant which is independent of T and?=(o,1).

    Lemma 4.3If h(t)∈B,uo(x)∈H2(o,b),vo∈H2(o,1)∩{ux(o)=ux(1)=o},v1∈H1(o,1),then system(4.1)and(4.2)admit a unique solution(u,v) small enough,we have

    where σ<2.

    The proofs of Lemmas 4.2 and 4.3 can be found in[2].

    4.2Local Existence for Free Boundary Problem

    In this section,we prove the existence for the local solution of the free boundary problem (2.6).

    By Lemma 4.3,for each h(t)∈B,we know that there exists a pair(u,v)

    satisfying system(4.1)and(4.2).

    By Lemma 4.2,we knew that vx∈C([o,to],Hσ2).Thanks to Sobolev imdedding theorem,

    Then by Lemma 3.2,we know that for o≤t1≤t2≤to≤To,

    where C is independent of to.Let M1denote the constant at the right hand side of(4.1o),if tois small enough,then

    Thus we can choose Mo=M1,that means s(t)∈B.Observe that B?C[o,to]is a compact and convex subset.

    Define G:h(t)→s(t),therefore G maps B into itself.Next we will demonstrate that G is continuous.Then Schauder theorem yields that there exist a pair(u,v)and a curve Γt:x=h(t)which are the solution of(2.6).

    In fact,for h1(t),h2(t)∈B,let(u1,v1)and(u2,v2)represent the corresponding solutions of(4.1)and(4.2)respectively.Then for o≤t≤to,one has

    The terms on the right-hand side are estimated from above by On one hand by[o,1]),we know

    On the other hand,we have

    By Lemma 4.2,it holds that

    by Lemma 4.3.

    It is trivial that as h1→h2on C[o,to].

    So far,we have confirmed the local well-posedness for(2.6).We conclude this section by a note on the invariant property of u under some suitable norm.

    Lemma 4.4If uo>o and(u,v)is the solution of system(2.6),then for to>o small enough,we have u>o and

    ProofSince uo(x)>o,by standard maximal principle of the parabolic equation,it follows that u>o.Integrating the first equation of(2.6)over(o,h(t)),we have

    which implies that

    as required.

    References

    [1]Chen H,Wu S H.On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems.IMA J Appl Math,2007,72(3):331–347

    [2]Chen H,Wu S H.The free boundary problem in biological phenomena.J Partial Differ Equ,2007,20(2): 155–168

    [3]Chen H,Wu S H.Hyperbolic-parabolic chemotaxis system with nonlinear product terms.J Partial Differ Equ,2008,21(1):45–58

    [4]Chen H,Wu S H.Nonlinear hyperbolic-parabolic system modeling some biological phenomena.J Partial Differ Equ,2011,24(1):1–14

    [5]Chen H and Wu S H.The moving boundary problem in a chemotaxis model.Commun Pure Appl Anal, 2012,11(2):735–746

    [6]Chen H,Zhong X H.Norm behaviour of solutions to a parabolic-elliptic system modelling chemotaxis in a domain of ?3.Math Methods Appl Sci,2004,27(9):991–1006

    [7]Chen H,Zhong X H.Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis.IMA J Appl Math,2005,70(2):221–240

    [8]Chen H,Zhong X H.Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis.Math Nach,2006,279(13/14):1441–1447

    [9]Diaz J I,Nagai T.Symmetrization in a parabolic-elliptic system related to chemotaxis.Adv Math Sci Appl, 1995,5(2):659–680

    [10]Friedman A.Free boundary problems in science and technology.Notices Amer Math Soc,2000,47(8): 854–861

    [11]Haraux A.Nonlinear Evolution Equations Global Behavior of Solutions.New York:Springer,1981

    [12]Hillen T.Hyperbolic models for chemosensitive movement.Math Models Methods Appl Sci,2002,12(7): 1007–1034

    [13]Hillen T,Painter K J.Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math,2001,26(4):280–301

    [14]Hillen T,Painter K J.A user’s guide to PDE models for chemotaxis.J Math Biology,2009,58(1/2): 183–217

    [15]Horstmann D.From 1970 until present:the Keller-Segel model in chemotaxis and its consequences I. Jahresbericht der Deutschen Mathematiker Vereinigung,2003,105(3):103–165

    [16]Horstmann D,Lucia M.Uniqueness and symmetry of equilibria in a chemotaxis model.Journal f¨ur die reine und Angewandte Mathematik,2011,2011(654):83–124

    [17]J¨ager W,Luckhaus S.On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans Amer Math Soc,1992,329(2):819–824

    [18]Raper K B.Dictyostelium discoideum,a new species of slime mold from decaying forest leaves.J Agricultural Research,1935,50(2):135–147

    [19]Keller E F,Segel L A.Initiation of slime mold aggregation viewed as an instability.J Theoretical Biology, 1970,26(3):399–415

    [20]Levine H A,Sleeman B D.A system of reaction diffusion equations arising in the theory of reinforced random walks.SIAM J Appl Math,1997,57(3):683–730

    [21]Nagai T.Blow-up of radially symmetric solutions to a chemotaxis system.Adv Math Sci Appl,1995,5(2): 581–601

    [22]Schaeffer D G.A new proof of the infinite differentiability of the free bouondary in the stefan problem.J Differ Equ,1976,20(1):266–269

    [23]Stein E M.Singular Integrals and Differentiability Properties of Functions.Princeton:Princeton University Press,1970

    [24]Sanba T,Suzuki T.Weak solutions to a parabolic-elliptic system of chemotaxis.J Funct Anal,2002,191(1): 17–51

    [25]Suzuki T.Free Energy and Self-Interacting Particles.Boston:Birkh¨auser,2005

    [26]Taylor M E.Partial Differential Equations III.New York:Springer,2011

    [27]Wu S H,Chen H,Li W X.The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena.Acta Math Sci,2008,28B(1):101–116

    [28]Wu S H.A free boundary problem for a chemotaxis system.Acta Math Sin Chinese Series,2010,53(3): 515–524

    [29]Wu S H,Yue B.On existence of local solutions of a moving boundary problem modelling chemotaxis in 1-D.J Partial Differ Equ,2014,27(3):268–282

    [30]Ye Q X.An Introduction to Reaction-Diffusion Equations.Beijing:Science Press,2011

    [31]Yang Y,Chen H,Liu W A.On existence of global solution and blow-up to a system of reaction diffusion equations modeling chemotaxis.SIAM J Math Anal,2001,33(4):763–785

    ?June 25,2015;revised October 12,2015.Supported by the National Natural Science Foundation of China(11131005)and the Fundamental Research Funds for the Central Universities(2014201020202).?

    Wenbin L¨U.

    猜你喜歡
    開花期采收期基部
    預防蔬菜“爛脖根”有三忌
    高寒草原針茅牧草花期物候變化特征及其影響因子分析
    厚樸葉營養(yǎng)成分隨不同采收期的變化分析
    海南三七根莖芽基部的組培快繁
    5個采收期女貞子中5種成分的動態(tài)變化
    中成藥(2017年5期)2017-06-13 13:01:12
    HPLC法同時測定5個采收期蛇莓中5種黃酮成分
    中成藥(2017年4期)2017-05-17 06:09:37
    初春氣象條件對蘋果開花期的影響分析
    蘋果夏剪怎樣轉枝
    基于RIL群體和IF2群體的玉米開花期相關性狀QTL分析
    雜交秈稻花藥基部開裂性狀的遺傳研究
    国产欧美另类精品又又久久亚洲欧美| 99久久中文字幕三级久久日本| 国产精品一区二区性色av| 久久久久久久久久久免费av| 99视频精品全部免费 在线| 国产高清不卡午夜福利| 天堂中文最新版在线下载 | 亚洲丝袜综合中文字幕| 成人美女网站在线观看视频| 熟妇人妻不卡中文字幕| 中文在线观看免费www的网站| 联通29元200g的流量卡| 老女人水多毛片| 国语对白做爰xxxⅹ性视频网站| 日韩大片免费观看网站| 性插视频无遮挡在线免费观看| 成人午夜高清在线视频| 久久久久久国产a免费观看| 淫秽高清视频在线观看| 综合色av麻豆| 舔av片在线| 天美传媒精品一区二区| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜爱| 欧美日韩视频高清一区二区三区二| 国产av国产精品国产| 一区二区三区四区激情视频| 性插视频无遮挡在线免费观看| 亚洲欧美清纯卡通| 五月天丁香电影| 亚洲成人久久爱视频| 亚洲精品日本国产第一区| 简卡轻食公司| 国产精品久久久久久久久免| 特大巨黑吊av在线直播| 三级经典国产精品| 七月丁香在线播放| 国产老妇伦熟女老妇高清| 亚洲在线自拍视频| 一区二区三区高清视频在线| 亚洲精品国产成人久久av| 简卡轻食公司| 成年女人在线观看亚洲视频 | 久久久亚洲精品成人影院| 亚洲18禁久久av| 一本久久精品| 又黄又爽又刺激的免费视频.| 亚洲最大成人中文| av国产免费在线观看| 日本免费a在线| 美女高潮的动态| 尾随美女入室| 精品一区二区免费观看| 舔av片在线| 青春草国产在线视频| 人人妻人人看人人澡| 精品人妻偷拍中文字幕| 男女国产视频网站| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 中文欧美无线码| 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 国产精品无大码| 日韩成人av中文字幕在线观看| 女人被狂操c到高潮| 国产成人一区二区在线| 日韩伦理黄色片| 国产免费视频播放在线视频 | 亚洲精品色激情综合| 婷婷色综合www| 在线观看人妻少妇| 大话2 男鬼变身卡| 丰满乱子伦码专区| 超碰97精品在线观看| 日日摸夜夜添夜夜添av毛片| 精品久久久精品久久久| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 91狼人影院| 免费看a级黄色片| 男女国产视频网站| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 黑人高潮一二区| 亚洲国产色片| 中国美白少妇内射xxxbb| av播播在线观看一区| 视频中文字幕在线观看| 秋霞在线观看毛片| 国内精品一区二区在线观看| 久久久久久伊人网av| 久久国内精品自在自线图片| 小蜜桃在线观看免费完整版高清| 免费观看a级毛片全部| 丝袜美腿在线中文| 直男gayav资源| 最近中文字幕2019免费版| 99久久中文字幕三级久久日本| 国产精品熟女久久久久浪| 成年女人在线观看亚洲视频 | 国产精品爽爽va在线观看网站| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 中文字幕久久专区| 街头女战士在线观看网站| 欧美性猛交╳xxx乱大交人| 国产一级毛片在线| 亚洲成人av在线免费| 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| 国产伦在线观看视频一区| 日韩中字成人| 日本欧美国产在线视频| 欧美人与善性xxx| 国产一区二区在线观看日韩| 禁无遮挡网站| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 最近手机中文字幕大全| 80岁老熟妇乱子伦牲交| 在线观看一区二区三区| 欧美成人a在线观看| 中文字幕亚洲精品专区| 啦啦啦韩国在线观看视频| 男女那种视频在线观看| 国产精品不卡视频一区二区| 欧美三级亚洲精品| 美女主播在线视频| 亚洲一级一片aⅴ在线观看| 一夜夜www| 亚洲四区av| 高清在线视频一区二区三区| 国产精品不卡视频一区二区| 天堂中文最新版在线下载 | 一区二区三区高清视频在线| 亚洲一级一片aⅴ在线观看| av在线播放精品| 国产黄色视频一区二区在线观看| 国产成人a区在线观看| 99久久九九国产精品国产免费| 高清日韩中文字幕在线| 久久久久性生活片| 国产精品一区二区在线观看99 | 蜜桃亚洲精品一区二区三区| 九九在线视频观看精品| xxx大片免费视频| 午夜激情福利司机影院| av福利片在线观看| 有码 亚洲区| 成人鲁丝片一二三区免费| 精品酒店卫生间| 日韩欧美三级三区| 麻豆av噜噜一区二区三区| 亚洲色图av天堂| 亚洲av成人av| 亚洲av不卡在线观看| 九九在线视频观看精品| 成人漫画全彩无遮挡| 亚洲精品乱码久久久v下载方式| 肉色欧美久久久久久久蜜桃 | 国产视频内射| 成人亚洲欧美一区二区av| 国产成人精品婷婷| 美女高潮的动态| 亚洲成人av在线免费| 亚洲国产欧美人成| 又爽又黄a免费视频| 精品一区二区三区人妻视频| 两个人视频免费观看高清| 国产一区有黄有色的免费视频 | 国产精品嫩草影院av在线观看| 看黄色毛片网站| 黄片wwwwww| 日本一二三区视频观看| 内射极品少妇av片p| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线 | 国产白丝娇喘喷水9色精品| 日韩三级伦理在线观看| 午夜精品国产一区二区电影 | 国产黄频视频在线观看| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久| 毛片女人毛片| 国产毛片a区久久久久| 亚洲18禁久久av| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 中国国产av一级| 一级黄片播放器| 97在线视频观看| 久久久久九九精品影院| 久久久久久久国产电影| 人妻一区二区av| 蜜臀久久99精品久久宅男| 亚洲av免费在线观看| 亚洲av电影在线观看一区二区三区 | www.av在线官网国产| 国产三级在线视频| 欧美另类一区| 中文乱码字字幕精品一区二区三区 | 久久久久久久久久人人人人人人| 哪个播放器可以免费观看大片| 国产黄色小视频在线观看| 免费黄色在线免费观看| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 麻豆精品久久久久久蜜桃| 老司机影院毛片| 一级毛片电影观看| 乱码一卡2卡4卡精品| 日韩av在线免费看完整版不卡| 毛片一级片免费看久久久久| 搞女人的毛片| 国产精品人妻久久久影院| 色视频www国产| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 直男gayav资源| 亚洲精品久久久久久婷婷小说| 亚洲高清免费不卡视频| 成人高潮视频无遮挡免费网站| 777米奇影视久久| 18禁动态无遮挡网站| 两个人的视频大全免费| 精品久久久精品久久久| 免费无遮挡裸体视频| 久久久久久国产a免费观看| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| 男人爽女人下面视频在线观看| 国产成人精品福利久久| 欧美日韩视频高清一区二区三区二| 午夜精品一区二区三区免费看| 3wmmmm亚洲av在线观看| 人妻系列 视频| 熟女电影av网| 好男人视频免费观看在线| 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 国产黄频视频在线观看| 国产中年淑女户外野战色| av福利片在线观看| 亚洲国产精品成人综合色| 18+在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 又爽又黄a免费视频| 日韩欧美精品v在线| 五月天丁香电影| 亚洲国产日韩欧美精品在线观看| 国产精品无大码| 成人综合一区亚洲| 国产伦在线观看视频一区| 中文天堂在线官网| 久久久精品94久久精品| 一级黄片播放器| 国产精品不卡视频一区二区| 精品人妻视频免费看| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 精品酒店卫生间| 亚洲av男天堂| 久久久色成人| 国产乱人偷精品视频| 免费大片黄手机在线观看| 2021天堂中文幕一二区在线观| 精品久久国产蜜桃| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 亚洲欧洲国产日韩| 午夜福利在线观看吧| 欧美激情国产日韩精品一区| 2018国产大陆天天弄谢| 高清在线视频一区二区三区| 亚洲国产av新网站| 久久精品国产亚洲av天美| 国产三级在线视频| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 青青草视频在线视频观看| 一级毛片aaaaaa免费看小| 亚洲伊人久久精品综合| 欧美极品一区二区三区四区| 日本色播在线视频| 超碰97精品在线观看| 亚洲av国产av综合av卡| 国产精品一区www在线观看| av.在线天堂| 欧美成人a在线观看| 亚洲在久久综合| or卡值多少钱| 国产精品不卡视频一区二区| 乱人视频在线观看| 久久亚洲国产成人精品v| 麻豆国产97在线/欧美| 免费黄频网站在线观看国产| 国产精品一及| 国产在视频线在精品| 美女主播在线视频| 中文字幕制服av| 国产精品福利在线免费观看| 美女高潮的动态| 亚洲精品亚洲一区二区| 久久精品夜色国产| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 国产精品综合久久久久久久免费| 亚洲国产色片| 高清午夜精品一区二区三区| 精品久久久精品久久久| 国产有黄有色有爽视频| 最后的刺客免费高清国语| 久久久久久久久久久免费av| 六月丁香七月| 少妇高潮的动态图| 国产免费视频播放在线视频 | 午夜亚洲福利在线播放| 麻豆成人av视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久人妻蜜臀av| 国产亚洲91精品色在线| 国产淫语在线视频| 一级片'在线观看视频| av在线老鸭窝| 精品午夜福利在线看| 又爽又黄a免费视频| 免费播放大片免费观看视频在线观看| 男人狂女人下面高潮的视频| 街头女战士在线观看网站| 成人性生交大片免费视频hd| 男女边摸边吃奶| 国产精品久久久久久精品电影小说 | 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 亚洲国产av新网站| 日韩欧美国产在线观看| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 亚洲精品日韩av片在线观看| 麻豆av噜噜一区二区三区| 亚洲真实伦在线观看| 久久久色成人| 久久热精品热| 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 99久久中文字幕三级久久日本| 中文字幕免费在线视频6| 国产黄频视频在线观看| 91精品国产九色| 日韩欧美精品v在线| 国产69精品久久久久777片| 亚洲真实伦在线观看| 水蜜桃什么品种好| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| 最近中文字幕2019免费版| 一级毛片我不卡| 美女脱内裤让男人舔精品视频| 成人无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 在线观看免费高清a一片| 少妇高潮的动态图| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 日本-黄色视频高清免费观看| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 男人爽女人下面视频在线观看| 国产高潮美女av| 亚洲国产精品成人久久小说| freevideosex欧美| 蜜桃亚洲精品一区二区三区| 日本wwww免费看| 99久久人妻综合| 亚洲怡红院男人天堂| 极品少妇高潮喷水抽搐| 日韩三级伦理在线观看| 久久久精品免费免费高清| 国产高清国产精品国产三级 | 国产亚洲av片在线观看秒播厂 | 成年av动漫网址| 日本wwww免费看| 中文字幕人妻熟人妻熟丝袜美| 菩萨蛮人人尽说江南好唐韦庄| 国产在线一区二区三区精| 色吧在线观看| 日韩一区二区视频免费看| 国产视频首页在线观看| 麻豆成人av视频| 国产高清有码在线观看视频| h日本视频在线播放| 天天躁日日操中文字幕| av天堂中文字幕网| 日本一二三区视频观看| 欧美精品一区二区大全| 午夜激情福利司机影院| 婷婷色综合大香蕉| 又爽又黄a免费视频| av又黄又爽大尺度在线免费看| 国产色婷婷99| 激情 狠狠 欧美| 亚洲精华国产精华液的使用体验| 777米奇影视久久| 18禁动态无遮挡网站| 男女边摸边吃奶| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 国产不卡一卡二| 毛片女人毛片| 亚洲色图av天堂| 日本免费a在线| 小蜜桃在线观看免费完整版高清| 爱豆传媒免费全集在线观看| 国产91av在线免费观看| 亚洲精品视频女| 一本一本综合久久| 内射极品少妇av片p| 久久久国产一区二区| 国产单亲对白刺激| 夫妻性生交免费视频一级片| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 国产精品日韩av在线免费观看| 国产在线男女| 久久99热这里只频精品6学生| 欧美激情久久久久久爽电影| 免费观看的影片在线观看| 国产永久视频网站| 日本黄色片子视频| 菩萨蛮人人尽说江南好唐韦庄| 国产成人精品一,二区| av一本久久久久| 亚洲最大成人中文| 久久久久久久久久久丰满| 免费播放大片免费观看视频在线观看| av在线老鸭窝| 嫩草影院精品99| 色综合色国产| 精品欧美国产一区二区三| 中文字幕av成人在线电影| 韩国高清视频一区二区三区| 久久99热这里只有精品18| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 国内精品一区二区在线观看| 国产亚洲精品久久久com| 在线观看av片永久免费下载| 欧美成人精品欧美一级黄| 久久久久精品久久久久真实原创| 夜夜爽夜夜爽视频| 青青草视频在线视频观看| 免费av不卡在线播放| 在线免费十八禁| 亚洲欧美日韩无卡精品| 久久精品国产鲁丝片午夜精品| 2018国产大陆天天弄谢| 久久精品国产亚洲av涩爱| 一区二区三区乱码不卡18| 91久久精品电影网| 一级av片app| 我的女老师完整版在线观看| 赤兔流量卡办理| 免费观看性生交大片5| 色网站视频免费| 成人性生交大片免费视频hd| 欧美日韩精品成人综合77777| 老女人水多毛片| 国产亚洲最大av| 少妇熟女aⅴ在线视频| 男插女下体视频免费在线播放| 男人舔奶头视频| 成年av动漫网址| 久久久国产一区二区| 99re6热这里在线精品视频| 精品久久久精品久久久| 亚洲精品久久久久久婷婷小说| 欧美成人午夜免费资源| 精品午夜福利在线看| 国产伦理片在线播放av一区| 一级毛片我不卡| 亚洲av国产av综合av卡| 直男gayav资源| 男女边吃奶边做爰视频| www.av在线官网国产| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 天堂影院成人在线观看| 久久久精品欧美日韩精品| .国产精品久久| 国产黄色视频一区二区在线观看| 美女大奶头视频| 久久久久久久国产电影| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲av天美| 精品人妻视频免费看| 晚上一个人看的免费电影| 美女主播在线视频| 国产乱人偷精品视频| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 亚洲精品第二区| 99久久精品热视频| 国产午夜精品一二区理论片| 一个人观看的视频www高清免费观看| 日韩欧美 国产精品| 亚洲av不卡在线观看| 高清av免费在线| 九草在线视频观看| av女优亚洲男人天堂| 国产不卡一卡二| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 国产免费一级a男人的天堂| 久久久久性生活片| 色吧在线观看| 欧美人与善性xxx| 亚洲四区av| 哪个播放器可以免费观看大片| 午夜精品一区二区三区免费看| 日本爱情动作片www.在线观看| 精品一区二区三区人妻视频| 中文字幕制服av| 精品久久国产蜜桃| 亚洲经典国产精华液单| 能在线免费观看的黄片| 亚洲av成人精品一二三区| 国产探花在线观看一区二区| 色播亚洲综合网| 国内少妇人妻偷人精品xxx网站| 日日撸夜夜添| 亚洲,欧美,日韩| 精品欧美国产一区二区三| eeuss影院久久| 日韩电影二区| 欧美zozozo另类| 成人毛片a级毛片在线播放| 亚洲久久久久久中文字幕| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧洲国产日韩| 免费av观看视频| 一本久久精品| 美女大奶头视频| 亚洲丝袜综合中文字幕| 亚洲婷婷狠狠爱综合网| 国产乱人视频| 99热这里只有精品一区| 久久久久久国产a免费观看| 久久久久久久久久人人人人人人| 天堂俺去俺来也www色官网 | 亚洲精品一区蜜桃| 欧美性感艳星| 我的老师免费观看完整版| 亚洲久久久久久中文字幕| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线 | 在线免费十八禁| 国产伦精品一区二区三区视频9| 亚洲国产日韩欧美精品在线观看| 大香蕉97超碰在线| 五月伊人婷婷丁香| 少妇的逼水好多| 最近手机中文字幕大全| 五月伊人婷婷丁香| 波多野结衣巨乳人妻| 最近手机中文字幕大全| 婷婷色综合大香蕉| 免费人成在线观看视频色| 青青草视频在线视频观看| 一个人看的www免费观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧洲国产日韩| 国产一区有黄有色的免费视频 | 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 免费av观看视频| 一个人观看的视频www高清免费观看| 亚洲欧美精品自产自拍| 三级国产精品片| eeuss影院久久| 男女那种视频在线观看| av免费在线看不卡| 夜夜爽夜夜爽视频| 日本猛色少妇xxxxx猛交久久| 成人欧美大片| 亚洲精品国产成人久久av| 18+在线观看网站| 亚洲av一区综合| 日日摸夜夜添夜夜添av毛片|