• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE OF SOLUTION AND APPROXIMATE CONTROLLABILITY OF A SECOND-ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATION WITH STATE DEPENDENT DELAY?

    2016-11-24 12:00:10SanjuktaDASDwijendraPANDEYNSUKAVANAMDepartmentofMathematicsIndianInstitutionofTechnologyRoorkeeRoorkeeUttarakhandIndiamaildassanjukta44gmailcomdwijiitkgmailcomnsukavanamgmailcom

    Sanjukta DASDwijendra PANDEYN.SUKAVANAM Department of Mathematics,Indian Institution of Technology Roorkee,Roorkee,Uttarakhand India E-mail:dassanjukta44@gmail.com;dwij.iitk@gmail.com;nsukavanam@gmail.com

    EXISTENCE OF SOLUTION AND APPROXIMATE CONTROLLABILITY OF A SECOND-ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATION WITH STATE DEPENDENT DELAY?

    Sanjukta DASDwijendra PANDEYN.SUKAVANAM Department of Mathematics,Indian Institution of Technology Roorkee,Roorkee,Uttarakhand India E-mail:dassanjukta44@gmail.com;dwij.iitk@gmail.com;nsukavanam@gmail.com

    This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay.In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness.In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space.Our method is an extension of co-author N.Sukavanam’s novel approach in[22].Thereby,we remove the need to assume the invertibility of a controllability operator used by authors in[5],which fails to exist in infinite dimensional spaces if the associated semigroup is compact.Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in[20],which are practically difficult to verify and apply.An example is provided to illustrate the presented theory.

    approximate controllability;cosine family;state dependent delay;neutral stochastic differential equation;measure of noncompactness

    2010 MR Subject Classification35R15;35R60;93B05;93E03

    1 Introduction

    Random noise causes fluctuations in deterministic models.So,necessarily we move from deterministic problems to stochastic ones.Stochastic evolution equations are natural generalizations of ordinary differential equations incorporating the randomness into the equations. Thereby,making the system more realistic.[7–17]and the references therein explore the qualitative properties of solutions for stochastic differential equations.Considering the environmental disturbances,Kolmanovskii and Myshkis[18]introduced a class of neutral stochastic functional differential equations,which are applicable in several fields such as chemical engineering,aeroelasticity and so on.In recent years,controllability of stochastic infinitedimensional systems wasextensively studied for various applications.Several papers studied the approximate controllability of semilinear stochastic control systems,see for instance[5,8,9,19,2o]and references therein.Controllability results are available in overwhelming majority for abstract stochastic differential delay systems;rather than for neutral second-order stochastic differential with state dependent delay.

    Mahmudov[2o]investigated conditions on the system operators so that the semilinear control system is approximately controllable provided the corresponding linear system is approximately controllable.The main drawback of the papers[8,19,2o]is the need to check the invertibility of the controllability Gramian operator and a associated limit condition,which are practically difficult to verify and apply.

    Neutral differential equations appear in several areas of applied mathematics,and thus studied in several papers and monographs,see for instance[11,12,23]and references therein. Differential equations with delay reflect physical phenomena more realistically than those without delay.

    Recently,much attention was paid to partial functional differential equation with state dependent delay.For details see[1,3,13–15].As a matter of fact,in these papers their authors assume severe conditions on the operator family generated by A,which imply that the underlying space X has finite dimension.Thus the equations treated in these works are really ordinary and not partial equations.

    Our method builds on co-author Sukavanam’s novel approach in[22].We also remove the need to assume the invertibility of a controllability operator used by authors in[4–6,21]which fails to exist in infinite dimensional spaces if the associated semigroup is compact.Our approach also removes the drawbacks of the method applied in[8,19,2o].

    Hence motivated by this fact in this paper we study the existence and uniqueness of mild solution and approximate controllability of the partial neutral stochastic differential equation of second order with state delay.Specifically we study the following second order equations modelled in the form

    where A is the infinitesimal generator of a strongly continuous cosine family{C(t):t∈R}of bounded linear operators on a Hilbert space X.Let(?,F,P)be a probability space together with a normal filtration Ft,t≥o.The state space x(t)∈X and the controlwhere X and U are separable Hilbert spaces and d is the stochastic differentiation.The history valued function xt:(?∞,o]→X,xt(θ)=x(t+θ)belongs to some abstract phase space B defined axiomatically;g,f are appropriate functions;B is a bounded linear operator on a Hilbert space U.Let K be a separable Hilbert space and{W(t)}t≥ois a given K-valued Brownian motion or Wiener process with finite trace nuclear covariance operator Q>o.The functions f,g:J×B→X are measurable mappings in X norm and G:J×B→LQ(K,X) is a measurable mapping in LQ(J,X)norm.LQ(J,X)is the space of all Q-Hilbert Schmidt operators from K into X;B is a bounded linear operator from U into X;φ(t)is B-valued random variable independent of Brownian motion W(t)with finite second moment.Also ψ(t)is a X valued Ftmeasurable function.

    2 Preliminaries

    In this section some definitions,notations and lemmas that are used throughout this paper are stated.Let(?,F,P)be a complete probability space endowed with complete family of right continuous increasing sub σ-algebras{Ft,t∈J}such that Ft?F.A X-valued random variable is a F-measurable process.A stochastic process is a collection of random variables S={x(t,w):?→X:t∈J}.We usually suppress w and write x(t)instead of x(t,w).

    Now suppose βn(t)(n=1,2,···)be a sequence of real-valued one dimensional standard Brownian motions mutually independent over(?,F,P).Let ?nbe a complete orthonormal basis in K.Q∈L(K,K)be an operator defined by∞.Let us define

    which is a K-valued stochastic process and is called a Q-Wiener process.Let Ft=σ(W(s): o≤s≤t)be the σ-algebra generated by W and Fb=F.Let φ∈L(K,X)and if then φ is called a Q-Hilbert Schmidt operator.The completion LQ(K,X)of L(K,X)with respect to the topology induced by norm‖φ‖2Q=〈φ,φ〉is a Hilbert space.

    The family{C(t):t∈?}of operators in B(X)is a strongly continuous cosine family if the following are satisfied

    (a)C(o)=I(I is the identity operator in X);

    (b)C(t+s)+C(t?s)=2C(t)C(s)for all t,s∈?;

    (c)the map t→C(t)x is strongly continuous for each x∈X,

    {S(t):t∈?}is the strongly continuous sine famRily associated to the strongly continuous cosine family{C(t):t∈?}.It is defined as S(t)x=tC(s)xds,x∈X,t∈?.

    o

    The operator A is the infinitesimal generator of a strongly continuous cosine function of bounded linear operators(C(t))t∈Rand S(t)is the associated sine function.Let N,Ne be certain constants such that‖C(t)‖≤N and‖S(t)‖≤Ne for every t∈J=[o,a].For more details see books by Goldstein[1]and Fattorini[1o].In this work,we use the axiomatic definition of phase space B,introduced by Hale and Kato[13].

    Definition 2.1(see[16])Let B be a linear space of functions mapping(?∞,o]into X endowed with the seminorm‖.‖Band satisfies the following conditions.

    (A)If x:(?∞,σ+b]→X,b>o,such that xt∈B and x|[σ,σ+b]∈C([σ,σ+b]:X),then for every t∈[σ,σ+b)the following conditions:

    where H>o is a constant K,M:[o,∞)→[1,∞),K is continuous,M is locally bounded and H,K,M are independent of x(·).

    (B)The space B is complete.

    Lemma 2.2(see[1])If y:(?∞,a]→X is a function such that yo=φ and y|J∈PC(X), then

    Let us denote E as the expectation defined by E(h)=?h(w)dP.

    Let L2(?,F,P;X)≡L2(?;X)be the Banach space of all strongly measurable,square integrable,X-valued random variables equipped with the normL2(?;X))denotes the Banach space of all continuous maps from J1=(?∞,a]into L2(?;X) which satisimportant subspace.

    We denote by C the closed subspace of all continuously differentiable process x∈C1(J, L2(?;X))consisting of Ft-adapted measurable processes such thatand semi-.It can be easily seen that C endowed with norm topology is a Banach space.

    Definition 2.3(see[2])The Hausdorff’s measure of noncompactness χYfor a bounded set B in any Banach space Y is defined by

    χY(B)=inf{r>o,B can be covered by finite number of balls with radii r}. Lemma 2.4(see[2])Let Y be a Banach space and B,C?Y be bounded,then the following properties hold:

    (1)B is pre-compact if and only if χY(B)=o;

    (3)χY(B)≤χY(C)when B?C;

    (4)χY(B+C)≤χY(B)+χY(C)where B+C={x+y;x∈B,y∈C};

    (5)χY(B∪C)=max{χY(B),χY(C)};

    (6)χY(λB)=‖λ‖χY(B)for any λ∈R;

    (7)if the map Q:D(Q)?Y→Z is Lipschitz continuous with constant k then χZ(QB)≤kχY(B)for any bounded subset B?D(Q),where Z is a Banach space;is a decreasing sequence of bounded closed nonempty subset of Y andis nonempty and compact in Y.

    Definition 2.5Let X and Y be Banach spaces and Φ,Ψ be the Measure of Noncompactness(MNC)in X and Y,respectively.If for any continuous function f:D(f)?X→Y and any O?D(f),Ψ[f(O)]≥Φ(O)implies that O is relatively compact,then f is called (Φ,Ψ)-condensing map.

    Theorem 2.6Let Ψ be a MNC on a Banach space X.Let f be(Ψ,Ψ)condensing operator.If f maps a nonempty,convex,closed subset M of the Banach space X into itself. Then f has atleast one fixed point in M.

    Definition 2.7The set given by R(f)={x(T)∈X:x is a mild solution of(1.1)}is called reachable set of system(1.1)for some T>o.R(o)is the reachable set of the corresponding linear control system(2.1).

    Definition 2.8System(1.1)is said to be approximately controllable if R(f)is dense in X.The corresponding linear system is approximately controllable if R(o)is dense in X.

    Lemma 2.9(see[22])Let X be Hilbert space and X1,X2closed subspaces such that X=X1+X2.Then there exists a bounded linear operator P:X→X2such that for each x∈X,x=x?Px∈X1and‖x1‖=min{‖y‖:y∈X1,(1?Q)(y)=(1?Q)(x)},where Q denotes the orthogonal projection on X2.

    We state the corresponding linear control system

    Lemma 2.10(see[1o])Under the assumption that h:[o,a]→X is an integrable function,such that

    and h is a function continuously differentiable,then

    3 Main Result

    We define mild solution of problem(1.1)as follows.

    Definition 3.1An Ft-adapted process x:(?∞,a]→X is a mild solution of problem (1.1),if xo=φ,x′(o)=ψ,x(.)∈C1(J,L2(?,X)),the functions f(s,xρ(s,xs)),G(s,xs)and g(s,xs)are integrable and the integral equation is satisfied

    To prove our result we always assume ρ:J×B→(?∞,a]is a continuous function.The following hypotheses are used.

    (Hφ)The function t→φtis continuous from ?(ρ?)={ρ(s,ψ):ρ(s,ψ)≤o}into B and there exists a continuous bounded function Jφ:?(ρ?)→(o,∞)such that‖φt‖B≤Jφ(t)‖φ‖Bfor every t∈?(ρ?).

    (Hf)f:J×B→X satisfies the following.

    (1)For every x:(?∞,a]→X,xo∈B and x|J∈PC,the function f(.,ψ):J→X is strongly measurable for every ψ∈B and f(.,t)is continuous for a.e.t∈J.

    (2)There exists an integrable function α:J→[o,+∞)and a monotone continuous nondecreasing function Υf:[o,+∞)→(o,+∞)such that‖f(t,v)‖≤α(t)Υf(‖v‖B)?t∈J and v∈B.

    (HG)The function G satisfies the following conditions.

    (1)For almost all t∈J the function G(t,.):B→LQ(K,X)is continuous.For all z∈B, the function G(.,z):J→LQ(K,X)is strongly Ftmeasurable.

    (2)?integrable function αG:J→[o,∞)and a monotone continuous nondecreasing function ΥG:[o,∞)→(o,∞)such that

    (Hg)The function g(.)is continuous?(t,v)∈J×B and g(t,.)is Lipschitz continuous such that there exists a positive constant Lgsuch that

    (Hl)There exists a function H:[o,∞)×[o,∞)→[o,∞),which is locally integrable in t, H is a continuous,monotone,nondecreasing in second variable and H(t,o)≡o and

    for all t∈[o,a]and m1,m2∈L2(?,F,X).

    Lemma 3.2(see[2])Let m be a nonnegative,continuous function and A>o such that

    then m has no nonzero nonnegative solution.

    3.1Existence and Uniqueness of Mild Solution

    In this section y:(?∞,a]→X is the function defined by yo=φ and y(t)=C(t)φ(o)+o≤s≤a}.

    Theorem 3.3If hypotheses(Hf),(Hg),(Hφ),(HG),(H1)and(Hl)are satisfied,then the initial value problem(1.1)has atleast one mild solution.

    ProofLet S(a)be the space S(a)={x∈C(J,L2(?;X):x(o)=o}endowed with the norm of uniform convergence;x∈Cois identified with its extension to(?∞,a]by assuming x(θ)=o for θ

    Let Γ:S(a)→S(a)be the map defined by

    Thus Γ is well defined and has values in S(a).Also by axioms of phase space,the Lebesgue dominated convergence theorem,and conditions(Hf),(HG),(Hg)it can be shown that Γ is continuous.

    Step 1We prove that there exists k>o such that Γ(Bk)?Bk,where Bk={x∈S(a): E‖x‖2≤k}.In fact,if we assume that the assertion is false,then for k>o,there exist xk∈Bkand t∈(o,a]such that k<‖E(Γxk(tk))‖2,

    where Υ=max{ΥG,Υf},α=max{αf,αG}.Thus(3.4)is a contradiction to hypothesis(H1). Hence Γ(Bk)?Bk.

    Step 2We prove that Γ is a condensing map on any bounded subset of the space C(J,L2(?;X)).Let O be a bounded subset of C(J,L2(?;X)).Let M[o,a]be the partially ordered linear space of all real monotone nondecreasing functions on[o,a]and we define a Measure of Noncompactness(MNC),Ψ:C(J,L2(?;X))→M[o,a]by

    where χtis the Hausdorff MNC in C(J,L2(?;X))and Ot={xt=x|[o,t]:x∈O}?C([o,t],L2(?;X)).If Ψ(O)≤Ψ(ΓO),then it is proved that Ψ(O)=o.Since the function t→[Ψ(O)](t)is nondecreasing and bounded,so??>o,it has only a finite number of jumps of magnitude greater than?.The disjoint δ1neighborhoods of the points corresponding tothese jumps are removed from[o,a].Using points βj,j=1,2,···,m divide the remaining part into intervals on which the oscillations of Ψ(O)is less than?.These points βjare surrounded by disjoint δ2neighborhoods.Now consider the family o={ok:k=1,···,l}of all functions continuous with probability one,such that okcoincides with an arbitrary element of [(Ψ(O))(βj)+1]net of the set Oβjon the segment σj=[βj?1+δ2,βj?δ2],j=1,···,m and linear on the complementary segments.

    Suppose p∈(ΓO)t.This implies p=Γo for some o∈O andThis implies

    that for s∈σj,

    By choosing δ1>o and δ2>o sufficiently small,we can make sure that

    Together with Lemma 3.2,we get that Ψ(O)≡o.Similarly we can prove that Γ is continuous. The MNC Ψ possess all required properties.The operator Γ is condensing.Then from Theorem 2.6,it is implied that there exist a mild solution to problem(1.1).

    The uniqueness of mild solution follows from Lemma 3.2.Let m1,m2∈C(J,L2(?;X))be two mild solution of Γ.Then it follows that

    Thus from Lemma 3.2,it follows that≡o.Hence m1=m2.

    3.2Approximate Controllability

    In this section the approximate controllability of the distributed control system(1.1)is studied as an extension of co-author Sukavanam’s method in[22].Assume that f,g,G satisfy following conditions.

    (C1)The function f,g:J×B→X are continuous.For all t∈J and?z1,z2∈L2(J;B), there exists constants Lf,Lg>o such that

    (C2)The function G:J×B→LQ(K,X)is Lipschitz continuous with constant LG>o such that

    Also,y:(?∞,a]→X is the function defined by yo=φ and y(t)=C(t)φ(o)+S(t)(z+g(o,φ) on J.Clearly

    The operators Λi:L2(J,X)→X,i=1,2 and Λ3:L2(J,X)→Co(J,L2(?,(LQ(K,X)))) are defined as Clearly Λiare bounded linear operators.We set Ni=ker(Λi),Λ=(Λ1,Λ2,Λ3)and N= ker(Λ).Let Co(J,X)denote the space consisting of continuous functions x:J→X such that x(o)=o,endowed with the norm of uniform convergence.Let Ji:L2(J,X)→Co(J,X),i= 1,2 and J3:L2(J,X)→Co(J,L (?,L(K,X)))be maps defined as follows

    So,Jix(a)=Λi(x),i=1,2.For a fixed φ∈B and x∈C(J,X)such that x(o)=φ(o),we define maps F,g:Co(J,X)→L2(J,X)by F(z)(t)=f(t,zt+xt)and g(z)(t)=g(t,zt+xt).We also define maps G(z)(t)=G(t,zt+xt),here xt(θ)=x(t+θ),for t+θ≥o and xt(θ)=φ(t+θ) for t+θ≤o and zt(θ)=z(t+θ)for t+θ≥o and zt(θ)=o for t+θ≤o.Clearly,F,g,G are continuous maps.We also assume thatWe denote Pi,i=1,2,3 the map associated to this decomposition and construct X2=Ni,i=1,2,3 andWe introduce the space

    Lemma 3.4If hypothesis(Hφ)–(Hg)and conditions(C1)–(C2)hold for f,g,G and aKa(c1NeLf+c2NLg)

    is a contraction for n sufficiently large and therefore Γ has a fixed point.

    Theorem 3.5If the associated linear control system(2.1)is approximately controllableand condition of the preceding lemma hold then the semilinear control system with state dependent delay is approximately controllable on J.

    ProofAssume x(.)to be the mild solution and u(.)to be an admissible control function of system(2.1)with initial conditions x(o)=φ(o)and x′(o)=ψ+g(o,φ).Let z be the fixed point of Γ.So,z(o)=o and z(a)=Λ1(P1(F(z)))?Λ2(P2(g(z)))+Λ3(P3(G(z)))=o.ByLemma 2.9,we can split the functions F(z),g(z)with respect to the decomposition L2(J,X)=

    We define the function y(t)=z(t)+x(t)for t∈J and yo=φ.So,x(a)=y(a).Thus by the properties of x and z,

    As C1(J,L2(?,U))is dense inand aBy Lemma 2.1o,we get

    Hence by Definition 2.8 and the last expression we conclude that ynis the mild solution of the following equation

    Hence yn(a)∈R(a,f,g,G,φ,ψ).Since the solution map is generally continuous,yn→y as

    4 Example

    In this section,we discuss a concrete partial differential equation applying the abstract results of this paper.In this application,B is the phase space Co×L2(h,X),see[11].

    Consider the second order neutral differential equation

    where φ∈Co×L2(h,X),o

    system(4.1)can be transformed into system(1.1).Assume that the functions ρi:?→[o,∞), a:?→? are piecewise continuous.

    Moreover g(t,·)is bounded linear operators.

    Hence by assumptions(a)–(c)and Theorem 3.3,it is ensured that problem(4.1)has a unique mild solution.

    Now,we check the approximate controllability of(4.1).and Ayeigenfunction corresponding to the eigenvaluebase;A will generate the operators S(t),C(t)such that1,2,···,?y∈X,and the operatorthe infinite dimensional control space be definedThe bounded linear operator B:L2([o,T];U)→L2([o,T];X)is defined by(Bu)(t)=eBu(t).

    Let a∈N?L(o,T:X),N is the null space of Γ.

    The Hilbert space L2(o,T)can be written as

    Thus for h1,h2∈L2(o,T),there exists a1∈{sins}⊥,a2∈{sin4s}⊥such that h1?2h2= a1?2a2.So let u2=h2?a2.Then h1=a1+2u2,h2=a2+u2also let un=hn,n=3,4,··· and an=o,n=3,4,···.Thus we see that hypothesis(HR)is satisfied as U={u:u=controllability is deduced from Theorem 3.5.

    References

    [1]Ahmad B.Instability of impulsive hybrid state dependent delay differential systems.Vietnam J Math,2007, 35:285–298

    [2]Akhmerov R,Kamenskii M,Potapov A,Rodkina A,Sadovskii B.Measures of Noncompactness and Condensing Perators.Basel,Boston,Berlin:Birkhauser-Verlag

    [3]Anguraj A,Arjunan M M,Hernndez E.Existence results for an impulsive neutral functional differential equation with state-dependent delay.Appl Anal,2007,86:861–872

    [4]Balachandran K,Park J Y.Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces.Math Probl Eng,2003,2:65–79

    [5]Balasubramaniam P,Dauer J P.Controllability of semilinear stochastic delay evolution equations in Hilbert spaces.Int J Math Math Sci,2002,31(3):157–166

    [6]Balasubramaniam P,Park J,Muthukumar P.Approximate controllability of neutral stochastic functional differential systems with infinite delay.Stoch Anal Appl,2010,28(2):389–400

    [7]Bao H,Cao J.Existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay.Appl Math Comput,2009,215:1732–1743

    [8]Dauer J,Mahmudov N.Controllability of stochastic semilinear functional differential equations in Hilbert spaces.J Math Anal Appl,2004,290:373–394

    [9]Ehrhard M,Kliemann W.Controllability of stochastic linear systems.Syst Control Lett,1982,2:145–153

    [10]Fattorini H O.Second Order Linear Differential Equations in Banach Spaces.North-Holland Math Stud 108.Amsterdam:North-Holland,1985

    [11]Hern′andez E.Existence results for partial neutral integrodifferential equations with unbounded delay.J Math Anal Appl,2004,292:194–210

    [12]Hern′andez E,Henr′?quez H.Existence results for partial neutral functional differential equation with unbounded delay.J Math Anal Appl,1998,22:452–475

    [13]Hern′andez E,McKibben M.On state-dependent delay partial neutral functional-differential equations. Appl Math Comput,2007,186:294–301

    [14]Hern′andez E,Rabello M,Henr′?quez H R.Existence of solutions for impulsive partial neutral functional differential equations.J Math Anal Appl,2007,331:1135–1158

    [15]Hern′andez E,Sakthivel R,Aki S T.Existence results for impulsive evolution differential equations with state-dependent delay.Elec J Differ Equ,2008,28:1–11

    [16]Hale J K,Kato J.Phase space for retarded equations with infinite delay.Funkcial Ekvac,1978,21:11–41 [17]Jankovic S,Randjelovi J,Jovanovi M.Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations.Math Anal Appl,2009,355:811–820

    [18]Kolmanovskii V,Myshkis A.Applied Theory of Functional Differential Equations.Norwell,MA:Kluwer Academic Publishers,1992

    [19]Mahmudov N.Controllability of linear stochastic systems.IEEE Trans Autom Control,2001,46:724–731

    [20]Mahmudov N,McKibben M.Approximate controllability of second-order neutral stochastic evolution equations.Dyn Cont,Discr Impul Syst Series B:Appl Algor,2006,13:619–634

    [21]Park J,Balasubramaniam P,Kumaresan N.Controllability for neutral stochastic functional integrodifferential infinite delay systems in abstract space.Numer Funct Anal Optim,2007,28:1–18

    [22]Sukavanam N.Approximate controllability of semilinear control of control system with growing nonlinearity//Math Theory of Control Proc Int Conf.New York:Marcel Dekker,1993:353–357

    [23]Wang L.Approximate controllability of delayed semilinear control of control system.J Appl Math Stoch Anal,2005,1:67–76

    ?June 23,2014;revised April 25,2016.The

    was supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304).

    AcknowledgementsThe would like to thank Ministry of Human Resource and Development with grant no.MHR-o2-23-2oo-429/3o4 for their funding.

    亚洲最大成人手机在线| 日韩免费av在线播放| 欧美丝袜亚洲另类 | 99热精品在线国产| 国产成人a区在线观看| 级片在线观看| 99久久精品一区二区三区| 国产精品亚洲美女久久久| 欧美乱码精品一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲久久久久久中文字幕| 九色国产91popny在线| 制服人妻中文乱码| 精品久久久久久久久久免费视频| 免费在线观看成人毛片| 国产主播在线观看一区二区| 90打野战视频偷拍视频| 亚洲无线在线观看| 男女视频在线观看网站免费| 欧美色视频一区免费| 欧美国产日韩亚洲一区| 国产激情欧美一区二区| 美女被艹到高潮喷水动态| 9191精品国产免费久久| 国产精品国产高清国产av| 亚洲精品在线观看二区| 亚洲精品色激情综合| 国产精品精品国产色婷婷| 母亲3免费完整高清在线观看| 亚洲黑人精品在线| 日本 av在线| 国产视频一区二区在线看| 91字幕亚洲| 亚洲片人在线观看| 草草在线视频免费看| 久久久成人免费电影| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 香蕉丝袜av| 久久久精品欧美日韩精品| 免费人成视频x8x8入口观看| 免费看十八禁软件| 日韩有码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 韩国av一区二区三区四区| 动漫黄色视频在线观看| 国产免费一级a男人的天堂| 国产免费一级a男人的天堂| 午夜福利欧美成人| 久久精品影院6| 国产精品 国内视频| 无人区码免费观看不卡| 精品欧美国产一区二区三| 久久午夜亚洲精品久久| bbb黄色大片| 天堂影院成人在线观看| 成年女人毛片免费观看观看9| av黄色大香蕉| 99久久九九国产精品国产免费| 久久精品亚洲精品国产色婷小说| 欧美高清成人免费视频www| 特级一级黄色大片| 又紧又爽又黄一区二区| 久久久久久人人人人人| 99久久精品热视频| 51午夜福利影视在线观看| 国产成人影院久久av| 国产精品久久久久久久久免 | 日本一二三区视频观看| 欧美另类亚洲清纯唯美| 中文资源天堂在线| 熟女电影av网| 一区福利在线观看| 免费看美女性在线毛片视频| 在线观看日韩欧美| 久久人妻av系列| 一个人看视频在线观看www免费 | 国产精品自产拍在线观看55亚洲| 18禁裸乳无遮挡免费网站照片| 女人被狂操c到高潮| 国产精品野战在线观看| 国产精品久久久久久久电影 | 久久久久久久亚洲中文字幕 | 免费在线观看影片大全网站| 国产主播在线观看一区二区| 亚洲内射少妇av| 国产伦人伦偷精品视频| tocl精华| 免费在线观看亚洲国产| 国产精品久久电影中文字幕| 国产色爽女视频免费观看| 内射极品少妇av片p| 亚洲人成网站在线播放欧美日韩| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久一区二区三区 | 精品免费久久久久久久清纯| 最后的刺客免费高清国语| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 久久人妻av系列| 欧美+日韩+精品| 两个人的视频大全免费| 午夜免费成人在线视频| 欧美午夜高清在线| 中文字幕熟女人妻在线| 嫁个100分男人电影在线观看| 女人被狂操c到高潮| 国产伦在线观看视频一区| 欧美日韩黄片免| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 人人妻人人看人人澡| 免费看a级黄色片| 一夜夜www| 精品久久久久久成人av| 小说图片视频综合网站| 女生性感内裤真人,穿戴方法视频| 亚洲人与动物交配视频| www日本在线高清视频| 国产av在哪里看| 亚洲国产欧美人成| 俺也久久电影网| 午夜福利在线观看吧| 午夜a级毛片| 国产精品三级大全| av在线天堂中文字幕| 国产黄色小视频在线观看| 91在线精品国自产拍蜜月 | 日本在线视频免费播放| 看片在线看免费视频| 激情在线观看视频在线高清| 日本免费一区二区三区高清不卡| 国内揄拍国产精品人妻在线| 国产一区二区三区在线臀色熟女| 高清毛片免费观看视频网站| 又爽又黄无遮挡网站| 怎么达到女性高潮| 内射极品少妇av片p| 大型黄色视频在线免费观看| 美女高潮喷水抽搐中文字幕| 久久6这里有精品| av片东京热男人的天堂| 婷婷精品国产亚洲av| 88av欧美| 国产精品久久久久久久久免 | 日韩人妻高清精品专区| 69人妻影院| 中文在线观看免费www的网站| 悠悠久久av| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 日韩免费av在线播放| 90打野战视频偷拍视频| 18禁美女被吸乳视频| 国产男靠女视频免费网站| 搡老岳熟女国产| 国产真人三级小视频在线观看| 88av欧美| 国产亚洲av嫩草精品影院| 亚洲久久久久久中文字幕| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 少妇人妻一区二区三区视频| 美女高潮喷水抽搐中文字幕| 国产精品电影一区二区三区| 日韩大尺度精品在线看网址| 国产精品99久久99久久久不卡| 日本免费一区二区三区高清不卡| 18禁黄网站禁片免费观看直播| 亚洲熟妇熟女久久| 色精品久久人妻99蜜桃| 无人区码免费观看不卡| 国产成人啪精品午夜网站| 午夜福利在线观看吧| 亚洲精品456在线播放app | 麻豆国产97在线/欧美| 在线观看午夜福利视频| 欧美中文日本在线观看视频| 看片在线看免费视频| 国产极品精品免费视频能看的| 草草在线视频免费看| 欧美激情在线99| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线| 老司机午夜十八禁免费视频| 亚洲 欧美 日韩 在线 免费| 狠狠狠狠99中文字幕| 九色国产91popny在线| 国产精品久久电影中文字幕| 日本五十路高清| 国产精品久久视频播放| 免费一级毛片在线播放高清视频| 久久久成人免费电影| 女警被强在线播放| 九九在线视频观看精品| 超碰av人人做人人爽久久 | 欧美日韩黄片免| 国产精品98久久久久久宅男小说| 欧美日韩瑟瑟在线播放| 欧美日韩精品网址| 精品一区二区三区视频在线观看免费| 热99在线观看视频| tocl精华| 一级毛片高清免费大全| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 午夜免费观看网址| 一个人观看的视频www高清免费观看| avwww免费| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 欧美最黄视频在线播放免费| 91九色精品人成在线观看| 国内少妇人妻偷人精品xxx网站| 午夜a级毛片| 欧美性猛交黑人性爽| 美女cb高潮喷水在线观看| 国产高清三级在线| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 国产淫片久久久久久久久 | 国模一区二区三区四区视频| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 99久久九九国产精品国产免费| 久久久成人免费电影| 成人无遮挡网站| 内地一区二区视频在线| 国产精品亚洲一级av第二区| 国产精品影院久久| 亚洲熟妇中文字幕五十中出| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 精品久久久久久久毛片微露脸| 一级黄片播放器| 国产精品一区二区免费欧美| 精品福利观看| 国产成人系列免费观看| 美女黄网站色视频| 69av精品久久久久久| 日韩欧美在线二视频| 婷婷亚洲欧美| 久久99热这里只有精品18| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 国产av不卡久久| 久久性视频一级片| 尤物成人国产欧美一区二区三区| 麻豆一二三区av精品| 欧美乱色亚洲激情| 亚洲美女黄片视频| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 久久精品国产亚洲av涩爱 | 精品日产1卡2卡| 国产又黄又爽又无遮挡在线| 国产精品电影一区二区三区| 12—13女人毛片做爰片一| 久久人人精品亚洲av| 亚洲av一区综合| 无人区码免费观看不卡| 成人永久免费在线观看视频| 男女下面进入的视频免费午夜| 日本一二三区视频观看| 看黄色毛片网站| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 亚洲国产精品sss在线观看| 欧美性猛交黑人性爽| 桃红色精品国产亚洲av| 在线播放国产精品三级| 国产探花极品一区二区| 成人三级黄色视频| 母亲3免费完整高清在线观看| 九色国产91popny在线| 欧美日韩黄片免| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕 | 99国产精品一区二区蜜桃av| 又黄又粗又硬又大视频| 国产一区二区三区在线臀色熟女| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 中文字幕人妻熟人妻熟丝袜美 | 亚洲在线自拍视频| 久久久久久久久久黄片| 国产色爽女视频免费观看| 午夜a级毛片| 欧美中文日本在线观看视频| 日韩成人在线观看一区二区三区| 久久久久性生活片| 一区二区三区高清视频在线| 最近在线观看免费完整版| 精品不卡国产一区二区三区| 一区二区三区免费毛片| 亚洲av二区三区四区| 男女之事视频高清在线观看| 一本综合久久免费| 亚洲av一区综合| 欧美高清成人免费视频www| 宅男免费午夜| 国产久久久一区二区三区| 无遮挡黄片免费观看| bbb黄色大片| 三级国产精品欧美在线观看| 亚洲av免费高清在线观看| 麻豆成人av在线观看| 色播亚洲综合网| 在线国产一区二区在线| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 一本精品99久久精品77| 18禁国产床啪视频网站| av黄色大香蕉| 久久中文看片网| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| 很黄的视频免费| 日韩免费av在线播放| 真人一进一出gif抽搐免费| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久com| 国产老妇女一区| 欧美成人a在线观看| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| 亚洲欧美日韩卡通动漫| 激情在线观看视频在线高清| 嫩草影院入口| 波野结衣二区三区在线 | 久久久久免费精品人妻一区二区| 免费大片18禁| 伊人久久精品亚洲午夜| 性色av乱码一区二区三区2| 欧美高清成人免费视频www| 国产亚洲欧美在线一区二区| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 国产色婷婷99| 亚洲精品粉嫩美女一区| 午夜免费男女啪啪视频观看 | 成人国产综合亚洲| 亚洲黑人精品在线| 亚洲专区国产一区二区| 午夜免费激情av| 国产视频一区二区在线看| 丝袜美腿在线中文| av天堂中文字幕网| 一本久久中文字幕| 国产99白浆流出| 日本一二三区视频观看| 精品一区二区三区人妻视频| 一级作爱视频免费观看| 我的老师免费观看完整版| 欧美成狂野欧美在线观看| 国语自产精品视频在线第100页| 国产精品三级大全| 亚洲精品乱码久久久v下载方式 | 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 亚洲片人在线观看| 国产成人av教育| 国产精品亚洲一级av第二区| 国产精品女同一区二区软件 | 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 国产一区在线观看成人免费| 97超级碰碰碰精品色视频在线观看| 色哟哟哟哟哟哟| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 午夜福利在线观看免费完整高清在 | 一进一出抽搐动态| 亚洲国产日韩欧美精品在线观看 | 观看免费一级毛片| 91av网一区二区| 女警被强在线播放| 国产精品久久久久久久电影 | 日韩精品中文字幕看吧| 久久香蕉国产精品| 天堂影院成人在线观看| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡| 天天添夜夜摸| 欧美一级a爱片免费观看看| avwww免费| 欧美3d第一页| 国产免费一级a男人的天堂| 免费看十八禁软件| 成人国产综合亚洲| 欧美性感艳星| 美女被艹到高潮喷水动态| 深夜精品福利| 日本三级黄在线观看| 动漫黄色视频在线观看| 中文亚洲av片在线观看爽| 天天添夜夜摸| 女人十人毛片免费观看3o分钟| 少妇的逼水好多| 亚洲熟妇中文字幕五十中出| 99久久综合精品五月天人人| av在线蜜桃| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 美女大奶头视频| 国产精品美女特级片免费视频播放器| 中文亚洲av片在线观看爽| 女人十人毛片免费观看3o分钟| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 韩国av一区二区三区四区| 国产成人福利小说| 亚洲欧美精品综合久久99| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 最新中文字幕久久久久| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 香蕉丝袜av| 亚洲av五月六月丁香网| 亚洲成av人片免费观看| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久久久免 | 五月伊人婷婷丁香| 在线播放国产精品三级| 国产黄a三级三级三级人| 午夜免费男女啪啪视频观看 | 1000部很黄的大片| 国产69精品久久久久777片| 国产真人三级小视频在线观看| 精品久久久久久久久久久久久| 亚洲国产欧洲综合997久久,| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| 免费在线观看成人毛片| 五月伊人婷婷丁香| 久久久久久久亚洲中文字幕 | 桃色一区二区三区在线观看| 在线观看一区二区三区| 亚洲在线观看片| 亚洲狠狠婷婷综合久久图片| 成人国产综合亚洲| 精品欧美国产一区二区三| 国产精品影院久久| 日韩欧美在线二视频| www.999成人在线观看| 少妇的逼水好多| 狠狠狠狠99中文字幕| 熟女电影av网| 亚洲人成伊人成综合网2020| 热99在线观看视频| 国产探花在线观看一区二区| 一个人免费在线观看电影| 国产精品1区2区在线观看.| 久久久色成人| 日本与韩国留学比较| 亚洲国产中文字幕在线视频| 天堂动漫精品| 又黄又粗又硬又大视频| 午夜免费激情av| 又粗又爽又猛毛片免费看| 色综合欧美亚洲国产小说| 97超视频在线观看视频| 18+在线观看网站| 最近最新中文字幕大全免费视频| 亚洲中文字幕一区二区三区有码在线看| 非洲黑人性xxxx精品又粗又长| 亚洲成人中文字幕在线播放| 亚洲在线观看片| 国内毛片毛片毛片毛片毛片| 在线a可以看的网站| 精品一区二区三区视频在线 | 黑人欧美特级aaaaaa片| 亚洲av电影在线进入| 手机成人av网站| 久久久国产成人免费| 村上凉子中文字幕在线| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片| 三级男女做爰猛烈吃奶摸视频| 熟女人妻精品中文字幕| 中文字幕人成人乱码亚洲影| 久久久精品大字幕| 免费观看人在逋| 女同久久另类99精品国产91| 一级作爱视频免费观看| 在线观看一区二区三区| 成人欧美大片| 久久久久久久精品吃奶| 久久久久久九九精品二区国产| 婷婷丁香在线五月| 长腿黑丝高跟| 757午夜福利合集在线观看| 久久久色成人| 五月伊人婷婷丁香| 啦啦啦韩国在线观看视频| 一夜夜www| 亚洲一区二区三区色噜噜| 国产成人欧美在线观看| 亚洲av美国av| 特级一级黄色大片| 精品欧美国产一区二区三| 无遮挡黄片免费观看| 两个人看的免费小视频| 欧美性感艳星| 动漫黄色视频在线观看| 免费看日本二区| 亚洲18禁久久av| 欧美绝顶高潮抽搐喷水| 亚洲成av人片免费观看| av国产免费在线观看| 啦啦啦观看免费观看视频高清| а√天堂www在线а√下载| 动漫黄色视频在线观看| 成年女人毛片免费观看观看9| 国产高清视频在线观看网站| www日本在线高清视频| 男人和女人高潮做爰伦理| 久久人人精品亚洲av| 日本一本二区三区精品| 51午夜福利影视在线观看| 国内精品美女久久久久久| 99久国产av精品| АⅤ资源中文在线天堂| 国产精品一区二区三区四区免费观看 | 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久com| 国产成人系列免费观看| 啦啦啦韩国在线观看视频| 亚洲国产精品成人综合色| 日韩人妻高清精品专区| 高清在线国产一区| 中文字幕熟女人妻在线| 夜夜看夜夜爽夜夜摸| 欧美丝袜亚洲另类 | 91av网一区二区| 脱女人内裤的视频| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 国内久久婷婷六月综合欲色啪| 舔av片在线| 一区二区三区激情视频| 国产v大片淫在线免费观看| 变态另类丝袜制服| 亚洲色图av天堂| 国产成人av教育| 18禁国产床啪视频网站| 欧美绝顶高潮抽搐喷水| 精品熟女少妇八av免费久了| 国产免费av片在线观看野外av| netflix在线观看网站| 国产成人影院久久av| 亚洲国产精品999在线| 99精品在免费线老司机午夜| 色精品久久人妻99蜜桃| 日本五十路高清| 淫妇啪啪啪对白视频| 狠狠狠狠99中文字幕| 中文字幕av成人在线电影| 日本在线视频免费播放| 国内毛片毛片毛片毛片毛片| 国产免费一级a男人的天堂| 老司机午夜福利在线观看视频| 九九久久精品国产亚洲av麻豆| 国产 一区 欧美 日韩| 欧美在线黄色| 国产黄a三级三级三级人| 久久久久久久久中文| 18禁美女被吸乳视频| 一个人看视频在线观看www免费 | 看片在线看免费视频| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 99在线视频只有这里精品首页| 日本与韩国留学比较| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| 国产精品99久久99久久久不卡| 高清毛片免费观看视频网站| 男人舔奶头视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区久久| 99久久99久久久精品蜜桃| а√天堂www在线а√下载| 免费av不卡在线播放| 亚洲成av人片免费观看| 日本五十路高清| 亚洲人成网站在线播| 免费电影在线观看免费观看| 99热精品在线国产| 国产黄色小视频在线观看| 欧美区成人在线视频|