• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    2016-11-24 12:00:07YujiLIUDepartmentofMathematicsGuangdongUniversityofFinanceandEconomicsGuangzhou510320Chinamailyujiliusohucom

    Yuji LIUDepartment of Mathematics,Guangdong University of Finance and Economics, Guangzhou 510320,China E-mail:yujiliu@sohu.com

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    Results on the existence of piecewise continuous solutions for two classes of initial value problems of impulsive singular fractional differential equations are obtained.

    singular fractional differential equation;impulsive effect;piecewise continuous solution;fixed point theorem

    2010 MR Subject Classification92D25;34A37;34K15

    1 Introduction

    Theory of impulsive differential equations describes processes which experience a sudden change of their state at certain moments.Processes with such a character arise naturally and often,for example,phenomena studied in physics,chemical technology,population dynamics, biotechnology and economics.For an introduction of the basic theory of impulsive differential equation,we refer the reader to[17].

    Fractional differential equations were found numerous applications in the field of viscoelasticity,feedback amplifiers,electrical circuits,electro analytical chemistry,fractional multipoles,neuron modelling encompassing different branches of physics,chemistry and biological sciences[18,19].

    In recent years,many authors studied the existence and uniqueness of solutions of the different kinds of initial value problems,two-point boundary value problems or multi-point boundary value problems for the impulsive fractional differential equations on finite intervals see papers[1–7,9–16,2o–34]and the references therein.

    In[9,1o,28,3o],the concept of solutions for fractional differential equations with impulse effects was argued extensively,while the concept presented in these papers could be controversial and deserved a further argument and mending.

    Motivated by[9,1o,28,3o],in this paper,we discuss the existence of piecewise continuous solutions of the following initial value problems of nonlinear singular fractional differential equations with impulse effects

    where

    (a)n is a positive integer and α satisfies n?1<α

    (b)o=to

    that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m1(t)|≤(t?ti)k(ti+1?t)lfor all t∈(ti,ti+1](m may be singular at t=ti),

    (d)m2:(o,1)→R satisfies that m2|(ti,ti+1]∈Co(ti,ti+1](s=o,1,2,···,p)and that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m2(t)|≤tk(1?t)lfor all t∈(o,1)(m may be singular at t=o,1),

    (e)f,Ij:(o,1)×Rn→R are Caratheodory functions(j=o,1,2,···,n?1).

    A functions x:(o,1]→R is said to be a piecewise continuous solution of(1.1)if x(j)|(ti,ti+1)∈Co(ti,ti+1)(i=o,1,2,···,p),(j=o,1,2,···,n?1)and the limits

    exist and all equations in(1.1)are satisfied.Similarly we can define the piecewise continuous solution of(1.2).

    We establish the existence results of solutions for impulsive singular fractional differential systems(1.1)and(1.2),respectively.Two example are given to illustrate the efficiency of the main theorems.

    The remainder of this paper is as follows:in Section 2,we present preliminary results.In Section 3,the main theorems on the existence of solutions of(1.1)and(1.2)are presented, respectively.

    2 Preliminary Results

    For the convenience of the readers,we present the necessary definitions from the fractional calculus theory.These definitions and results can be found in the monograph[19].For φ∈ L1(o,1),denoteLet the Gamma and beta functions Γ(α)and B(p,q)be defined by

    Definition 2.1(see[19])Let a≥o.The Riemann-Liouville fractional integral of order α>o of a function g:(a,∞)→R is given by

    provided that the right-hand side exists.

    Definition 2.2(see[19])Let a≥o.The Caputo fractional derivative of order α>o of a n-times differentiable function g:(a,∞)→R is given by

    where n?1≤α

    Remark 2.1Let n?1≤μ

    where Ci∈R,i=o,1,2,···,n?1.

    For x∈X,define the norm by

    It is easy to show that X is a real Banach space.

    Remark 2.2Define the matrix Miby

    Then|M|/=o and the inverse of M is denoted by

    Remark 2.3Define the matrix Ni(i=1,2,···,p)by

    By direct computation,we get that

    We know that aj,v,s,o=1 for j=v and aj,v,s,o=o for j/=v.

    Lemma 2.1u∈X is a solution of

    if and only if

    for t∈(ti,ti+1],i=o,1,2,···,p.Furthermore,we have

    ProofSuppose that u is a solution of(2.3).Thenis continuous and the limitsexist.Then by Remark 2.1,we get that there exists cj,i∈R (i=o,1,2,···,p,j=o,1,2,···,n?1)such that

    t∈(ti,ti+1],i=o,1,2,···,p,j=1,2,···,n?1.

    We know for t∈(ti,ti+1](using(c))that

    By Δu(j)(ti)=Ij,i(i=1,2,···,p,j=o,1,2,···,n?1),we get that

    where Ni,Biwere defined by Remark 2.3.Using Remark 2.3,we have that

    Hence we get for j=o,1,2,···,n?1 and i=1,2,···,p that

    Substituting cj,i(j=o,1,2,···,n?1,i=o,1,2,···,p)into(2.6),we get(2.4)and(2.5).Now we prove that x∈X.It is easy to see that x(j)|(ti,ti+1)is continuous and the limitsexists for all j=o,1,2,···,n?1 and i=1,2,···,p+1.exists for all j=o,1,2,···,n?1 and i=o,1,2,···,p. So x∈X.

    Now suppose that x satisfies(2.4).It is easy to show that x∈X and x is a solution of (2.3).The proof is completed.

    Lemma 2.2x∈X is a solution of

    for i=o,1,2,···,p. ProofSuppose that u is a solution of(2.7).One sees from Remark 2.1 thatu(t)= m2(t)implies that there exist constants cj,o∈R such that

    Now we will prove by using the mathematical induction method that there exist constants cj,i∈R such that

    From(2.9),we see that(2.1o)holds for i=o.Now,we suppose that(2.1o)holds for i= o,1,···,s(s≤p?1).We will prove that

    By mathematical induction method,we have that(2.1o)holds for all i=o,1,2,···,p. By(2.1o),we get that

    where i=o,1,2,···,p,v=o,1,2,···,n?1.By(d)we have

    By Δu(v)(ti)=Iv,i(v=o,1,2,···,n?1,i=1,2,···,p)and

    That is as follows:

    It follows from Remark 2.2 for i=1,2,···,p that

    Hence we get for i=o,1,2,···,p and v=o,1,2,···,n?1 that

    Substituting cj,iinto(2.1o),we get for i=o,1,2,···,p thatThis is just(2.8).We can prove that u∈X easily.On the other hand,if u satisfies(2.8),it is easy to show that u∈X and u is a solution of(2.7).The proof is completed.□

    Definition 2.3We call K:(o,1)×Rn→R a Caratheodory function if it satisfies the followings:

    (i)t→K(t,x1,···,xn)is measurable on(ti,ti+1](i=o,1,2,···,p),respectively,

    (ii)(x,y)→K(t,x1,···,xn)is continuous on Rnfor all most all t∈(o,1),

    (iii)for each r>o there exists a constant Mr>o such that

    Now,we define the operator T1,T2on X by

    Remark 2.4By Lemma 2.1,x∈X is a solution of(1.1)if and only if x∈X is a fixed point of the operator T1.By Lemma 2.2,x∈X is a solution of(1.2)if and only if x∈X is a fixed point of the operator T2.

    Lemma 2.3Suppose that(a)–(e)hold.Then both T1and T2:X→X are well defined and completely continuous.

    ProofFirst,we prove that T1is well defined;second,we prove that T1is continuous and finally,we prove that T1is compact.So T1is completely continuous.Similarly we can prove that T2is well defined and completely continuous.Thus the proof is divided into three steps.

    Step(i)Prove that T:X→X is well defined.

    For x∈X,we have‖x‖=r>o.From f,Ijare Caratheodory functions,then there exist constants Mf≥o,MI≥o such that

    By the definition of T1and Lemma 2.1,we have T1x∈X.Then T1:X→X is well defined.

    Step(ii)We prove that T1is continuous.Let xκ∈X with xκ→xoas n→∞.We will show that T1xκ→T1xoas κ→∞.

    In fact,we have r>o such that‖xκ‖≤r>o(κ=o,1,2,···).Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that(2.14)holds with x=xκ.By

    Hence for v=o,1,2,···,n?1,we have

    It is easy to show that{(T1xκ)(v)}is uniformly bounded.From the Lebesgue dominated convergence theorem,we get that both‖T1xκ?T1xo‖→o as κ→∞.It follows that T1is continuous.

    Step(iii)We prove that T1is compact,i.e.,for each nonempty open bounded subset ? of X,prove thatis uniformly bounded, equi-continuous on each interval(ti,ti+1](i=o,1,2,···,p).

    Let ? be a bounded open subset of X.We have r>o such that then‖x‖≤r for all x∈?.Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that (2.14)holds.

    Sub-step(iii1)Prove that is uniformly bounded.

    This follows similarly from the method used in Step(ii)and the details are omitted.

    Sub-step(iii2)Prove that T1(?)is equi-continuous on each interval(ti,ti+1](i=o,1,2, ···,p).

    3 Existence of Solutions

    In this section we shall establish the existence of at least one solution of(1.1)and(1.2) respectively.

    For easy referencing,we list the conditions needed as follows:

    (A)there exist numbers σ≥o(i=1,2,···,n,j=1,···,m)with

    σi,j(s=1,2,···,m)and bounded function ψ:(o,1)→R,numbers λi(i=1,2,···,p),and numbers aj≥o,bj≥o(j=1,2,···,m)such that

    Theorem 3.1Suppose that(a)–(e)and(A)σhold,f,Ijare Caratheodory functions. Then,system(1.1)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈[o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and Mo<1.

    ProofLet the Banach space X and the operator T1be defined as in Section 2.We know that

    (i)T1:X→X is well defined;

    (ii)For x∈X is a fixed point of T1if and only if x∈X is a solution of(1.1);

    (iii)T1:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}. For x∈Mr,we find

    Then for t∈(ti,ti+1]and v=o,1,2,···,n?1 we get that

    Then,for x∈Mrowe have

    Hence,we have a bounded subset Mro?X such that T1(Mro)?Mro.Then,Schauder fixed point theorem implies that T1has a fixed point x∈Mro.Hence,x is a bounded solution of BVP(1.1).

    Case(ii)σ∈[o,1).Choose r>o sufficiently large such that Mo(r+‖Ψ‖)σ≤r.Then, for x∈Mrwe have

    So T(Mr)?Mrand Schauder fixed point theorem implies that T1has a fixed point x∈Mr. This x is a bounded solution of BVP(1.1).

    From above discussion,the proof is complete.

    Remark 3.1Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.1 that(1.1)has at least one solution if f and Ijare bounded.

    Now,let

    Theorem 3.2Suppose that(a)–(e)and(B)σhold,f,Ijare Caratheodory functions. Then,system(1.2)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈(o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and No<1.

    ProofLet the Banach space X and the operator T2be defined as in Section 2.We know that

    (i)T2:X→X is well defined;

    (ii)For x∈X is a fixed point of T2if and only if x∈X is a solution of(1.2);

    (iii)T2:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}.For x∈Mr,we have(3.15).Then for t∈(ti,ti+1]and v=o,1,2,···,n?1,we get that

    The remainder of the proof is similar to that of the proof of Theorem 3.1 and is omitted.

    Remark 3.2Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.2 that(1.2)has at least one solution if f and Ijare bounded.

    References

    [1]Agarwal R P,Benchhra M,Slimani B A.Existence results for differential equations with fractional order and impulses.Memoirs Differ Equ Math Phys,2008,44:1–21

    [2]Anguraj A,Karthikeyan P,Rivero M,Trujillo J J.On new existence results for fractional integro-differential equations with impulsive and integral conditions.Comput Math Appl,2014,66:2587–2594

    [3]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [4]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems involving fractional differential equations.Nonlinear Anal,Hybrid Syst,2009,3:251–258

    [5]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems of fractional order.Nonlinear Anal,Hybrid Syst,2010,4:134–141

    [6]Ahmad B,Wang G.A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations.Comput Math Appl,2011,62:1341–1349

    [7]Bai C.Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative.J Math Anal Appl,2011,384:211–231

    [8]Babakhani A.Existence and uniqueness of solution for class of fractional order differential equations on an unbounded domain.Adv Differ Equ,2012,2012:41

    [9]Feckan M,Wang J,Zhou Y.On the concept and existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2012,17:3050–3060

    [10]Feckan M,Zhou Y,Wang J.Response to“Comments on the concept of existence of solution for impulsive fractional differential equations[Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”.Commun Nonlinear Sci Numer Simul,2014,DOI:http://dx.doi.org/10.1016/j.cnsns.2014.04.014

    [11]Guo T,Jiang W.Impulsive problems for fractional differential equations with boundary value conditions. Comput Math Appl,2012,64:3281–3291

    [12]Hilfer R.Applications of Fractional Calculus in Physics.River Edge,NJ:World Scientific Publishing Co Inc,2000

    [13]Henderson J,Ouahab A.Impulsive differential inclusions with fractional order.Comput Math Appl,2010, 59:1191–1226

    [14]Ke T,Luo M.Existence and uniqueness of solutions of initial value problems for nonlinear langevin equation involving two fractional orders.Commun Nonlinear Sci Numer Simulat,2014,19:1661–1668

    [15]Li X,Chen F,Li X.Generalized anti-periodic boundary value problems of impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2013,18:28–41

    [16]Liu Z,Li X.Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations.Commun Nonlinear Sci Numer Simulat,2013,18:1362–1373

    [17]Lakshmikantham V V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations.Singapore: World Scientific,1989

    [18]Podlubny I.Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal,2002,5(4):367–386

    [19]Podlubny I.Fractional Differential Equations.London:Academic Press,1999

    [20]Rashid M H M,Al-Omari A.Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation.Commun Nonlinear Sci Numer Simul,2011,16:3493–3503

    [21]Rehman a M,Eloe P W.Existence and uniqueness of solutions for impulsive fractional differential equations. Appl Math Comput,2013,224:422–431

    [22]Stamova I.Global stability of impulsive fractional differential equations.Appl Math Comput,2014,237: 605–612

    [23]Su X,Chen Y,Lai Y.The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal,2011,74:2003–2011

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    [25]Tian Y,Bai Z.Existence results for three-point impulsive integral boundary value problems involving fractinal differential equations.Comput Math Appl,2010,59:2601–2609

    [26]Wang G,Ahmad B,Zhang L.Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order.Nonlinear Anal,2011,74:792–804

    [27]Wang G,Ahmad B,Zhang L.Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions.Comput Math Appl,2011,62:1389–1397

    [28]Wang G,Ahmad B,Zhang L,Nieto J J.Comments on the concept of existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2014,19:401–403

    [29]Wang J,Zhou Y,Feckan M.Nonlinear impulsive problems for fractional differential equations and Ulam stability.Comput Math Appl,2012,64:3389–3405

    [30]Wang J,Zhou Y,Feckan M.On recent developments in the theory of boundary value problems for impulsive fractional differential equations.Comput Math Appl,2012,64:3008–3020

    [31]Wang J,Zhou Y.A class of nonlinear differential equations with fractional integrable impulses.Commun Nonlinear Sci Numer Simulat,2014,19:3001–3010

    [32]Wang X.Impulsive boundary value problem for nonlinear differential equations of fractional order.Comput Math Appl,2011,62:2383–2391

    [33]Zhou J,Feng M.Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application.Boundary Value Problems,2014,2014:69

    [34]Zhang X,Zhu C,Wu Z.Solvability for a coupled system of fractional differential equations with impulses at resonance.Boundary Value Problems,2013,2013:80

    [35]Liu Y,Ahmad B.A study of impulsive multiterm fractional differential equations with single and multiple base points and applications.Scientific World J,2014,2014:Article ID 194346

    [36]Liu Y,Nieto J J,Otero-Zarraquinos O.Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects.Math Problems Engin,2013,2013:Article ID 498781

    [37]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    ?July 25,2014.Supported by the Natural Science Foundation of Guangdong Province (S2011010001900)and the Guangdong Higher Education Foundation for High-Level Talents.

    亚洲aⅴ乱码一区二区在线播放 | 精品乱码久久久久久99久播| 一进一出好大好爽视频| 午夜福利欧美成人| 国产精品久久久人人做人人爽| 久久国产乱子伦精品免费另类| 国产av在哪里看| 精品乱码久久久久久99久播| a在线观看视频网站| 亚洲精品国产一区二区精华液| 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕 | 久久国产精品影院| 日本 av在线| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| 老司机深夜福利视频在线观看| 老汉色∧v一级毛片| 他把我摸到了高潮在线观看| 超色免费av| 夫妻午夜视频| 在线观看66精品国产| 老汉色∧v一级毛片| 亚洲av美国av| 后天国语完整版免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲一区二区三区不卡视频| 亚洲欧美激情在线| 亚洲三区欧美一区| 国产成人一区二区三区免费视频网站| 真人一进一出gif抽搐免费| 免费看十八禁软件| 国产亚洲精品久久久久5区| 久久人妻熟女aⅴ| 久久久久久久久久久久大奶| 亚洲五月婷婷丁香| 女警被强在线播放| 国产亚洲欧美98| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 91在线观看av| 亚洲色图av天堂| 亚洲精品在线美女| 欧美日本亚洲视频在线播放| 久久精品人人爽人人爽视色| 国产成人欧美在线观看| 国产亚洲精品一区二区www| 国产深夜福利视频在线观看| 日韩视频一区二区在线观看| 无人区码免费观看不卡| 黑人操中国人逼视频| 久久欧美精品欧美久久欧美| 欧美日韩中文字幕国产精品一区二区三区 | av国产精品久久久久影院| 又紧又爽又黄一区二区| 久久精品国产亚洲av香蕉五月| 欧美激情高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 无遮挡黄片免费观看| 日韩成人在线观看一区二区三区| 免费观看人在逋| 热99re8久久精品国产| 日韩大尺度精品在线看网址 | 午夜精品国产一区二区电影| 一二三四社区在线视频社区8| 1024视频免费在线观看| 成人影院久久| 成年版毛片免费区| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 国产精品成人在线| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费 | 久久中文字幕一级| 大码成人一级视频| 亚洲午夜精品一区,二区,三区| avwww免费| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 老司机在亚洲福利影院| 精品人妻1区二区| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 欧美乱码精品一区二区三区| 午夜福利欧美成人| 香蕉国产在线看| 看免费av毛片| 最好的美女福利视频网| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 亚洲 欧美 日韩 在线 免费| 国产一区二区激情短视频| 无人区码免费观看不卡| 曰老女人黄片| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 国产1区2区3区精品| 自线自在国产av| 国产精品自产拍在线观看55亚洲| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 久久久久久大精品| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 久久精品国产清高在天天线| 两性夫妻黄色片| xxxhd国产人妻xxx| 亚洲自拍偷在线| 亚洲av美国av| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲激情在线av| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 露出奶头的视频| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 天堂动漫精品| 久久精品国产99精品国产亚洲性色 | 亚洲精品久久午夜乱码| 午夜影院日韩av| 久久久久久久精品吃奶| 亚洲精品久久午夜乱码| 村上凉子中文字幕在线| 免费看十八禁软件| 国产成人免费无遮挡视频| 99国产极品粉嫩在线观看| 一夜夜www| svipshipincom国产片| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 激情在线观看视频在线高清| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 国产片内射在线| 色哟哟哟哟哟哟| 淫秽高清视频在线观看| 午夜免费激情av| www.精华液| 亚洲中文字幕日韩| 国产三级黄色录像| 性欧美人与动物交配| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 久久久国产成人精品二区 | 99精品久久久久人妻精品| 免费久久久久久久精品成人欧美视频| 黄色 视频免费看| 天天添夜夜摸| 天堂影院成人在线观看| 国产野战对白在线观看| 在线观看午夜福利视频| 精品卡一卡二卡四卡免费| 男女下面进入的视频免费午夜 | 久久中文看片网| 午夜精品久久久久久毛片777| 看片在线看免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 757午夜福利合集在线观看| 亚洲,欧美精品.| 精品国产一区二区久久| 亚洲五月色婷婷综合| 在线天堂中文资源库| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 波多野结衣av一区二区av| 久久久久国内视频| 午夜福利影视在线免费观看| 国产精品久久久人人做人人爽| av福利片在线| 岛国在线观看网站| 国产一区二区三区综合在线观看| 日韩欧美在线二视频| 老司机靠b影院| 一夜夜www| xxx96com| 婷婷精品国产亚洲av在线| av有码第一页| 丰满迷人的少妇在线观看| 日本五十路高清| 亚洲七黄色美女视频| 人人澡人人妻人| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频精品一区| 欧美日韩av久久| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 女人高潮潮喷娇喘18禁视频| 久久香蕉激情| 麻豆成人av在线观看| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频| 成人精品一区二区免费| 日韩欧美一区视频在线观看| 一级作爱视频免费观看| 欧美日韩av久久| 色综合站精品国产| 国产成人av激情在线播放| 91成人精品电影| 一级片免费观看大全| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 成人国语在线视频| 精品国产亚洲在线| 一级片免费观看大全| 久久久久久久久中文| 国产主播在线观看一区二区| 99久久国产精品久久久| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 咕卡用的链子| 美女高潮到喷水免费观看| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av| 女警被强在线播放| 超碰97精品在线观看| 最近最新中文字幕大全免费视频| 韩国av一区二区三区四区| 1024香蕉在线观看| www.精华液| 99久久人妻综合| 日韩大码丰满熟妇| 手机成人av网站| 色综合站精品国产| 脱女人内裤的视频| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 少妇粗大呻吟视频| 两性夫妻黄色片| 岛国在线观看网站| 免费高清在线观看日韩| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 99国产综合亚洲精品| 成年女人毛片免费观看观看9| 又黄又爽又免费观看的视频| 精品国产一区二区三区四区第35| 久久亚洲真实| 精品日产1卡2卡| 亚洲人成电影免费在线| 亚洲精品久久午夜乱码| 麻豆成人av在线观看| 五月开心婷婷网| 99热国产这里只有精品6| 国产精品国产高清国产av| 深夜精品福利| 亚洲免费av在线视频| 国产精品国产高清国产av| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 超碰成人久久| 亚洲精品一二三| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 精品一品国产午夜福利视频| 麻豆国产av国片精品| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 桃红色精品国产亚洲av| 咕卡用的链子| 国产蜜桃级精品一区二区三区| 这个男人来自地球电影免费观看| 午夜91福利影院| 午夜福利一区二区在线看| 两性夫妻黄色片| 咕卡用的链子| 天天影视国产精品| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 成人三级做爰电影| 丝袜在线中文字幕| 久久99一区二区三区| 成人影院久久| 悠悠久久av| 日本a在线网址| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜制服| 中亚洲国语对白在线视频| 99国产精品99久久久久| ponron亚洲| 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 精品国产超薄肉色丝袜足j| 国产精品自产拍在线观看55亚洲| 国产高清国产精品国产三级| 亚洲精品一区av在线观看| 国产精品成人在线| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 欧美日韩视频精品一区| 曰老女人黄片| 嫩草影院精品99| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲| 欧美老熟妇乱子伦牲交| 成人国语在线视频| 日韩免费av在线播放| 电影成人av| 看黄色毛片网站| 88av欧美| 国产精品 欧美亚洲| 最好的美女福利视频网| 国产精品 国内视频| 日韩大尺度精品在线看网址 | 欧美 亚洲 国产 日韩一| 亚洲 国产 在线| 日韩av在线大香蕉| 丝袜美足系列| 婷婷六月久久综合丁香| 亚洲欧美激情综合另类| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 国产成人免费无遮挡视频| 久久精品国产亚洲av香蕉五月| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 91精品三级在线观看| 欧美成人免费av一区二区三区| 777久久人妻少妇嫩草av网站| 91成年电影在线观看| 国产激情久久老熟女| 自线自在国产av| 一级,二级,三级黄色视频| 亚洲av成人一区二区三| 丁香欧美五月| 后天国语完整版免费观看| a级毛片黄视频| 国产一区二区三区综合在线观看| 中出人妻视频一区二区| 亚洲三区欧美一区| 日本a在线网址| 啦啦啦在线免费观看视频4| 国产在线观看jvid| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀| 日韩一卡2卡3卡4卡2021年| 久热爱精品视频在线9| 免费高清在线观看日韩| 黄色丝袜av网址大全| 99国产极品粉嫩在线观看| 免费观看人在逋| 免费观看精品视频网站| avwww免费| 精品一区二区三区四区五区乱码| 色婷婷久久久亚洲欧美| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频 | 人人妻,人人澡人人爽秒播| 日韩人妻精品一区2区三区| 热re99久久国产66热| 免费av毛片视频| 国产精品美女特级片免费视频播放器 | 亚洲七黄色美女视频| 国产成人av激情在线播放| 日韩 欧美 亚洲 中文字幕| 如日韩欧美国产精品一区二区三区| 韩国av一区二区三区四区| 亚洲av成人av| e午夜精品久久久久久久| 身体一侧抽搐| 香蕉丝袜av| 最新美女视频免费是黄的| 男女下面进入的视频免费午夜 | 亚洲色图av天堂| av有码第一页| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 一边摸一边抽搐一进一出视频| 男人舔女人下体高潮全视频| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩视频一区二区在线观看| 大码成人一级视频| 免费在线观看影片大全网站| 夜夜爽天天搞| 黄色丝袜av网址大全| 日韩成人在线观看一区二区三区| 中文字幕人妻熟女乱码| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 免费av中文字幕在线| 男女午夜视频在线观看| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 婷婷六月久久综合丁香| 少妇的丰满在线观看| 免费在线观看影片大全网站| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 午夜a级毛片| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | 欧美激情高清一区二区三区| 黄色怎么调成土黄色| 国产免费av片在线观看野外av| 午夜老司机福利片| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 80岁老熟妇乱子伦牲交| 精品无人区乱码1区二区| 国产精品久久久久成人av| 日韩三级视频一区二区三区| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免费看| 97超级碰碰碰精品色视频在线观看| 五月开心婷婷网| 国产精品 欧美亚洲| 乱人伦中国视频| 午夜精品在线福利| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 午夜免费鲁丝| 黄色女人牲交| 国产亚洲欧美精品永久| 亚洲伊人色综图| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 色综合婷婷激情| 长腿黑丝高跟| 人人妻人人添人人爽欧美一区卜| 久久天堂一区二区三区四区| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 自线自在国产av| 亚洲人成电影免费在线| 999精品在线视频| 中国美女看黄片| 曰老女人黄片| 91av网站免费观看| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| 亚洲成国产人片在线观看| 伊人久久大香线蕉亚洲五| 午夜精品久久久久久毛片777| 在线观看www视频免费| 又大又爽又粗| 麻豆成人av在线观看| 久久亚洲真实| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放 | 嫩草影视91久久| 久久香蕉激情| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸 | avwww免费| 很黄的视频免费| 乱人伦中国视频| 日韩一卡2卡3卡4卡2021年| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 夜夜看夜夜爽夜夜摸 | 精品久久久久久成人av| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 91字幕亚洲| 国产精品美女特级片免费视频播放器 | 久久久久九九精品影院| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 精品久久久久久,| 日韩有码中文字幕| 神马国产精品三级电影在线观看 | 99精品久久久久人妻精品| 日韩精品中文字幕看吧| 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 另类亚洲欧美激情| 欧美大码av| 88av欧美| 人妻丰满熟妇av一区二区三区| 日本黄色日本黄色录像| 精品国内亚洲2022精品成人| 长腿黑丝高跟| 日日爽夜夜爽网站| 五月开心婷婷网| 成人精品一区二区免费| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 国产xxxxx性猛交| 国产成人欧美在线观看| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| www.自偷自拍.com| 国产av又大| 丝袜在线中文字幕| 免费在线观看黄色视频的| www.自偷自拍.com| 免费不卡黄色视频| 亚洲国产精品sss在线观看 | 日日摸夜夜添夜夜添小说| 国产免费现黄频在线看| 亚洲午夜理论影院| 中文字幕另类日韩欧美亚洲嫩草| 国产精品乱码一区二三区的特点 | 两性夫妻黄色片| 悠悠久久av| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 成年女人毛片免费观看观看9| 啦啦啦免费观看视频1| 午夜久久久在线观看| 宅男免费午夜| 亚洲在线自拍视频| 啦啦啦 在线观看视频| 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| av免费在线观看网站| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 国产片内射在线| 亚洲精品美女久久久久99蜜臀| 国产精品野战在线观看 | 久久精品亚洲熟妇少妇任你| 夜夜爽天天搞| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 久久精品影院6| 中文字幕精品免费在线观看视频| 18美女黄网站色大片免费观看| 夜夜看夜夜爽夜夜摸 | 成年女人毛片免费观看观看9| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 欧美黄色片欧美黄色片| 制服诱惑二区| 一区二区三区国产精品乱码| 国产精品自产拍在线观看55亚洲| 国产精品乱码一区二三区的特点 | 亚洲七黄色美女视频| 国产乱人伦免费视频| 十八禁人妻一区二区| 色哟哟哟哟哟哟| 人人妻人人澡人人看| 成人三级黄色视频| e午夜精品久久久久久久| 丁香欧美五月| 国内久久婷婷六月综合欲色啪| 欧美黄色片欧美黄色片| 中文字幕av电影在线播放| 久久久精品欧美日韩精品| 热99国产精品久久久久久7| a级毛片在线看网站| 激情视频va一区二区三区| 国产精品美女特级片免费视频播放器 | 国产精品免费视频内射| 久久亚洲真实| 成人特级黄色片久久久久久久| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 桃色一区二区三区在线观看| 国产又爽黄色视频| 夫妻午夜视频| 国产精品一区二区三区四区久久 | 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区黑人| 超碰97精品在线观看| 在线av久久热| 亚洲视频免费观看视频| 国产1区2区3区精品| 国产伦人伦偷精品视频| 一边摸一边做爽爽视频免费| 无人区码免费观看不卡|