• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小學數(shù)學概念深度學習的“五化”策略

      2022-01-18 08:21:32龍月琴
      福建基礎教育研究 2021年12期
      關鍵詞:五化度量平行四邊形

      龍月琴

      (湖里區(qū)教師進修學校第二附屬小學,福建 廈門 361009)

      當前數(shù)學概念教學中,存在內(nèi)涵不明、過程缺乏、單一表征、問題不清、過程缺失等現(xiàn)象,這樣的教學導致學生無法學以致用。深度學習是在整體把握教學內(nèi)容的基礎上,關注學生的學習需要,引導學生深度思考,解決現(xiàn)實生活中的問題。它是落實核心素養(yǎng)的有效途徑,有利于培養(yǎng)學生的創(chuàng)新意識和應用能力。基于深度學習的小學數(shù)學概念教學,可實施問題化、結(jié)構化、過程化、本質(zhì)化、拓展化的“五化”策略,引導學生在思辨中理解內(nèi)涵,在聯(lián)系中構建系統(tǒng),在探究中經(jīng)歷形成,在質(zhì)疑中突出本質(zhì),在應用中延伸高度。最終促進學生擴大想象空間,發(fā)散數(shù)學思維,提高學科素養(yǎng),實現(xiàn)全面發(fā)展。

      一、問題化——在思辨中理解概念內(nèi)涵

      構建深度學習的數(shù)學課堂,首先要建立“學為中心”的課堂文化環(huán)境,從“師進生退”向“生進師退”轉(zhuǎn)變,凸顯學生的主體地位。深度學習視角下的數(shù)學概念教學,要抓住核心知識點,抓住知識的本質(zhì)和內(nèi)涵。在問題設計中,目標要明確,知識點要清晰,分清主次。一些核心的知識點,包括易錯點、關鍵點以及重點,都可以轉(zhuǎn)化為核心問題。教師應引導學生帶著這些問題思考、辨析,加深概念理解,努力營造說理的課堂氛圍。

      (一)把握概念本質(zhì),在內(nèi)核處提煉問題

      數(shù)學家哈爾莫斯說過,數(shù)學的核心應是越過知識淺層表面的內(nèi)在深層的問題、思想、方法。因此,教師可以通過深入分析數(shù)學概念的基本結(jié)構來設計核心問題,幫助學生理解隱藏在知識表面背后的本質(zhì),使學生體驗數(shù)學的理性之美,不斷激發(fā)學生探索數(shù)學的熱情,促使學生的思維因為專注而變得深刻。[1]

      例如,教學人教版小學數(shù)學四年級上冊《角的度量》一課時,為了讓學生感悟度量的本質(zhì)、體驗度量角的方法,教師可以設置核心問題:如何度量一個角?度量之前應該做好什么準備?以此激活學生有關“度量”的原有知識經(jīng)驗。首先,復習在度量長度時,規(guī)定1cm 為一個基本的單位,數(shù)線段中包含幾個1cm,就是幾cm。度量面積時,規(guī)定一個小正方形的面積是1cm2,度量結(jié)果有幾個1cm2,就是幾cm2。引導學生回想有關長度、面積、體積、質(zhì)量等度量方法,即先知道度量單位,再去數(shù)有幾個這樣的度量單位,然后遷移運用,促進學生從不同處找到相同的對應點。教師在概念本質(zhì)處設計核心問題:度量角用1 度作為單位,測量一個角的大小。如果量角器上有2 個刻度,應該看哪個?

      生1:看外圈的。

      生2:看內(nèi)圈的。

      師:先在小組內(nèi)討論,然后說一說。

      生3:要看零刻度線對齊角始邊的那一圈的刻度。

      生4:先估看這個角比直角大還是比直角小,再確定是內(nèi)外哪個圈的度數(shù)。

      教師讓學生互相說出理由,在思考與辨析中達成一致的認識,幫助學生抓住角的度量概念的本質(zhì),促使學生對度量的理解從表面走向深入。通過在內(nèi)核處提煉問題,引起學生討論,促進學生之間更深層次的對話與交流。學生在核心問題的帶動下,感悟數(shù)學知識的邏輯性與科學性,并逐步豐富和完善對知識的理解,從感性的認知轉(zhuǎn)變?yōu)槔硇缘姆治?,實現(xiàn)從量變到質(zhì)變的跨越,最終掌握數(shù)學知識的內(nèi)核。

      (二)依據(jù)學生經(jīng)驗,在斷層處設置問題

      在斷層處設置問題,即問題要切中學生的“最近發(fā)展區(qū)”,引導學生“生長”出新的知識經(jīng)驗。問題的設計不僅要緊扣概念本質(zhì)、邏輯結(jié)構,還要精確把握概念的教學航向,精心設計合理問題,考慮學生在概念學習過程中可能出現(xiàn)的問題與困惑,促使學生越過思維的“困惑點”,茅塞頓開,一通百通。

      例如,教學六年級上冊《初步認識負數(shù)》一課時,學生的困惑點在于“為什么會有負數(shù)的產(chǎn)生”。教師設置實際生活情境,提出問題:“如何表示相反意義的量?”讓學生體會把0 以外的數(shù)分為正數(shù)和負數(shù)的原因,是為了生產(chǎn)和生活的需要,即表示兩種相反意義量的需要,人們創(chuàng)造了新的數(shù):正、負數(shù)。引導學生理解負數(shù)的產(chǎn)生及0 所起到的作用,體會負數(shù)產(chǎn)生的必要?;跀?shù)學概念本質(zhì),通過設置沖突的情境,針對學生非理性認知進行教學,刷新和更新學生的自我經(jīng)驗,促進學生在問題情境中對數(shù)學概念產(chǎn)生更深入的理解。

      二、結(jié)構化——在聯(lián)系中構建概念系統(tǒng)

      建立聯(lián)系是深度學習本質(zhì)性的表現(xiàn)。聯(lián)系指知識與知識間的聯(lián)系,知識與生活現(xiàn)實場景及原有經(jīng)驗間的聯(lián)系。數(shù)學概念不是孤立存在的,在宏大的數(shù)學理論系統(tǒng)中,所有的數(shù)學概念相互影響、相互聯(lián)系,形成交錯的結(jié)構化的網(wǎng)絡。學生思維的形成需要教師幫助構建結(jié)構概念體系,使學生對知識材料有自己的理解與思考,在新舊知識間找到某種關聯(lián),將新知識納入經(jīng)驗體系中并進行調(diào)整,形成網(wǎng)絡化、結(jié)構化的知識體系。知識結(jié)構化是深度學習的核心要素,是將所學內(nèi)容以圖形結(jié)構化的形式進行整合,主要目的是幫助學生在原有知識結(jié)構的基礎上,對接下來所學知識脈絡產(chǎn)生清晰的了解。因此,統(tǒng)一認知結(jié)構與知識結(jié)構,需要通過非線性、網(wǎng)狀式結(jié)構進行較好的呈現(xiàn),促進學習者建立相應的知識概念體系。[2]同時,要對同一知識點進行多角度認知,激活學生的發(fā)散思維,深度拓寬知識學習的范圍,促使學生圍繞同一主題實現(xiàn)概念交互。

      例如,某教師在講解《平行四邊形和梯形》一課時,從單元整體備課的視角進行構思,以兩直線的位置關系(平行和不平行)作為導入,以此作為教學起點展開教學。通過課件呈現(xiàn)四組直線,其中兩組直線分別平行,另外兩組直線互不平行。引導學生想一想:“任意選擇其中的兩組直線相交,可以組合成哪幾種四邊形?”接著,通過畫一畫的方式動手驗證,探究:“任選其中的兩組直線組合成四邊形,根據(jù)兩組對邊的位置關系進行分類,共有幾種組合方式?”學生在自主探究、觀察分類后,發(fā)現(xiàn)共有三種組合方式:(1)兩組對邊分別平行的四邊形;(2)只有一組對邊平行的四邊形;(3)兩組對邊都不平行的四邊形。在回顧與反思環(huán)節(jié)中,使學生明確分類的標準,立足于兩組對邊的位置關系,只有三種分類方式,體會形狀大小各不相同的圖形之間具有各自獨特的、顯著的特征,而這些特征往往是它們與其他圖形存在差異的關鍵。

      以上教學,教師能從單元備課的視覺出發(fā),構建大背景,幫助學生理清圖形之間的區(qū)別與聯(lián)系,使學生的學習更為系統(tǒng)、深刻。因此教師應當有全局觀,對教材進行處理和設計時,要見樹木,更要見森林。要幫助學生構建整體的認知網(wǎng)絡,引導學生逐步形成認識事物的思維方式以及數(shù)學基本素養(yǎng)。誠然,小學數(shù)學要做到淺而不錯、分而不碎不是一件容易的事,這需要教師有深厚的數(shù)學知識功底,更需要以知識結(jié)構為依托整合教材。

      三、過程化——在探究中經(jīng)歷概念形成

      動手操作有利于激發(fā)學生探究的興趣,使學生獲得從事探究活動的積極體驗,幫助學生理解概念。這就要求教師在概念教學中,努力創(chuàng)設有利于學生自主探究的情境,給足學生自主探究的時間和空間,盡可能讓學生在探究中親身經(jīng)歷概念形成的整個過程,充分發(fā)揮學生的主動性,積極思考學習活動中產(chǎn)生的問題,促進對概念的深刻認識。因此,在實施動手實驗、觀察式探究等探究活動時,要使學生明確動手探究的目的,設置恰當、靈活的活動環(huán)節(jié),避免形式化,講求實效性。給學生動眼看、動腦想、動手做、動口說的機會,實現(xiàn)探究的真正價值。同時,教師要提出富有挑戰(zhàn)性的問題,保證探究活動的設計和問題的質(zhì)量,從而拓展學生的思路,提升學生的思維水平。

      例如,在教學《倍的認識》一課時,教師運用三角形、圓形、正方形三種圖形,將這三種圖形分為不同的組,每一組含有不同的個數(shù)。在自主探究活動中,讓學生通過擺一擺、圈一圈、畫一畫的方式,反映它們之間的倍數(shù)關系。教師提問:“調(diào)皮的圓形跑走了一些,現(xiàn)在圓形只剩下1 個,1 個圓形和2 個三角形之間有什么關系?1 個圓形不是2 個三角形的1 倍,那么1 是2的多少倍?”(不是整數(shù)倍,而是不足一的分數(shù)倍,為五年級學習分數(shù)做鋪墊)教師創(chuàng)設民主、平等、寬松的學習環(huán)境,引導學生自主探究,操作體驗,真正成為學習的主人。從具體事物中抽象出“倍”的概念,經(jīng)歷“表象—本質(zhì)—表征—運用”的概念形成過程,學生對“倍”的認識逐漸清晰,數(shù)學思考也越來越深刻。

      四、本質(zhì)化——在質(zhì)疑中突出概念本質(zhì)

      批判質(zhì)疑不是單純地接受知識的注入,而是要求學生對知識有深刻的理解,并且這種理解包含學生自身的思想和態(tài)度,是學生自發(fā)尋找知識內(nèi)容的深層含義,主動思考知識本質(zhì)的現(xiàn)實價值,以促進批判性思維的發(fā)展。當遇到復雜、疑難的問題,看不清真相、理不清頭緒時,要引導學生適時、適度地“退”,退到知識的源頭,退到思維的起點。即尋找事物的本質(zhì),抓住事物的本質(zhì)特征,追根溯源,發(fā)現(xiàn)事物的發(fā)展規(guī)律。

      例如,在《三角形的認識》一課中,在“三角形的高”的概念教學環(huán)節(jié),引入幾個三角形比高的情境(見圖1)。教師組織學生自學,然后小組討論:究竟哪組高畫對了?在質(zhì)疑中,逐漸提煉出關鍵詞“頂點”“對邊”“垂直線段”等。從本質(zhì)上看,三角形的高主要包括頂點、對邊、垂直線段這些關鍵特征,它們都是三角形的高的外在表現(xiàn)。通過自學、交流、質(zhì)疑等方式,提煉出三角形的本質(zhì)特征,真正理解高的本質(zhì)。教學時,需要準確抓住特征點,通過合理的策略和直觀的方法,幫助學生把握概念的本質(zhì)。

      圖1

      五、拓展化——在應用中延伸概念高度

      遷移應用是深度學習最高層次的表現(xiàn),是指學生在面對復雜的問題情境時,能夠正確理解題意,按照問題的要求,摒棄無用的干擾信息,尋找知識間實質(zhì)性的聯(lián)系,將所學的知識運用到現(xiàn)實情境中并成功解決問題。適度地延伸概念,對學生的思維提升具有重要作用。教師需要提供思路,讓學生尋找規(guī)律、得出結(jié)論,在課堂之外繼續(xù)成長。

      例如,教學《平行四邊形的面積》一課時,要求學生了解平行四邊形的面積公式,并解決生活中有關平行四邊形面積的一些問題。如以下兩組平行四邊形紙片的面積,在第一組圖(見圖2)中,比較這兩個平行四邊形面積的大小,通過計算得出兩個平行四邊形面積相等。接著,教師創(chuàng)設生活化的情境,根據(jù)不同顏色的霓虹燈,設計第二組圖(見圖3),舉出四種“衍生”后的平行四邊形的面積,它們具有的共同特征是同底等高。通過拓展,讓學生明白平行四邊形在同底等高的情況下,面積是相等的。

      圖2

      圖3

      近年來,隨著學習科學研究的出現(xiàn)和深化,深度學習演變?yōu)閷W習科學領域熱門和重點的研究對象。[3]學習科學領域主要是對深度學習如何產(chǎn)生進行探究,最終目的是讓學生具備能夠深度理解概念的技能?;谏疃葘W習的小學概念學習的探究還處于不斷摸索和實踐階段,教師應根據(jù)學生概念學習階段及相應的教學理論提出相應的教學策略,提升學生對概念學習的深層理解與思考的程度。

      猜你喜歡
      五化度量平行四邊形
      有趣的度量
      模糊度量空間的強嵌入
      平行四邊形在生活中的應用
      迷向表示分為6個不可約直和的旗流形上不變愛因斯坦度量
      “平行四邊形”創(chuàng)新題
      對一道平行四邊形題的反思
      判定平行四邊形的三個疑惑
      “五化”建設給力紀律審查
      群眾(2016年12期)2017-01-14 03:24:03
      著力促進“五化”協(xié)同
      “五化”凸顯作文魅力
      宝山区| 延寿县| 德惠市| 定结县| 若尔盖县| 会宁县| 贺兰县| 安泽县| 乌兰浩特市| 丰顺县| 大邑县| 南岸区| 娄底市| 枞阳县| 西华县| 临清市| 曲阜市| 景德镇市| 荥阳市| 姜堰市| 阿拉善左旗| 紫阳县| 苍溪县| 丽水市| 昌都县| 潜江市| 调兵山市| 上思县| 建德市| 惠州市| 白银市| 双江| 鄂州市| 阿克| 阿拉善左旗| 成都市| 昔阳县| 吉首市| 四会市| 绥江县| 大城县|