• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS FOR AN SIR EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES?

    2021-09-06 07:54:16趙孟
    關(guān)鍵詞:趙孟

    (趙孟)

    College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China E-mail:zhaom@nwnu.edu.cn

    Wantong LI (李萬(wàn)同)?

    School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China E-mail:wtli@lzu.edu.cn

    Jiafeng CAO (曹佳峰)

    Department of Applied Mathematics,Lanzhou University of Technology,Lanzhou 730050,China E-mail:caojf07@lzu.edu.cn

    Abstract This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992–2001).We first prove that this problem has a unique solution de fined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R0<1,or the initial infected area h0,expanding abilityμ,and the initial datum S0are all small enough when.Furthermore,we show that if,the disease will spread when h0is large enough or h0is small butμis large enough.It is expected that the disease will always spread when R0,which is different from the local model.

    Key words SIR model;nonlocal diffusion;free boundary;spreading and vanishing

    1 Introduction

    In mathematical epidemiology,one of the most important models is the classical SIR model,which receives great attention.In this model,according to the stage of infection,the population is separated into three classes:susceptible,infectious and recovered individuals,denoted by

    S,I

    and

    R

    ,respectively.Assuming that the disease incubation period is negligible so that each susceptible individual becomes infectious and later recovers having acquired a permanent or temporary immunity,then the classical SIR model can be governed by

    is a threshold value for the longtime behaviour of(1.1),the disease will die out if

    R

    <

    1,and remain endemic if

    R

    >

    1.Obviously,(1.1)ignores the spatial diffusion of the population.Motivated by this factor,Kuniya and Wang[21]studied the corresponding spatial diffusion problem,and obtained a result similar to[15]for some special cases.To describe how an epidemic spreads in space,spreading speed is an useful approach.We refer to Hosono and Ilyas[16]for the spreading speed of a corresponding spatial diffusion problem.However,the works of Kuniya and Wang[21]and Hosono and Ilyas[16]cannot describe precisely the spreading front of the disease.This shortcoming can be overcome by considering the problem over a moving domain,resulting in the free boundary problem.Kim et al.[20]introduced the free boundary in order to consider the corresponding spatial diffusion problem;that is to say,they assume that the populations

    S,I

    and

    R

    disperse randomly,and the range of infected area is assumed to be a moving interval,

    B

    (0).This model has the form

    where the free boundaries satisfy the famous Stefan condition.Kim et al.first proved the existence and uniqueness of the global solution,and then gave the sufficient conditions for the disease vanishing or spreading:

    (i)If

    R

    <

    1,then

    h

    <

    ∞.(ii)If

    R

    >

    1,then there exist

    h

    and

    h

    such that(a)if

    h

    >h

    ,then

    h

    =∞;(b)if

    h

    h

    ,then there exists

    μ

    >

    0 such that

    h

    <

    ∞for 0

    <μ<μ

    ,where

    R

    is given by(1.2).Moreover,if

    h

    <

    ∞,then

    The results in[20]seem to be more reasonable than those in[15].Later,Huang and Wang[17]studied a similar SIR epidemic model with a free boundary in one dimension.They obtained some sufficient conditions of disease vanishing,and then gave the longtime behavior of

    S,I

    and

    R

    if vanishing happens.For(1.3),the deduction of free boundary condition

    h

    (

    t

    )=?

    μI

    (

    t,h

    (

    t

    ))can be found in[2].Du and Lin[6]were the first to use this condition to consider a logistic type of local diffusion model with a free boundary.After this work,many local diffusion problems with a free boundary were investigated;see[7,8,10–14,18,19,22,26–29,32–35]and the references therein.Recently,Cao et al.[3]proposed a nonlocal version of[6],and successfully extended many basic results of[6]to the nonlocal model.For the spreading-vanishing criteria,the results in[3]revealed signi ficant differences from the local diffusion model in[6].Very recently,Du et al.[5]investigated the spreading speed of the nonlocal model in[3]and proved that the spreading may or may not have a finite speed,depending on whether a certain condition is satis fied by the kernel function

    J

    .From these results,we can see that there are striking differences between the local and nonlocal diffusion models.

    Motivated by the work[3],many researchers investigated other problems with nonlocal diffusion and free boundaries;for example,Du et al.[9]considered a class of two species of Lotka-Volterra models with nonlocal diffusion and common free boundaries,Li et al.[24]discussed a class of free boundary problem in relation to ecological models with nonlocal and local diffusions,Zhao et al.[36]studied a degenerate epidemic model with nonlocal diffusion and free boundaries,Cao et al.[4]considered the dynamics of a Lotka-Volterra competition model with nonlocal diffusion and free boundaries,Wang and Wang[30,31]studied free boundary problems with nonlocal and local diffusions,and[23]considered the dynamics of nonlocal diffusion systems with different free boundaries,and so on.

    Inspired by the above works about nonlocal diffusion,the main purpose of this paper is to extend the results in[20]into the free boundary problem with nonlocal diffusion.For simplicity,we assume that the spatial region is one dimensional.If the spatial movement is described by a nonlocal diffusion operator(see[1,25])and

    S,I

    and

    R

    have the same diffusion rate,then we can propose the nonlocal variation of(1.3)as follows:

    Here,the parameters

    d,μ

    and

    h

    are positive constants.It is assumed that the kernel function

    J

    :R→R is continuous and nonnegative,and has the properties

    Furthermore,we assume that the initial function

    S

    (

    x

    )belongs to

    and the initial functions

    I

    (

    x

    )and

    R

    (

    x

    )belong to

    where[?

    h

    ,h

    ]represents the initial infected area.We note that the detailed derivation of the free boundary conditions

    h

    (

    t

    )and

    g

    (

    t

    )in(1.4)can be found in[3].We will show that(1.4)has a unique solution de fined for all time,and then determine its longtime dynamical behaviour.It is emphasized that we apply the approach in[3,9,36]to deal with(1.4),which is different from[20].Note that the equations for

    S

    and

    I

    are fully decoupled from

    R

    in(1.4).Although we only need to consider the sub-system for

    S

    and

    I

    ,the reaction functions are different from the above mentioned works considering systems with nonlocal diffusion.As a result,the arguments in this paper will be a little different.The main results of this paper are the following theorems:

    Theorem 1.1

    Suppose that(J)holds.Then,for any given

    h

    >

    0,

    S

    ∈Xand

    I

    ,R

    ∈X,problem(1.4)has a unique positive solution(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    )

    ,R

    (

    t,x

    )

    ,g

    (

    t

    )

    ,h

    (

    t

    ))de fined for all

    t>

    0.It is easily seen that

    h

    (

    t

    )is monotonically increasing and that

    g

    (

    t

    )is monotonically decreasing.Therefore

    are always well-de fined.Let us recall that

    R

    is given by(1.2),so we have

    Theorem 1.2

    Let the conditions of Theorem 1.1 hold and let(

    S,I,R,g,h

    )be the solution of(1.4).Assume further that

    J

    (

    x

    )

    >

    0 in R.Then we have

    Note that

    l

    is determined by an eigenvalue problem(see(3.6)).

    Finally,we first explain the differences between the model with nonlocal diffusion and the one with local diffusion based on the work[3,5,6].

    Remark 1.3

    We note that local diffusion is only suitable to describe short-range in the dispersal,however,nonlocal diffusion can be used to study long-range factors in the dispersal by choosing the kernel function

    J

    properly.Mathematically,the results in[3]showed that if the diffusion rate of the species is small enough,then spreading will always happen,which is very different from that which is described in[6].On the other hand,the results in[5]showed that the spreading may have an in finite speed,which is another difference from the local model.Biologically,this means that nonlocal diffusion of the species increases the chance of species spreading,compared with the case that the species only diffuses randomly.

    For our results,we have the following two remarks discussing the differences between the local and nonlocal model:

    Remark 1.5

    Depending on the choice of the kernel function in the nonlocal diffusion operator,Du et al.[5]showed that the spreading speed of the nonlocal model in[3]is accelerated.It is expected that a similar result holds for(1.4),which presents an interesting problem.To check this result,we should first obtain the longtime behavior of(1.4)for when spreading happens.We will consider this in the future.The rest of this paper is organised as follows:in Section 2 we prove Theorem 1.1,namely,problem(1.4)has a unique solution de fined for all

    t>

    0;the longtime dynamical behaviour of(1.4)is investigated in Section 3,where Theorem 1.2 is proved.

    2 Global Existence and Uniqueness

    Throughout this section,we assume that

    h

    >

    0,

    S

    ∈Xand

    I

    ,R

    ∈X.For any given

    T>

    0,we first introduce the following notations:

    Just as in[3],we first prove the following lemma:

    Lemma 2.1

    For any given

    T>

    0 and(

    g,h

    )∈

    G

    ×

    H

    ,the problem

    with

    μ

    =min{

    μ

    }.

    Proof

    If we can obtain the existence and uniqueness of(

    S,I

    ),then the existence and uniqueness of

    R

    can follow from[36,Lemma 2.2].Hence we only need to consider problem

    and prove the existence and uniqueness of solution(

    S,I

    ).Let

    f

    (

    S,I

    )=

    b

    ?

    βSI

    ?

    μ

    S

    and

    f

    (

    S,I

    )=

    βSI

    ?

    αI

    ?

    μ

    I

    .Since

    f

    (0

    ,I

    )/=0,and

    S

    is de fined in(0

    ,T

    ]×R,the corresponding result in[9]does not cover this case.However,we can deal with this by making some considerable changes.Here we give the details.

    Step 1

    The parameterised ODE problems.For any given

    x

    ∈R and

    s

    ∈(0

    ,T

    ],de fine

    In this case,

    I

    (

    t,x

    )=0.Consider the following ODE initial value problem:

    Case 2:

    x

    ∈(

    g

    (

    s

    )

    ,h

    (

    s

    ))and

    t

    ∈[

    t

    ,s

    ].

    De fine

    Consider the ODE problem

    For any(

    S

    ,I

    )∈[0

    ,L

    ]×[0

    ,L

    ],

    Hence,

    F

    (

    t,x,S,I

    )is Lipschitz continuous in(

    S,I

    )for(

    S

    ,I

    )∈[0

    ,L

    ]×[0

    ,L

    ],and is uniformly continuous for

    x

    ∈(

    g

    (

    s

    )

    ,h

    (

    s

    ))and

    t

    ∈[

    t

    ,s

    ].Additionally,

    F

    (

    t,x,S,I

    )is continuous in all its variables in this range.By the fundamental theorem of ODEs,problem(2.5)admits a unique solution(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))de fined in some interval[

    t

    ,s

    )of

    t

    ,and(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))is continuous in both

    t

    and

    x

    .To claim that

    t

    →(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))can be uniquely extended to[

    t

    ,s

    ],we should show that if(

    S

    ,I

    )is uniquely de fined for

    t

    ∈[

    t

    ,t

    ?]with?

    t

    ∈(

    t

    ,s

    ],then

    It is easy to check that

    By

    L

    ≥‖

    S

    ‖and

    L

    ≥‖

    I

    ‖,it follows from a simple comparison argument that

    S

    (

    t,x

    )≤

    L

    ,I

    (

    t,x

    )≤

    L

    in

    t

    ∈[

    t

    ,t

    ?].The left part can be obtained similarly by using

    F

    (

    t,x,

    0

    ,

    0)≥0.

    Step 2

    A fixed point theorem.For any

    s

    ∈(0

    ,T

    ),we denote

    and‖

    S

    ‖+‖

    I

    ‖≤

    B

    ,we can apply a simple comparison argument to see that

    W

    (

    t,x

    )≤

    B

    for

    t

    ∈[0

    ,s

    ]and

    x

    ∈[

    g

    (

    t

    )

    ,h

    (

    t

    )].Hence,(2.11)holds.We have thus proved that for any

    s

    ∈(0

    ,s

    ],(2.3)has a unique solution for

    t

    ∈[0

    ,s

    ].

    Step 3

    Extension of the solution.

    Proof of Theorem 1.1

    Following the approach of[3],we will make use of Lemma 2.1 and a fixed point argument to finish this proof.For any given

    T>

    0 and(

    g

    ,h

    )∈

    G

    ×

    H

    ,it follows from Lemma 2.1 that(2.1)with(

    g,h

    )=(

    g

    ,h

    )has a unique solution(

    S

    ,I

    ,R

    ).Using such

    I

    (

    t,x

    ),we can de fine(

    g

    ?

    ,

    ?

    h

    )for

    t

    ∈[0

    ,T

    ]by

    Due to the fact that,by(J),

    J

    (0)

    >

    0,there exist constants

    ?

    ∈(0

    ,h

    /

    4)and

    δ

    such that

    Using this,we can follow the corresponding arguments of[3]to show that,for some sufficiently small

    T

    =

    T

    (

    μ,B,h

    ,?

    ,I

    ,J

    )

    >

    0 and any

    T

    ∈(0

    ,T

    ],

    In what follows,we show that for sufficiently small

    T

    ∈(0

    ,T

    ],F has a unique fixed point(

    g

    ,h

    )in Σ,so(

    S

    ,I

    ,R

    ,g

    ,h

    )clearly is a solution of(1.4)for

    t

    ∈[0

    ,T

    ].We will then show that this is the unique solution of(1.4)and that it can be extended uniquely to all

    t>

    0.We will complete this task in several steps.

    Step 1

    We show that,for sufficiently small

    T

    ∈(0

    ,T

    ],F has,by the contraction mapping theorem,a unique fixed point in Σ.

    It follows from[36,(2.28)]that there exists some

    C

    depending on(

    μ,h

    ,B

    )such that

    By the same argument as in[36],we deduce that,for

    t

    ∈(0

    ,T

    ],

    with

    C

    depending on(

    d,α,β,μ

    ,A,B

    ).By[36,(2.16)],we have

    Without loss of generality we may assume that

    T

    ≤1.Then the inequalities(2.15),(2.16)and(2.17)yield,for the case

    x

    ∈[?

    h

    ,h

    (

    t

    )],that

    Here

    C

    does not depend on

    T

    and(

    t

    ,x

    ).When

    x

    ∈[

    g

    (

    t

    )

    ,

    ?

    h

    ),we can show that this inequality still holds.Since

    Z

    (

    t

    ,x

    )=0 for

    t

    ∈[0

    ,T

    ]and

    x

    ∈R[

    g

    (

    t

    )

    ,h

    (

    t

    )],we have

    Thus,for

    T

    ∈(0

    ,T

    ?],F is a contraction mapping on Σ.Hence,F has a unique fixed point(

    g,h

    )in Σ,which gives a nonnegative solution(

    S,I,R,g,h

    )of(1.4)for

    t

    ∈(0

    ,T

    ].

    Step 2

    To show that(

    S,I,R,g,h

    )is the unique solution of(1.4)for

    t

    ∈(0

    ,T

    ],we should show that(

    g,h

    )∈Σhold for any solution(

    S,I,R,g,h

    )of(1.4)de fined in

    t

    ∈(0

    ,T

    ].This can be shown by the same argument as in Step 3 of the proof in[3,Theorem 2.1].Let(

    S,I,R,g,h

    )be an arbitrary solution of(1.4)de fined for

    t

    ∈(0

    ,T

    ].Then

    Step 3

    Extension of the solution of(1.4)to

    t

    ∈(0

    ,

    ∞).

    Firstly,we can show,as above,that

    3 Spreading and Vanishing

    Proof

    Applying Lemma 3.1,we can prove this lemma by the same argument as in[3,Theorem 3.1]and[36,Lemma 3.2].Here we omit the proof.

    Lemma 3.3

    If

    θ<

    0,or equivalently,

    R

    <

    1,then

    h

    ?

    g

    <

    ∞,and

    Proof

    We first prove(3.1).We note that

    S

    (

    t,x

    )satis fies

    Then we can get

    h

    ?

    g

    <

    ∞by letting

    t

    →∞.For the case

    θ>

    0,or equivalently,

    R

    >

    1,we de fine the operator L+

    θ

    by

    The generalized principal eigenvalue of L+

    θ

    is given by

    Lemma 3.4

    Assume that

    J

    (

    x

    )satis fies(J),and that

    J

    (

    x

    )

    >

    0 in R.Let(

    S,I,R,g,h

    )be the solution of(1.4).If 0

    <θ<d

    and

    h

    ?

    g

    <

    ∞,then

    Proof

    By the same arguments as in[9],we can have that

    If we choose

    δ

    small enough such that

    δφ

    (

    x

    )≤

    I

    (

    T

    ,x

    )for

    x

    ∈[

    g

    +

    ?,h

    ?

    ?

    ],then we can use[3,Lemma 3.3]and a simple comparison argument to obtain

    This is in contradiction to(3.2).Thus we have proven(3.3).

    We next consider the case 0

    <θ<d.

    In this case,it follows from[3,Proposition 3.4]that there exists

    l

    such that

    Proof

    (i)Arguing indirectly,we assume that

    h

    ?

    g

    >l

    .Since 0

    <θ<d

    ,we have

    λ

    (L+

    θ

    )

    >

    0.This is in contradiction to(3.3).

    (ii)This conclusion follows directly from(i).

    (iii)By using[9,Lemma 3.9],we can have that there exists

    μ

    such that

    h

    ?

    g

    =∞for

    μ>μ

    .Now we prove the remaining part.Since 2

    h

    <l

    ,we have

    λ

    (L+

    θ

    )

    <

    0.There exists some small

    ε

    such that

    h

    :=

    h

    (1+

    ε

    )satis fies

    Choose the positive constants

    K

    large enough such that

    For

    δ

    determined above,we choose

    K

    such that

    猜你喜歡
    趙孟
    元 趙孟 行書(shū)與達(dá)觀(guān)長(zhǎng)老札
    趙孟頫《印史·序》中“復(fù)古”印學(xué)觀(guān)略論
    淺析趙孟《雙松平遠(yuǎn)圖》的藝術(shù)表現(xiàn)形式
    淺談趙孟頫馬畫(huà)中的“師古而化”
    “元四家”概念流變考略
    吳保初書(shū)法來(lái)源探微
    論管道升對(duì)趙孟頫藝術(shù)事業(yè)的影響
    藝苑(2019年3期)2019-07-11 04:49:34
    趙孟的書(shū)法藝術(shù)
    趙孟《陶淵明五言詩(shī)頁(yè)》
    老年教育(2017年4期)2017-05-10 05:27:34
    淺析趙孟▌繪畫(huà)對(duì)畫(huà)壇的影響
    欧美成人精品欧美一级黄| 天堂中文最新版在线下载| www.自偷自拍.com| 免费日韩欧美在线观看| www.精华液| 亚洲人成电影免费在线| 日本a在线网址| 亚洲,欧美精品.| 欧美在线黄色| 精品免费久久久久久久清纯 | 熟女少妇亚洲综合色aaa.| 天天躁夜夜躁狠狠久久av| 久久久国产精品麻豆| 18在线观看网站| 亚洲人成电影观看| 丝袜人妻中文字幕| 成人国产av品久久久| 在线观看人妻少妇| 在线亚洲精品国产二区图片欧美| 午夜精品国产一区二区电影| 精品国产国语对白av| 亚洲精品第二区| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲高清精品| 亚洲图色成人| 午夜福利乱码中文字幕| 乱人伦中国视频| 国产精品香港三级国产av潘金莲 | 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| 男人爽女人下面视频在线观看| 飞空精品影院首页| 精品亚洲乱码少妇综合久久| 久久av网站| 久久久久精品人妻al黑| 欧美日韩亚洲综合一区二区三区_| 老鸭窝网址在线观看| 天天躁夜夜躁狠狠久久av| 亚洲国产av新网站| 久久午夜综合久久蜜桃| 天天躁日日躁夜夜躁夜夜| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲高清精品| 日本91视频免费播放| 亚洲精品久久成人aⅴ小说| 日本黄色日本黄色录像| 男女之事视频高清在线观看 | 亚洲色图综合在线观看| 色婷婷久久久亚洲欧美| 成年av动漫网址| 国产又色又爽无遮挡免| 国产男女超爽视频在线观看| 观看av在线不卡| 午夜激情久久久久久久| 十分钟在线观看高清视频www| 欧美少妇被猛烈插入视频| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区国产| 美女视频免费永久观看网站| 午夜影院在线不卡| 成人亚洲精品一区在线观看| a级片在线免费高清观看视频| 波野结衣二区三区在线| 亚洲欧美一区二区三区黑人| 国产色视频综合| 国产激情久久老熟女| 亚洲色图综合在线观看| 超碰97精品在线观看| 九草在线视频观看| 叶爱在线成人免费视频播放| 国产黄频视频在线观看| 中文欧美无线码| 乱人伦中国视频| 国产精品国产三级国产专区5o| 黄色 视频免费看| 欧美在线黄色| 亚洲精品美女久久久久99蜜臀 | 高清av免费在线| 亚洲欧美日韩高清在线视频 | 又紧又爽又黄一区二区| 免费久久久久久久精品成人欧美视频| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 999久久久国产精品视频| 亚洲人成网站在线观看播放| av有码第一页| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久 | 免费在线观看黄色视频的| 高清av免费在线| 亚洲av片天天在线观看| 三上悠亚av全集在线观看| 欧美黑人欧美精品刺激| 欧美激情高清一区二区三区| 婷婷色综合大香蕉| 欧美另类一区| 女人爽到高潮嗷嗷叫在线视频| 建设人人有责人人尽责人人享有的| 国产一区有黄有色的免费视频| www.av在线官网国产| 国产精品久久久久久人妻精品电影 | 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线免费观看视频4| 久久人人97超碰香蕉20202| 久久女婷五月综合色啪小说| 777米奇影视久久| 9热在线视频观看99| 久久久欧美国产精品| 91国产中文字幕| 久久青草综合色| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 多毛熟女@视频| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| 91麻豆av在线| 婷婷成人精品国产| www.av在线官网国产| 性少妇av在线| 久久久久国产精品人妻一区二区| 国产三级黄色录像| 桃花免费在线播放| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 女警被强在线播放| 老司机影院成人| 国产欧美日韩一区二区三 | 成人国语在线视频| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成网站在线观看播放| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 免费看不卡的av| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 国产野战对白在线观看| 成年人黄色毛片网站| 精品少妇久久久久久888优播| 好男人电影高清在线观看| 欧美xxⅹ黑人| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 国产成人影院久久av| 丰满迷人的少妇在线观看| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 欧美少妇被猛烈插入视频| 欧美 日韩 精品 国产| 久久人妻福利社区极品人妻图片 | 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 免费观看av网站的网址| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区 | 亚洲欧美中文字幕日韩二区| 国产精品九九99| xxx大片免费视频| 亚洲三区欧美一区| 成年美女黄网站色视频大全免费| 亚洲精品久久午夜乱码| 久久狼人影院| 极品人妻少妇av视频| 国产精品一区二区精品视频观看| 天天添夜夜摸| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 中文字幕人妻熟女乱码| 亚洲一区中文字幕在线| 国产欧美日韩精品亚洲av| 国产97色在线日韩免费| 婷婷色av中文字幕| 国产精品久久久久久人妻精品电影 | 欧美精品一区二区大全| av片东京热男人的天堂| 久热这里只有精品99| 久久毛片免费看一区二区三区| 国产精品久久久人人做人人爽| 久9热在线精品视频| 男女高潮啪啪啪动态图| 老司机在亚洲福利影院| 国产主播在线观看一区二区 | 欧美精品av麻豆av| 亚洲专区国产一区二区| 另类亚洲欧美激情| 免费看十八禁软件| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 美女午夜性视频免费| 国产福利在线免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲激情五月婷婷啪啪| 亚洲欧美色中文字幕在线| 波野结衣二区三区在线| 女人精品久久久久毛片| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜制服| e午夜精品久久久久久久| 国产在视频线精品| 亚洲成人免费av在线播放| 国产一区二区激情短视频 | 亚洲五月婷婷丁香| 久久影院123| 丝袜在线中文字幕| 捣出白浆h1v1| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 久久精品亚洲av国产电影网| 久久久久精品国产欧美久久久 | 亚洲欧美色中文字幕在线| 日本av免费视频播放| 老司机深夜福利视频在线观看 | 亚洲美女黄色视频免费看| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 亚洲情色 制服丝袜| 丁香六月天网| 99热国产这里只有精品6| 成年人午夜在线观看视频| 国产亚洲欧美在线一区二区| 国产精品欧美亚洲77777| av线在线观看网站| 一区在线观看完整版| 亚洲一区中文字幕在线| 一级毛片黄色毛片免费观看视频| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 香蕉丝袜av| 久久99热这里只频精品6学生| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片 | 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 桃花免费在线播放| 成人国产一区最新在线观看 | 欧美+亚洲+日韩+国产| 视频在线观看一区二区三区| 日本欧美国产在线视频| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 考比视频在线观看| 亚洲综合色网址| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 丰满少妇做爰视频| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人精品欧美一级黄| 欧美精品人与动牲交sv欧美| 欧美性长视频在线观看| 国产有黄有色有爽视频| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| a级片在线免费高清观看视频| av又黄又爽大尺度在线免费看| 中文字幕制服av| 日韩av在线免费看完整版不卡| 中文字幕精品免费在线观看视频| 国产男女超爽视频在线观看| 真人做人爱边吃奶动态| 在线精品无人区一区二区三| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 免费高清在线观看视频在线观看| 欧美日韩精品网址| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| av视频免费观看在线观看| 国产精品成人在线| 欧美日韩亚洲综合一区二区三区_| 亚洲成色77777| 国产成人影院久久av| 亚洲,欧美,日韩| 亚洲美女黄色视频免费看| 亚洲,一卡二卡三卡| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| av片东京热男人的天堂| a级毛片黄视频| av欧美777| 久久天躁狠狠躁夜夜2o2o | 精品人妻一区二区三区麻豆| 永久免费av网站大全| 青青草视频在线视频观看| 亚洲av在线观看美女高潮| 亚洲七黄色美女视频| 国产视频首页在线观看| 亚洲专区中文字幕在线| 日本a在线网址| av天堂久久9| 丝瓜视频免费看黄片| 国产av精品麻豆| 国产激情久久老熟女| 午夜精品国产一区二区电影| 欧美精品一区二区大全| 校园人妻丝袜中文字幕| 国产精品久久久av美女十八| 国产成人影院久久av| 丰满少妇做爰视频| 老司机影院成人| www日本在线高清视频| 午夜老司机福利片| 一本久久精品| 国产一卡二卡三卡精品| 久久这里只有精品19| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 永久免费av网站大全| av天堂久久9| 丝瓜视频免费看黄片| 性色av乱码一区二区三区2| 伦理电影免费视频| 亚洲av在线观看美女高潮| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 久久精品aⅴ一区二区三区四区| 99香蕉大伊视频| 老司机深夜福利视频在线观看 | 国产av一区二区精品久久| 99热国产这里只有精品6| 一边摸一边抽搐一进一出视频| 成年人免费黄色播放视频| 国产男人的电影天堂91| 久久精品久久久久久久性| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看 | 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 性色av一级| 久久久久久久久久久久大奶| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 国产成人欧美| 日本午夜av视频| 丝袜在线中文字幕| bbb黄色大片| 欧美日韩亚洲高清精品| 亚洲av成人精品一二三区| 999久久久国产精品视频| 日韩伦理黄色片| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 蜜桃国产av成人99| 18禁黄网站禁片午夜丰满| 免费看av在线观看网站| 在线观看免费午夜福利视频| 国产爽快片一区二区三区| bbb黄色大片| 日韩制服丝袜自拍偷拍| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码 | 美女主播在线视频| 建设人人有责人人尽责人人享有的| 亚洲人成电影观看| 亚洲欧美激情在线| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| 亚洲熟女精品中文字幕| 自线自在国产av| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 97在线人人人人妻| 国产成人91sexporn| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频| 午夜免费男女啪啪视频观看| 高潮久久久久久久久久久不卡| 午夜福利,免费看| 欧美久久黑人一区二区| 大香蕉久久网| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 国产高清视频在线播放一区 | 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 亚洲精品久久久久久婷婷小说| 久久久精品区二区三区| 麻豆国产av国片精品| 999精品在线视频| 99热国产这里只有精品6| 国产在线一区二区三区精| 一级毛片 在线播放| videos熟女内射| xxx大片免费视频| 国产主播在线观看一区二区 | 久久女婷五月综合色啪小说| 日本欧美国产在线视频| 亚洲一区二区三区欧美精品| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 亚洲伊人色综图| 成人国产av品久久久| a级毛片黄视频| 久久天躁狠狠躁夜夜2o2o | 99久久精品国产亚洲精品| tube8黄色片| 免费久久久久久久精品成人欧美视频| 亚洲国产精品999| 黄色a级毛片大全视频| 国产一区二区激情短视频 | 波多野结衣av一区二区av| 精品欧美一区二区三区在线| 国产精品久久久人人做人人爽| 久久综合国产亚洲精品| 亚洲成色77777| 亚洲自偷自拍图片 自拍| 国产男女内射视频| 成人国产一区最新在线观看 | 18禁国产床啪视频网站| 欧美精品av麻豆av| 国产精品九九99| av电影中文网址| 欧美精品一区二区大全| 久久精品久久久久久久性| 国产欧美日韩综合在线一区二区| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 亚洲成人国产一区在线观看 | 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 中文字幕人妻熟女乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产视频首页在线观看| 女人久久www免费人成看片| 又黄又粗又硬又大视频| 日韩av在线免费看完整版不卡| 另类精品久久| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 午夜久久久在线观看| 亚洲成人国产一区在线观看 | 国产女主播在线喷水免费视频网站| 亚洲精品成人av观看孕妇| 99香蕉大伊视频| 日本91视频免费播放| 亚洲欧洲日产国产| 亚洲国产日韩一区二区| 一本久久精品| 丝袜人妻中文字幕| 啦啦啦啦在线视频资源| 只有这里有精品99| 亚洲欧美日韩另类电影网站| 在线看a的网站| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 久久久久精品国产欧美久久久 | 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载| 国产在视频线精品| 精品国产一区二区三区久久久樱花| 91精品伊人久久大香线蕉| 亚洲中文av在线| 人人澡人人妻人| 一本一本久久a久久精品综合妖精| 多毛熟女@视频| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 国产在线观看jvid| 爱豆传媒免费全集在线观看| 国产成人系列免费观看| 日韩中文字幕视频在线看片| 91成人精品电影| 可以免费在线观看a视频的电影网站| 国产在线一区二区三区精| 一区二区av电影网| 秋霞在线观看毛片| 叶爱在线成人免费视频播放| 国产精品熟女久久久久浪| 国产精品偷伦视频观看了| 国产成人欧美| 久久精品久久久久久噜噜老黄| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 十八禁网站网址无遮挡| 色播在线永久视频| 1024视频免费在线观看| 久久精品国产a三级三级三级| 美女扒开内裤让男人捅视频| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 丝袜人妻中文字幕| av天堂在线播放| 国产精品三级大全| 成人免费观看视频高清| 下体分泌物呈黄色| 女警被强在线播放| 两个人免费观看高清视频| 久久国产亚洲av麻豆专区| 永久免费av网站大全| 免费在线观看影片大全网站 | 亚洲精品一区蜜桃| 欧美精品av麻豆av| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| bbb黄色大片| 一区二区日韩欧美中文字幕| 免费一级毛片在线播放高清视频 | 男女之事视频高清在线观看 | 日韩av不卡免费在线播放| 男人舔女人的私密视频| www.精华液| 日韩熟女老妇一区二区性免费视频| a 毛片基地| 99热国产这里只有精品6| 精品一品国产午夜福利视频| av在线播放精品| 欧美在线一区亚洲| 91字幕亚洲| 黑人猛操日本美女一级片| 亚洲成色77777| 又紧又爽又黄一区二区| 亚洲av男天堂| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 一区二区三区精品91| 男女午夜视频在线观看| 亚洲av电影在线观看一区二区三区| 国产熟女欧美一区二区| 欧美日韩黄片免| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放| 一边摸一边抽搐一进一出视频| 国产极品粉嫩免费观看在线| 考比视频在线观看| 欧美乱码精品一区二区三区| 大香蕉久久成人网| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线| 欧美另类一区| 精品国产一区二区三区久久久樱花| 丰满饥渴人妻一区二区三| 成人国语在线视频| 捣出白浆h1v1| 亚洲欧美一区二区三区国产| 精品熟女少妇八av免费久了| 久久亚洲精品不卡| 精品国产国语对白av| 久久精品亚洲av国产电影网| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频| 视频在线观看一区二区三区| 免费黄频网站在线观看国产| 久久精品久久精品一区二区三区| 亚洲av欧美aⅴ国产| 亚洲伊人色综图| 久久久久久久久免费视频了| 大型av网站在线播放| 久久人人97超碰香蕉20202| 国产高清国产精品国产三级| 男女之事视频高清在线观看 | 国产黄频视频在线观看| 国产真人三级小视频在线观看| 91精品国产国语对白视频| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产日韩一区二区三区精品不卡| 国产成人精品久久久久久| 亚洲 国产 在线| 亚洲欧洲日产国产| 国产有黄有色有爽视频| 国产高清视频在线播放一区 | 韩国高清视频一区二区三区| 桃花免费在线播放| 国产在线视频一区二区| 亚洲专区国产一区二区| 国产成人欧美在线观看 | 一边摸一边抽搐一进一出视频| 精品国产一区二区久久| 日韩电影二区| 欧美乱码精品一区二区三区| 麻豆国产av国片精品| 亚洲人成网站在线观看播放| 亚洲自偷自拍图片 自拍| 又大又黄又爽视频免费| 国产伦理片在线播放av一区| 亚洲午夜精品一区,二区,三区| 国产成人91sexporn| 久久久久精品人妻al黑| 一级a爱视频在线免费观看| 国产成人欧美在线观看 | 午夜激情av网站| 十分钟在线观看高清视频www|