• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一道高考模擬題的多視角探究

      2021-07-11 02:44:46張志剛
      關(guān)鍵詞:模擬題高考

      張志剛

      [摘? ?要]文章對(duì)一道三角最值問題進(jìn)行多視角討論,以引導(dǎo)學(xué)生深刻剖析題設(shè)條件,敏銳捕捉解題靈感,觸發(fā)思維萌芽,多方位搭建解題思路,從而培育學(xué)生獨(dú)立性、批判性、發(fā)散性等創(chuàng)造性思維品質(zhì).

      [關(guān)鍵詞]高考;模擬題;解法探索

      [中圖分類號(hào)]? ? G633.6? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼]? ? A? ? ? ? [文章編號(hào)]? ? 1674-6058(2021)17-0034-02

      波利亞說:“掌握數(shù)學(xué)就意味著善于解題.”羅增儒教授說:“解題是數(shù)學(xué)工作者數(shù)學(xué)活動(dòng)的基本形式和主要內(nèi)容,解題是數(shù)學(xué)工作者的一個(gè)存在目的,解題是數(shù)學(xué)工作者的一個(gè)興奮中心.”解題的重要性不言而喻.下面筆者通過對(duì)一道三角最值問題的多視角討論,引導(dǎo)學(xué)生深刻剖析題設(shè)條件,敏銳捕捉解題靈感,觸發(fā)思維萌芽,多方位搭建解題思路,從而培育學(xué)生獨(dú)立性、批判性、發(fā)散性等創(chuàng)造性思維品質(zhì),啟發(fā)學(xué)生學(xué)會(huì)解題、善于解題,積累實(shí)戰(zhàn)經(jīng)驗(yàn).

      一、試題呈現(xiàn)

      2019年河南安陽市一模試題:

      [9sin2α+1cos2α]的最小值是().

      A. 18 B. 16 C. 8 D. 6

      二、解法探索

      本題設(shè)計(jì)簡(jiǎn)潔清新,構(gòu)思別具匠心,難度適中,解題角度寬廣,富含數(shù)學(xué)思想,凝聚命題專家的智慧.解答時(shí)可充分挖掘問題與隱含條件的關(guān)系,既可轉(zhuǎn)化為一般函數(shù)最值的常規(guī)解法,又可充分利用三角函數(shù)的性質(zhì)(如有界性),靈活多變,耐人尋味.

      視角1:常數(shù)代換

      解法1:“1”的代換.挖掘隱含條件“[sin2α+cos2α=1]”,進(jìn)行“1”的代換,再用基本不等式求得最值.

      [9sin2α+1cos2α=9sin2α+1cos2αsin2α+cos2α][=9cos2αsin2α+sin2αcos2α+10 ][≥29cos2αsin2α?sin2αcos2α+10=16],當(dāng)[9cos2αsin2α=sin2αcos2α]即[α=±π3+kπk∈Z]時(shí)取等號(hào).故選B.

      解法2:三角函數(shù)的定義法.設(shè)[f(α)=9sin2α+1cos2α],易求得[f(α)]的定義域是[αα≠kπ2, k∈Z].設(shè)[α]的終邊與單位圓的交點(diǎn)是[P(x, y)(xy≠0)],則[x2+y2=1].

      [f(α)=9sin2α+1cos2α=9y2+1x2 ][=9y2+1x2x2+y2 ][=9x2y2+y2x2+10≥29x2y2 · y2x2+10=16],當(dāng)且僅當(dāng)[9x2y2=y2x2]即[x=±12],[y=±32]時(shí)取等號(hào).

      點(diǎn)評(píng):追本溯源,回歸三角函數(shù)的定義:將關(guān)于[sin α與cos α]的最值問題轉(zhuǎn)化為實(shí)數(shù)[x]、[y]的最值問題,達(dá)到簡(jiǎn)化計(jì)算的目的.

      解法3:直接代換.令[a=sin2α],[b=cos2α],則[a+b=1(a>0, b>0)],

      [9sin2α+1cos2α=9a+1b=9a+1b(a+b) ][=9ba+ab+10][ ≥29ba·ab+10=16],當(dāng)[9ba=ab]即[a=34],[b=14]時(shí)取等號(hào).

      點(diǎn)評(píng):上述3種解法均是利用二維形式的基本不等式求解,解題過程中一定要注意三個(gè)條件“一正”“二定”“三相等”是否同時(shí)成立,尤其是驗(yàn)證“=”能否成立,如果“=”不能成立,就不能用基本不等式求解,而需改用其他方法,如單調(diào)性法.

      解法4:柯西不等式法.

      [9sin2α+1cos2α=3sin α2+1cos α2sin2α+cos2α][≥3sin αsin α+1cos αcos α2=16],

      當(dāng)[3sin αcos α=1cos αsin α]即[α=±π3+kπk∈Z] 時(shí)取等號(hào).

      視角2:變?cè)鷵Q

      令[a=sin2α],[b=cos2α],則[a+b=1(a>0, b>0)],

      [9sin2α+1cos2α=9a+1b=9a+11-a=9-8aa(1-a)].

      解法5:函數(shù)單調(diào)性法.令[t=9-8a],由[a∈(0,1)]得[t∈(0,1)],[設(shè)? f(t)=9sin2α+1cos2α=9-8aa(1-a)=64t-t2+10t-9] [=64-t+9t+10],[f(t)]在(1,3)上遞減,在(3,9)上遞增,故[f(t)min=f(3)=16].

      解法6:導(dǎo)數(shù)法.[設(shè) f(a)=9sin2α+1cos2α=9-8aa(1-a)],[a∈(0,1)], [f′(a)=(-4a+3)(2a-3)a2(1-a)2],[a∈(0,1)],

      當(dāng)[a∈0,34]時(shí),[ f′(t)<0],[ f(t)]單調(diào)遞減;

      當(dāng)[a∈34,1]時(shí),[ f′(t)>0],[ f(t)]單調(diào)遞增;

      [f(a)min=f34=16].

      點(diǎn)評(píng):解法5、解法6都是通過消元,將二元函數(shù)轉(zhuǎn)化為[a]的單元函數(shù),不同之處是:解法5是利用函數(shù)單調(diào)性求最值,解法6是借助導(dǎo)數(shù)判定單調(diào)性進(jìn)而求得最值.

      解法7:消元法.[9sin2α+1cos2α=9sin2α+11-sin2α=9-8sin2α-sin4α+sin2α],令[t=9-8sin2α],[t∈(0, 9)],

      [設(shè)? f(t)=9sin2α+1cos2α=9-8aa(1-a)=64 t-t2+10 t-9],下同解法5.

      解法8:消元法.[9sin2α+1cos2α=91-cos 2α2+11+cos 2α2=4(4cos 2α+5)1-cos22α],令[t=4cos 2α+5],由[cos 2α∈(-1,1)]得[t∈(1, 9)],[設(shè) f(t)=9sin2α+1cos2α=4t1-t-542=64t-t2+10t-9],下同解法3.

      點(diǎn)評(píng):解法7、解法8都是直接從三角恒等變換入手,將解析式化為[sin α]或[cos 2α]的函數(shù),沒有進(jìn)行“[a=sin2α],[b=cos2α]”的代換,解法殊途同歸,但運(yùn)算量稍大,對(duì)學(xué)生計(jì)算能力和恒等變化有一定要求.同時(shí)在解法5、解法7、解法8中均遇到了“[一次二次]”型分式函數(shù)值域(最值)問題,處理方法均是對(duì)一次式實(shí)施換元.

      視角3:判別式法

      利用這種方法解題的關(guān)鍵是構(gòu)造關(guān)于某個(gè)變量的二次方程,通過判別式大于等于零求得參數(shù)的最值.

      解法9:判別式反解法.本題中由[sin2α∈(0,1)]得[9sin2α>9,1cos2α>1],從而[9sin2α+1cos2α>10],排除C、D項(xiàng);

      令[a=sin2α],[b=cos2α],則[a+b=1(a>0, b>0)],

      [9sin2α+1cos2α=9a+1b=9a+11-a=9-8aa(1-a)=m],

      則變形為關(guān)于[a]的方程[ma2-(m+8)a+9=0],則該方程有解,當(dāng)[m=0]時(shí),[a=98?(0,1)],不合題意.

      當(dāng)[m≠0]時(shí),[Δ=-(m+8)2-4m×9≥0],解得[m≤4]或[m≥16],

      又由上知[9sin2α+1cos2α>10],故[m≥16],即[9sin2α+1cos2α]的最小值是16,選B.

      視角4:間接法

      解法10:間接排除法.上同解法9排除C、D項(xiàng);令[9sin2α+1cos2α=16](※),即[9sin2α+11-sin2α=16],解得[sin2α=34],即[α=±π3+kπ(k∈Z)]時(shí)取等號(hào).故方程(※)有解,故選B.

      點(diǎn)評(píng):解法9、解法10是間接法,首先利用弦函數(shù)的有界性排除部分選項(xiàng),至于A、B選項(xiàng)的甄選可轉(zhuǎn)為方程的根的問題.

      三、教學(xué)反思

      上述單調(diào)性、基本不等式、導(dǎo)數(shù)、判別式法、換元法等均為解決值域(最值)問題的常見解法.尤其是對(duì)于雙變量最值問題,基本不等式是個(gè)強(qiáng)有力的工具.利用的難點(diǎn)在于充分利用定值條件,對(duì)式子進(jìn)行恒等變形(如“1”的代換、拆分、重組、系數(shù)配湊等),使之可用基本不等式的形式.

      反之,如果教師囿于狹隘的解題觀,就題論題,過分強(qiáng)調(diào)“固定題型固定解法”,則容易導(dǎo)致學(xué)生思維定式,導(dǎo)致解答失敗.

      對(duì)于諸多高考真題和模擬題,教師可充分發(fā)揮其意境高深悠遠(yuǎn)、再生能力強(qiáng)、探究空間大的優(yōu)勢(shì),在完成基礎(chǔ)的解答后,指導(dǎo)學(xué)生立足于問題的本質(zhì),多角度地對(duì)題目進(jìn)行“二次開發(fā)”,啟迪學(xué)生運(yùn)用開放性、創(chuàng)新性的思維方式應(yīng)對(duì)問題情境,綜合運(yùn)用各種方法,提出新視角、新觀點(diǎn)、新設(shè)想,創(chuàng)新性地解決生活實(shí)踐或?qū)W習(xí)探索情境中的各種問題,為數(shù)學(xué)核心素養(yǎng)的落地提供支撐.

      (責(zé)任編輯 黃春香)

      猜你喜歡
      模擬題高考
      2020年高考數(shù)學(xué)模擬題選編(三)
      2020年高考數(shù)學(xué)模擬題選編(四)
      2020年高考數(shù)學(xué)模擬題選編(一)
      短文改錯(cuò)模擬題
      高考物理新動(dòng)向——逆向分析
      透過高考把握《生活中的圓周運(yùn)動(dòng)》 教學(xué)
      考試周刊(2016年76期)2016-10-09 08:16:59
      算錯(cuò)分,英“高考”推遲放榜
      高考模擬題精選之高頻語法題
      郑州市| 柘荣县| 景宁| 瓦房店市| 安吉县| 清镇市| 左云县| 新干县| 修文县| 临高县| 峨眉山市| 昌吉市| 卢龙县| 河东区| 唐山市| 景宁| 临澧县| 溆浦县| 泉州市| 海伦市| 商河县| 万安县| 肥东县| 新巴尔虎右旗| 阿城市| 裕民县| 修文县| 邹平县| 唐海县| 中山市| 灌云县| 乌恰县| 团风县| 南陵县| 贵定县| 张家川| 安龙县| 昆明市| 惠安县| 德兴市| 广南县|