• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?

    2021-06-17 14:00:04楊俊仙
    關(guān)鍵詞:楊俊

    (楊俊仙)

    School of Science,Anhui Agricultural University,Hefei 230036,China

    E-mail:yangjunxian1976@126.com

    Leihong WANG(王雷宏)

    School of Forestry and Landscape Architecture,Anhui Agricultural University,Hefei 230036,China

    E-mail:wangleihong208010@126.com

    Abstract In this paper,dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response is investigated.The model involves the concentrations of uninfected cells,infected cells,free virus,CTL response cells,and antibody antibody response cells.There are three delays in the model:the intracellular delay,virus replication delay and the antibody delay.The basic reproductive number of viral infection,the antibody immune reproductive number,the CTL immune reproductive number,the CTL immune competitive reproductive number and the antibody immune competitive reproductive number are derived.By means of Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions for the stability of each equilibrium is established.The results show that the intracellular delay and virus replication delay do not impact upon the stability of each equilibrium,but when the antibody delay is positive,Hopf bifurcation at the antibody response and the interior equilibrium will exist by using the antibody delay as a bifurcation parameter.Numerical simulations are carried out to justify the analytical results.

    Key words Beddington-DeAngelis incidence;CTL immune response;antibody immune response;delay

    1 Introduction

    As is well known,Human Immunodeficiency Virus(HIV)and Acquired Immune Deficiency Syndrome(AIDS)are a serious threat to human health.The main target of HIV/AIDS is CD4+T cells–which is one type of white blood cell in the human immune system–and it can cause the number of CD4+T cells to decrease greatly.HIV seriously affects the ability of patients to defend opportunistic infections,so the eradication of HIV is the ultimate goal of research groups worldwide.Mathematical models are of great significance in terms of understanding the dynamics of populations in the context of epidemics.Models of virus infection in the host have been widely studied,and have provided insight into the dynamics of viral load in vivo for further research on the progress and control of HIV[1–30].In particular,issues including stability and Hopf bifurcation provide specific information for us to be able to understand disease control.

    It should be pointed out that immune response during the process of viral infection is universal and necessary to eliminate or control the disease.The models which include the adaptive immune response in fighting free viruses and in reducing the number of infected cells have been studied[3–5].This adaptive immunity is represented by Cytotoxic T Lymphocyte(CTL)and antibody immune responses.CTL immune response cells,which attack infected cells,play a critical part in defending against HIV.Hence,viral infection models with CTL immune response cells have received much attention[9–13,16–20,22,26,29,30].Recently,scientists have discovered that some patients produce a potent immune molecule,called a broadly neutralizing antibody,which recognizes many different HIV viruses[14,15].An effective immune system needs both the antibody and CTL immune responses to prevent HIV infection.Thus,the HIV infection model that incorporates both the antibody and CTL immune responses could be a realistic model for describing the dynamics of HIV infection[16–20,29,30].In[16],a basic model with bilinear incidence was proposed to describe the interactions of the antibody and CTL immune responses,and it included uninfected target cells x(t),productively infected cells y(t),free virus v(t),CTL immune response cells z(t)and antibody response cells w(t).It was assumed that the incidence rate is bilinear in the model,namely,that the infection rate per host and per virus is a constant,but experiments have shown that the incident rate is probably not linear over the entire interaction range of susceptible cells x(t)and virus v(t)[6,7,10,19–30].In[22–29],a more general infection rate,the Beddington-DeAngelis incidence ratewas proposed,where a and b are positive constants.In[29],Miao et al.investigated the HIV infection model with a Beddington-DeAngelis functional response and three delays:the intracellular delay,virus replication delay,and immune response delay.They reached the conclusion that the intracellular delay and virus replication delay do not affect the stability of the equilibria,but that the immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In[30],Guo et al.pointed out the antibody delay cannot be ignored in the viral infection model.This raises the question:how will the antibody delay affect the equilibrium of system(1.1)?This will be the focus of our consideration.

    In this paper,we consider a five-dimensional HIV infection model with a Beddington-DeAngelis incidence rate and three time delays describing the intracellular delay,the virus replication delay,and the antibody delay as follows:

    Here,Λ,k,c and g are the proliferation rate of the uninfected cells,the virus,the CTL response cells and the antibody response cells,respectively;β is the infection rate constant;d,r,u,h and α represent the death rate constants of uninfected target cells,productively infected cells,virus,CTL response cells and antibody response cells,respectively;p represents the killing rate of infected cells by CTL response cells;q is the antibody cells neutralization rate;τ1denotes the intracellular delay anddenotes the surviving rate of infected cells during delay period[t?τ1,t];τ2is the virus replication delay,denotes the surviving rate of the virus during the delay period[t?τ2,t],τ3denotes the antibody response delay.

    Let τ=max{τ1,τ2,τ3}and={(x1,x2,x3,x4,x5):xi≥0,i=1,2,3,4,5},C([?τ,0],)denote the space of continuous functions mapping the interval[?τ,0]into.The initial condition for system(1.1)is

    where(φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ))∈C([?τ,0],).It is well known,by the fundamental theory of functional differential equations(see[31]),that system(1.1)has a unique solution(x(t),y(t),v(t),z(t),w(t))satisfying the initial conditions(1.2).

    The organization of this paper is as follows:in the next section,the basic properties of model(1.1)for the boundedness of solutions,the threshold values and the existence of five equilibria are discussed.In Section 3,the threshold conditions on the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1and infection equilibrium E3with only CTL immune responses are stated.When τ3=0,the threshold conditions on the global stability and instability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL immune responses and antibody responses are proved.In Section 4,when τ3>0,the sufficient conditions on the existence of Hopf bifurcation for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses are established.In Section 5,the numerical simulations are carried out to further illustrate the dynamical behaviour of the model.Finally,we will give a discussion.

    2 Preliminaries

    In this section,we discuss the basic properties of model(1.1)for the non-negativity and boundedness of solutions,the threshold values and the existence of five equilibria.

    2.1 Non-negativity and Boundedness of solutions

    Theorem 2.1Let(x(t),y(t),v(t),z(t),w(t))be the solution of model(1.1)satisfying initial conditions(1.2).Then x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).

    ProofFrom(1.1),we know that,for t≥0,

    This implies that

    In a similar way,we obtain that z(t)>0 and w(t)>0.

    Using Lemma 2 from the work of Yang et al.[32],we obtain that y(t)>0 and v(t)>0.

    Next,we establish the boundedness of the solutions of system(1.1).Define

    We have

    Therefore,x(t),y(t),v(t),z(t)and w(t)are nonnegative and bounded on[0,+∞).This completes the proof. □

    2.2 The existence of equilibria

    Clearly,system(1.1)always exists an infection-free equilibrium E0(x0,0,0,0,0),where

    The basic reproductive number of viral infection for model(1.1)is

    where R0denotes the average amount of the free virus released by the infected cells which are infected by the first virus.

    It is easily proved that R0>1 implies>ur(d+aΛ)and k(β+bd)>

    If R0>1,system(1.1)means that there is an immune-free equilibrium E1(x1,y1,v1,0,0),besides the equilibrium E0,where

    Then,we obtain the antibody immune reproductive number R1and the CTL immune reproductive number R2for model(1.1)as follows:

    Here,R1denotes the average number of the antibody immune cells activated by the virus when virus infection is successful and CTL responses have not been established,and R2denotes the average number of the CTL immune cells activated by infected cells when virus infection is successful and antibody immune responses have not been established.

    We know that R1>1 is equivalent to gv1?α>0,and R2>1 is equivalent to cy1?h>0.If R1>1,system(1.1)gives a unique infection equilibrium E2(x2,y2,v2,0,w2)with only antibody responses,where

    and x2is a unique positive zero point of the quadratic function

    Next,we prove that each component of equilibrium E2is positive if R1>1.In fact,from

    it is easy to show that

    Therefore,if R1>1,we have

    Thus,it follows that

    From the expression of ω2,it follows that the existence of equilibrium E2is equivalent to

    Noticing that L(0)<0,we know that the existence and uniqueness of equilibrium E2is equivalent to

    Since

    from R1>1,we have

    Therefore,when R1>1,we obtain

    If R2>1,with system(1.1)there exists a unique infection equilibrium E3(x3,y3,v3,z3,0)with only CTL responses,where

    and x3is a unique positive root of the quadratic function

    Next,we prove that each component of equilibrium E3is positive if R2>1.In fact,from

    it is easy to show that

    Therefore,if R2>1,we have

    Thus,it follows that

    From the expression of z3,it follows that the existence of equilibrium E3is equivalent to

    Noticing that H(0)<0,we know that the existence and uniqueness of equilibrium E3is equivalent to

    Since

    from R2>1,we have

    Therefore,when R2>1,we obtain

    Furthermore,we obtain the CTL immune competitive reproductive number R3and the antibody immune competitive reproductive number R4for model(1.1)as follows:

    Here,R3denotes the average number of the CTL immune cells activated by infected cells under the condition that antibody immune responses have been established,and R4denotes the average number of the antibody immune cells activated by virus under the condition that CTL immune responses have been established.

    If R3>1 and R4>1,system(1.1)gives a unique infection equilibrium E4(x4,y4,v4,z4,w4)with CTL and antibody responses,where

    3 Stability Analysis of Each Equilibrium

    In this section,we discuss the global stability and instability for the infection-free equilibrium E0,immune-free equilibrium E1,and infection equilibrium E3with only CTL immune responses,and when τ3=0,the global stability for the infection equilibrium E2with only antibody responses and infection equilibrium E4with both CTL and antibody responses.

    Let g(x)=x?1?lnx.Clearly,for x∈(0,+∞),g(x)is nonnegative and has the global minimum at x=1 and g(1)=0.

    Theorem 3.1(i)If R0≤1,then the infection-free equilibrium E0(x0,0,0,0,0)is globally asymptotically stable;(ii)If R0>1,then E0(x0,0,0,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V1(t)≥0,and V1(t)=0 if and only if x(t)=x0,y(t)=0,v(t)=0,z(t)=0 and ω(t)=0.

    Then the time derivative of V1(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E0is

    Clearly,equation(3.1)always has three negative real roots:λ1=?d,λ2=?α,λ3=?h.Hence,the stability of E0is determined by the roots of equation

    Let

    If R0>1,it is easy to show that

    Hence,equation(3.2)has at least one positive real root in this case.Therefore,if R0>1,the equilibrium E0is unstable.This completes the proof. □

    Theorem 3.2Let R0>1.

    (i)If R1≤1 and R2≤1,then the immune-free equilibrium E1(x1,y1,v1,0,0)is globally asymptotically stable.

    (ii)If R1>1 or R2>1,then E1(x1,y1,v1,0,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V2(t)≥0,and V2(t)=0 if and only if x(t)=x1,y(t)=y1,v(t)=v1,z(t)=0 and w(t)=0.

    Then the time derivative of V2(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E1is

    where

    Let

    When R2>1,then we have h?cy1<0.Hence,f3(λ)=0 has one positive root λ?=cy1?h.

    Therefore,when R1>1 or R2>1,E1is unstable.This completes the proof. □

    Theorem 3.3Let R0>1 and R1>1.

    (i)If R3≤1 and τ3=0,then the antibody response equilibrium E2(x2,y2,v2,0,w2)is globally asymptotically stable.

    (ii)If R3>1,then E2(x2,y2,v2,0,w2)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V3(t)≥0,and V3(t)=0 if and only if x(t)=x2,y(t)=y2,v(t)=v2,z(t)=0 and ω(t)=ω2.

    Then the time derivative of V3(t)along system(1.1)satisfies

    Note that

    which yields w(t)=w2.From LaSalle’s invariance principle[31],we have that E2is globally asymptotically stable when R0>1,R1>1,R3≤1 and τ3=0.(ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    where

    Let

    When R3>1,then we have f2(0)=h?cy2<0,and=+∞.Hence,f2(λ)=0 has at least one positive root.

    Therefore,when R3>1,E2is unstable.This completes the proof. □

    Theorem 3.4Let R0>1 and R2>1.

    (i)If R4≤1,then the CTL immune response equilibrium E3(x3,y3,v3,z3,0)is globally asymptotically stable.

    (ii)If R4>1,then E3(x3,y3,v3,z3,0)is unstable.

    Proof(i)Define a Lyapunov function

    Clearly,V4(t)≥0,and V4(t)=0 if and only if x(t)=x3,y(t)=y3,v(t)=v3,z(t)=z3and ω(t)=0.

    Then the time derivative of V4(t)along system(1.1)satisfies

    Note that

    (ii)The characteristic equation of the linearized system of model(1.1)at the equilibrium E3is

    Therefore,when R4>1,E3is unstable.This completes the proof. □

    Theorem 3.5If R0>1,R2>1,R3>1,R4>1 and τ3=0,the interior equilibrium E4(x4,y4,v4,z4,w4)is globally asymptotically stable.

    ProofDefine a Lyapunov function

    Clearly,V5(t)≥0,and V5(t)=0 if and only if x(t)=x4,y(t)=y4,v(t)=v4,z(t)=z4and ω(t)=ω4.

    Then the time derivative of V5(t)along system(1.1)satisfies

    Note that

    which yields z(t)=z4,w(t)=w4.From LaSalle’s invariance principle[31],we have that E4is globally asymptotically stable when R0>1,R2>1,R3>1,R4>1 and τ3=0.This completes the proof. □

    4 Hopf Bifurcation Analysis of E2 and E4

    4.1 Hopf bifurcation analysis of E2

    By Theorem 3.3,we obtain the globally asymptotic stability of the equilibrium E2when τ1≥0,τ2≥0,τ3=0.However,when τ3>0,Hope bifurcation occurs at the equilibrium E2.When τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0 in the discussions that follow.

    From(3.4),the characteristic equation of the linearized system of model(1.1)at the equilibrium E2is

    Letting λ=iω(ω>0)be a solution of equation(4.1),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.2),we obtain that

    where

    Letting ξ=ω2,equation(4.3)becomes

    In what follows,some lemmas will be given to establish the existence of positive roots of equation(4.4).

    Lemma 4.1If e0<0,then equation(4.4)has at least one positive root.

    ProofDenote

    Next,we will discuss the distribution of positive roots of equation(4.4)when e0≥0.The derivative of F(ξ)with respect to ξ is

    Lemma 4.2Suppose that e0≥0 and b?1=0.Then

    (i)if Δ0<0,then equation(4.4)has no positive real roots;

    (ii)if Δ0≥0,a?1≥0 and c?1>0,then equation(4.4)has no positive real roots;

    (iii)if(i)and(ii)are not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0.

    Denote

    (i)if Δ2<0 and Δ3<0,then equation(4.4)has no positive real roots;

    (ii)if(i)is not satisfied,then equation(4.4)has positive real roots if and only if there exists at least one ξ?∈{ξ1,ξ2,ξ3,ξ4}such that ξ?>0 and F(ξ?)≤0,where ξi=(i=1,2,3,4),and

    Suppose that equation(4.4)has positive roots.Without loss of generality,we assume that it has m(1≤m≤5)positive roots,denoted by ξk,k=1,2,...,m.Then equation(4.3)has m positive roots ωk=k=1,2,...,m.

    From equation(4.2),we have

    Thus,if we denote

    From equation(4.3),we get

    By equation(4.5),we have

    Therefore,

    This completes the proof. □

    Summing up the above lemmas and the Hopf bifurcation theorem for functional differential equation[33],we get the following conclusion:

    Theorem 4.6Let ξ0and ω0,τ0be defined by equation(4.9).

    4.2 Hopf bifurcation analysis of E4

    By Theorem 3.5,we obtain the globally asymptotic stability of the equilibrium E4when R0>1,R2>1,R3>1,R4>1 and τ3=0.From the theoretical analysis that follows,we will see that Hopf bifurcation occurs at the equilibrium E4when τ3>0.However,when τ1>0,τ2>0,the calculation is too complicated.Hence,in order to simplify the calculation,we also let τ1=0,τ2=0,τ3>0 in the ensuing discussions.

    The characteristic equation of the linearized system of model(1.1)at the equilibrium E4is

    Letting λ=iω(ω>0)be a solution of equation(4.10),separating real and imaginary parts,it follows that

    Squaring and adding the two equations of(4.11),we obtain that

    where

    Letting ξ=ω2,equation(4.12)becomes

    The derivative of H(ξ)with respect to ξ is

    Denote

    Applying the same method as Theorem 4.6,we have the following result:

    Theorem 4.7Let ξ0and ω0,τ0be defined by equation(4.9).

    5 Numerical Simulations

    In Theorems 4.6 and 4.7,by using the theory of bifurcation,we have gather the existence of the Hopf bifurcation at equilibria E2and E4when τ1=0,τ2=0,τ3>0.However,when τ1>0,τ2>0,τ3>0,the theoretical analysis is very complicated.Thus,in what follows,by the numerical simulations it is shown that the Hopf bifurcation and stability switches occur at E2and E4as τ3increases.

    Example 5.1In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.8,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.01,h=0.8,a=0.02,β=0.5,α=1,τ1=10,τ2=0.2.

    By direct calculation,we obtain that E2(64.4132,10.5819,0.6667,0,6.0365),and R1=22.5403>1,R3=0.1323<1.From Figure 1 to Figure 4,with the increase of τ3,the dynamic behavior of the equilibrium E2will change;that is,Hopf bifurcation appears.

    Figure 1 When τ3=0.1,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Figure 2 When τ3=1.5,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 3 When τ3=8.95,infection equilibrium E2 with only the antibody response of system(1.1)is locally asymptotically stable

    Example 5.2In system(1.1),we choose a set of parameters as follows:

    Λ=10,d=0.01,r=0.5,p=1,b=0.01,k=0.4,u=0.3,q=1,g=1.5,m=0.01,n=0.01,c=0.1,h=0.15,a=0.02,β=0.5,α=1,τ1=1,τ2=4.

    By direct calculation,we obtain that E4(64.4132,1.5,0.6667,5.6752,0.5647),and R1=37.2577>1,R3=12.2275>1,R4=2.8537>1.From Figure 5 to Figure 8,with the increase of τ3,the dynamic behavior of the equilibrium E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Figure 4 When τ3=10,infection equilibrium E2 with only the antibody response of system(1.1)is unstable

    Figure 5 When τ3=0.001,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 6 When τ3=2,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    Figure 7 When τ3=22.7,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is locally asymptotically stable

    Figure 8 When τ3=30,the infection equilibrium E4,with both the antibody and CTL responses of system(1.1),is unstable

    6 Discussion

    In this paper,a delayed viral infection model with CTL immune response and antibody immune response have been considered,along with three delays:the intracellular delay,virus replication delay and the antibody delay.We assumed that the production of CTL immune response depends on the infected cells and CTL cells,and the production of antibody response depends on the virus and antibody cells.

    In Section 2,we presented that the solutions of model(1.1)are bounded,and showed that this model exists with five possible equilibria:an infection-free equilibrium E0,an immune-free equilibrium E1,an infection equilibrium E2with only antibody response,an infection equilibrium E3with only CTL response,and an infection equilibrium E4with both CTL and antibody responses,depending on the threshold values.In this paper,we have presented five threshold values:the basic reproductive rate of viral infection R0,the antibody immune reproductive rate R1,the CTL immune reproductive rate R2,the CTL immune competitive reproductive rate R3,and the antibody immune competitive reproductive rate R4.These determine not only the existence of the equilibrium point,but also the dynamic behavior of the model.

    In Section 3,the results have shown that when R0≤1,E0is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the viruses are cleared,and CTL immunity and antibody immunity are not active.Moreover,we found that R0can be reduced by increasing the delay τ1and τ2;that is,we can reduce the average amount of viral infection.When R0>1,R1≤1 and R2≤1,E1is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic but with no persistent CTL immune responses and antibody responses.When R0>1,R2>1,and R4≤1,E3is globally asymptotically stable for any time delay τ1,τ2,τ3≥0,which means that the infection becomes chronic with persistent CTL immune responses,but the virus loads cannot activate the antibody responses.The above results show that delays τ1,τ2,and τ3do not impact the global asymptotic properties of E0,E1,E3,and therefore the possibility of Hopf bifurcation is ruled out.With respect to the analysis of E2,E4,we considered special cases τ1≥0,τ2≥0,and τ3=0.When R0>1,R1>1,and R3≤1,E2is globally asymptotically stable,which means that the infection becomes chronic with persistent antibody responses,but the infected cells cannot stimulate and activate CTL immune responses.When R0>1,R2>1,R3>1,and R4>1,E4is globally asymptotically stable,that is,uninfected target cells,infected cells,free virus,CTL response cells and antibody response cells coexist in vivo.From the above results,we see that delays τ1,τ2do not impact upon the global asymptotic properties of E2,E4,but the antibody delay τ3can impact upon the stability of E2,E4.

    In Section 4,by using the bifurcation theory,a detailed analysis on the local asymptotic stability and the existence of Hopf bifurcation at the equilibrium point E2and E4was carried out when τ3>0.When τ1>0,τ2>0,the calculation proved to be too complicated.Hence,in order to simplify the calculation,we let τ1=0,τ2=0,τ3>0.In Section 5,by means of numerical simulations,it was shown that Hopf bifurcation occurs at the equilibrium points E2and E4as the antibody delay τ3increases.From Figures 1 to 8,as τ3increases,we saw that the dynamic behavior of E2and E4will change as follows:locally asymptotically stable→unstable→locally asymptotically stable→unstable;that is,Hopf bifurcation appears.

    Summarizing these results,we point out that the intracellular delay τ1and virus replication delay τ2do not impact the stability of all the equilibria,but the antibody delay τ3markedly affects the stability of the antibody response equilibrium E2and the interior equilibrium E4.This indicates that the antibody delay τ3plays a negative part in the diseases prevalence and control.In this paper,we have extended the conclusions of the model in[30]with a saturation incidence rate to a Beddington-DeAngelis infection rate,and have successfully completed the questions raised by Miao[29].We also point out the essential difference between our results and the results in[29],by which our work was motivated.In[29],CTL immune delay was considered,and the conclusion was that immune response delay markedly affects the stability of CTL response equilibrium and the interior equilibrium.In our model,however,the antibody delay was discussed,which is precisely the question raised in[29],but not studied,and a different conclusion has been drawn:the antibody delay markedly affects the stability of the antibody response equilibrium and the interior equilibrium.

    猜你喜歡
    楊俊
    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    Topological resonators based on hexagonal-star valley photonic crystals
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica*
    執(zhí)著
    詩(shī)潮(2019年11期)2019-11-23 12:20:12
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    追愛(ài)五十天,這是浪漫的開(kāi)始嗎?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    日韩成人在线观看一区二区三区| 一级片免费观看大全| 色在线成人网| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看十八禁软件| 狠狠婷婷综合久久久久久88av| 亚洲,欧美精品.| 亚洲伊人色综图| 99国产极品粉嫩在线观看| 国产无遮挡羞羞视频在线观看| 热re99久久精品国产66热6| 欧美国产精品va在线观看不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国产一级毛片高清牌| 视频在线观看一区二区三区| 99国产精品一区二区蜜桃av | 久久人妻福利社区极品人妻图片| 国产男女超爽视频在线观看| 国产午夜精品久久久久久| 大香蕉久久网| 国产伦理片在线播放av一区| 欧美变态另类bdsm刘玥| 亚洲成av片中文字幕在线观看| 国产xxxxx性猛交| 精品亚洲乱码少妇综合久久| 国产在线一区二区三区精| 成人国产一区最新在线观看| 韩国精品一区二区三区| 免费看a级黄色片| av天堂在线播放| 亚洲专区字幕在线| 国产精品久久久久成人av| 国产精品一区二区免费欧美| 国产aⅴ精品一区二区三区波| 亚洲国产中文字幕在线视频| av又黄又爽大尺度在线免费看| 欧美日韩视频精品一区| 香蕉国产在线看| av福利片在线| 视频区图区小说| 别揉我奶头~嗯~啊~动态视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品久久久久久毛片777| 欧美日韩视频精品一区| 操出白浆在线播放| 18禁黄网站禁片午夜丰满| 亚洲精品国产精品久久久不卡| 日韩视频在线欧美| 久久久久久久国产电影| 老司机亚洲免费影院| 欧美乱码精品一区二区三区| 五月天丁香电影| 亚洲va日本ⅴa欧美va伊人久久| 一本大道久久a久久精品| 在线 av 中文字幕| 一级a爱视频在线免费观看| 日日爽夜夜爽网站| av又黄又爽大尺度在线免费看| 搡老乐熟女国产| 国产男女内射视频| 中文字幕最新亚洲高清| 99国产精品99久久久久| 我要看黄色一级片免费的| 国产在视频线精品| av网站在线播放免费| 久久影院123| 欧美黄色淫秽网站| 日本vs欧美在线观看视频| 成人国语在线视频| 国产激情久久老熟女| 久久久久精品国产欧美久久久| 法律面前人人平等表现在哪些方面| 久久国产精品人妻蜜桃| 国产99久久九九免费精品| 一区二区三区乱码不卡18| 老熟妇乱子伦视频在线观看| 国产精品国产高清国产av | 亚洲色图av天堂| 日韩一区二区三区影片| 三上悠亚av全集在线观看| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 美女午夜性视频免费| 日韩欧美一区二区三区在线观看 | 一本大道久久a久久精品| 老熟妇乱子伦视频在线观看| 国产亚洲一区二区精品| 999久久久精品免费观看国产| 三上悠亚av全集在线观看| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免费看| 亚洲精品一二三| 国产一区二区激情短视频| 狠狠狠狠99中文字幕| 亚洲一码二码三码区别大吗| 叶爱在线成人免费视频播放| 亚洲久久久国产精品| 国产一卡二卡三卡精品| 亚洲成av片中文字幕在线观看| 99精国产麻豆久久婷婷| 视频在线观看一区二区三区| 黄色片一级片一级黄色片| 在线av久久热| 高清在线国产一区| av网站在线播放免费| 精品少妇久久久久久888优播| 成人永久免费在线观看视频 | 国产免费现黄频在线看| 国产有黄有色有爽视频| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 一进一出抽搐动态| av片东京热男人的天堂| 国产高清国产精品国产三级| 一区二区三区国产精品乱码| 国产精品久久久久成人av| 亚洲欧美激情在线| 人人妻,人人澡人人爽秒播| 1024香蕉在线观看| 亚洲男人天堂网一区| 国产av精品麻豆| 精品免费久久久久久久清纯 | 久久精品91无色码中文字幕| 国产欧美日韩一区二区精品| 久久久久久亚洲精品国产蜜桃av| 精品午夜福利视频在线观看一区 | 老熟妇乱子伦视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产男靠女视频免费网站| 欧美激情 高清一区二区三区| 性高湖久久久久久久久免费观看| 肉色欧美久久久久久久蜜桃| 国产成人精品久久二区二区91| 欧美精品人与动牲交sv欧美| 热99re8久久精品国产| 在线播放国产精品三级| 啦啦啦在线免费观看视频4| 亚洲自偷自拍图片 自拍| 国产精品免费视频内射| 嫩草影视91久久| 欧美精品高潮呻吟av久久| 亚洲av美国av| 国产伦人伦偷精品视频| 欧美日韩视频精品一区| 法律面前人人平等表现在哪些方面| 50天的宝宝边吃奶边哭怎么回事| 黑人操中国人逼视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区中文字幕在线| 国产精品影院久久| 精品国产一区二区三区四区第35| 宅男免费午夜| 亚洲一码二码三码区别大吗| 午夜精品久久久久久毛片777| 1024视频免费在线观看| 久久久久久久久久久久大奶| 亚洲色图 男人天堂 中文字幕| 亚洲第一欧美日韩一区二区三区 | 女警被强在线播放| 日韩大码丰满熟妇| 久久久精品国产亚洲av高清涩受| 久久久久视频综合| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| netflix在线观看网站| 一边摸一边做爽爽视频免费| 欧美日韩精品网址| 好男人电影高清在线观看| 宅男免费午夜| 成在线人永久免费视频| 中亚洲国语对白在线视频| 色婷婷av一区二区三区视频| 国产在线精品亚洲第一网站| 一边摸一边抽搐一进一出视频| 成人av一区二区三区在线看| 日韩 欧美 亚洲 中文字幕| 精品人妻1区二区| 极品少妇高潮喷水抽搐| 成年动漫av网址| 黑丝袜美女国产一区| 高清毛片免费观看视频网站 | 多毛熟女@视频| 国产免费视频播放在线视频| 成年版毛片免费区| 成年版毛片免费区| 男女高潮啪啪啪动态图| 伦理电影免费视频| 丁香六月欧美| 97人妻天天添夜夜摸| 久久精品国产a三级三级三级| 欧美黄色片欧美黄色片| 交换朋友夫妻互换小说| 在线观看免费午夜福利视频| 制服人妻中文乱码| 在线播放国产精品三级| 一本久久精品| 亚洲国产成人一精品久久久| h视频一区二区三区| 岛国毛片在线播放| 成人手机av| 免费观看a级毛片全部| 色尼玛亚洲综合影院| 国产在视频线精品| 黄色 视频免费看| 久久久精品免费免费高清| 国产男女超爽视频在线观看| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 国产精品久久久久久精品电影小说| 人人妻,人人澡人人爽秒播| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 亚洲天堂av无毛| 伦理电影免费视频| 中文字幕高清在线视频| 中文亚洲av片在线观看爽 | 久久久久久久大尺度免费视频| 国产男靠女视频免费网站| 成年人免费黄色播放视频| 亚洲五月婷婷丁香| 少妇的丰满在线观看| 亚洲av成人一区二区三| 每晚都被弄得嗷嗷叫到高潮| 91麻豆精品激情在线观看国产 | 亚洲精品国产区一区二| 午夜福利欧美成人| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码| 我的亚洲天堂| 黄色视频在线播放观看不卡| 久久久国产欧美日韩av| 亚洲精品粉嫩美女一区| 欧美日韩成人在线一区二区| 欧美成人免费av一区二区三区 | 国产成人欧美在线观看 | 色综合婷婷激情| 一级a爱视频在线免费观看| 日韩成人在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 一二三四在线观看免费中文在| 亚洲国产看品久久| 久久精品国产亚洲av高清一级| 三级毛片av免费| 50天的宝宝边吃奶边哭怎么回事| a级毛片黄视频| 日韩视频在线欧美| 51午夜福利影视在线观看| 久久这里只有精品19| 中文字幕高清在线视频| 久久久久久久国产电影| 国产精品免费一区二区三区在线 | 99re在线观看精品视频| 午夜福利免费观看在线| 男人操女人黄网站| 9色porny在线观看| 一级黄色大片毛片| 久久精品国产亚洲av香蕉五月 | 久久99一区二区三区| 精品一区二区三区四区五区乱码| 免费一级毛片在线播放高清视频 | 国产精品影院久久| 国产欧美日韩精品亚洲av| 成人手机av| 两个人看的免费小视频| 亚洲午夜精品一区,二区,三区| 日本欧美视频一区| 中文字幕人妻丝袜制服| 国产单亲对白刺激| 一本久久精品| 成人国产一区最新在线观看| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看av| 一区二区三区乱码不卡18| 在线观看人妻少妇| 国产成人精品无人区| 精品第一国产精品| 天堂俺去俺来也www色官网| 国产主播在线观看一区二区| 1024视频免费在线观看| 久久久国产一区二区| 色老头精品视频在线观看| 美女午夜性视频免费| 精品福利永久在线观看| 亚洲精品乱久久久久久| 天天躁日日躁夜夜躁夜夜| tube8黄色片| 日韩欧美免费精品| 最新在线观看一区二区三区| 又黄又粗又硬又大视频| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻人人澡人人爽人人夜夜| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 精品亚洲成国产av| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 大香蕉久久网| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 少妇精品久久久久久久| 亚洲精品中文字幕一二三四区 | 超碰97精品在线观看| 欧美激情 高清一区二区三区| 亚洲精品在线美女| 日韩成人在线观看一区二区三区| 日本a在线网址| 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| kizo精华| 久久午夜亚洲精品久久| 最新美女视频免费是黄的| 一级黄色大片毛片| 亚洲,欧美精品.| 一区二区三区精品91| 一级毛片女人18水好多| 国产精品影院久久| 男女免费视频国产| 国产男女内射视频| 亚洲欧美激情在线| 欧美激情极品国产一区二区三区| bbb黄色大片| 国产亚洲精品一区二区www | 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 一边摸一边抽搐一进一出视频| 亚洲av美国av| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 韩国精品一区二区三区| 亚洲七黄色美女视频| 正在播放国产对白刺激| 亚洲全国av大片| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 九色亚洲精品在线播放| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 水蜜桃什么品种好| 欧美日韩黄片免| 日韩视频一区二区在线观看| 少妇的丰满在线观看| 亚洲专区国产一区二区| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久小说| 成人永久免费在线观看视频 | 桃花免费在线播放| 水蜜桃什么品种好| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 久久亚洲精品不卡| 制服诱惑二区| 丝袜美足系列| 在线观看一区二区三区激情| 人成视频在线观看免费观看| 日本av免费视频播放| 黄频高清免费视频| 激情在线观看视频在线高清 | 不卡av一区二区三区| 飞空精品影院首页| 久久狼人影院| 一个人免费看片子| 男女免费视频国产| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 在线观看一区二区三区激情| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 少妇 在线观看| 亚洲成人免费av在线播放| 黄频高清免费视频| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 久久中文字幕人妻熟女| 大片电影免费在线观看免费| 国产视频一区二区在线看| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 十八禁网站免费在线| 日韩一卡2卡3卡4卡2021年| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 女人久久www免费人成看片| 777米奇影视久久| 一边摸一边做爽爽视频免费| 亚洲九九香蕉| 欧美国产精品一级二级三级| 午夜视频精品福利| 亚洲七黄色美女视频| 淫妇啪啪啪对白视频| 午夜福利视频在线观看免费| 男女边摸边吃奶| 国产免费视频播放在线视频| 久热这里只有精品99| 成人亚洲精品一区在线观看| 中文字幕色久视频| 亚洲中文字幕日韩| 天天添夜夜摸| 久久人人爽av亚洲精品天堂| 波多野结衣av一区二区av| 久久午夜亚洲精品久久| 窝窝影院91人妻| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 99热国产这里只有精品6| 亚洲欧美一区二区三区久久| 亚洲 欧美一区二区三区| av电影中文网址| 亚洲伊人色综图| 久久精品91无色码中文字幕| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 亚洲男人天堂网一区| 亚洲成国产人片在线观看| 欧美日韩黄片免| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 国产不卡一卡二| 午夜老司机福利片| 又紧又爽又黄一区二区| 狠狠婷婷综合久久久久久88av| 制服人妻中文乱码| 精品亚洲成国产av| 美女主播在线视频| 下体分泌物呈黄色| 成在线人永久免费视频| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 日本wwww免费看| 不卡一级毛片| 欧美在线一区亚洲| 女人爽到高潮嗷嗷叫在线视频| 国产精品二区激情视频| 亚洲国产欧美在线一区| 久久久久久久国产电影| 亚洲av国产av综合av卡| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久av网站| 久久久精品94久久精品| 精品亚洲成国产av| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 精品免费久久久久久久清纯 | 久久青草综合色| 日韩欧美一区二区三区在线观看 | 一级,二级,三级黄色视频| 一本久久精品| 国产在线免费精品| 丰满迷人的少妇在线观看| 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产区一区二| 一级,二级,三级黄色视频| 国产成+人综合+亚洲专区| 亚洲男人天堂网一区| 一级毛片电影观看| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩一区二区三区在线| 又大又爽又粗| 亚洲一区中文字幕在线| 俄罗斯特黄特色一大片| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看| 久久久国产一区二区| 在线观看人妻少妇| 视频区图区小说| 在线亚洲精品国产二区图片欧美| 免费人妻精品一区二区三区视频| 久久久久网色| 国产有黄有色有爽视频| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 久久热在线av| h视频一区二区三区| 色综合欧美亚洲国产小说| 丝袜喷水一区| 三级毛片av免费| 亚洲国产成人一精品久久久| 久久九九热精品免费| 建设人人有责人人尽责人人享有的| 1024视频免费在线观看| 国产精品久久久久久精品电影小说| 国产亚洲精品久久久久5区| 丁香六月欧美| 午夜福利,免费看| av一本久久久久| 午夜福利乱码中文字幕| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 亚洲一区中文字幕在线| 国产精品二区激情视频| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 老司机靠b影院| 免费观看av网站的网址| 黄片播放在线免费| 欧美变态另类bdsm刘玥| 最黄视频免费看| 亚洲色图av天堂| 亚洲av日韩在线播放| 亚洲专区字幕在线| 亚洲九九香蕉| 精品久久久精品久久久| 国产精品自产拍在线观看55亚洲 | 真人做人爱边吃奶动态| 亚洲熟妇熟女久久| 少妇粗大呻吟视频| 久久久国产成人免费| 飞空精品影院首页| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 久久亚洲真实| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av | 老司机深夜福利视频在线观看| 成在线人永久免费视频| 在线观看免费高清a一片| 精品少妇黑人巨大在线播放| 欧美大码av| 18禁国产床啪视频网站| 欧美精品av麻豆av| 午夜福利,免费看| 人人澡人人妻人| 欧美午夜高清在线| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 乱人伦中国视频| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 欧美乱妇无乱码| 免费在线观看影片大全网站| 69精品国产乱码久久久| 国产一区二区三区视频了| 一区在线观看完整版| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区| 亚洲 欧美一区二区三区| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 日本黄色日本黄色录像| 精品国产乱子伦一区二区三区| 精品乱码久久久久久99久播| 国产激情久久老熟女| 一进一出好大好爽视频| 91麻豆av在线| 天天影视国产精品| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月 | 中文字幕人妻丝袜一区二区| 亚洲情色 制服丝袜| 十八禁网站免费在线| 啦啦啦视频在线资源免费观看| 午夜福利免费观看在线| 国产亚洲精品一区二区www | 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 这个男人来自地球电影免费观看| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 精品午夜福利视频在线观看一区 | 亚洲专区国产一区二区| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 欧美日韩黄片免| 国产极品粉嫩免费观看在线| 亚洲精品在线观看二区| 国产单亲对白刺激| 日韩精品免费视频一区二区三区| 黄色丝袜av网址大全| 国产精品二区激情视频| 啦啦啦在线免费观看视频4| 精品国产一区二区三区久久久樱花| 香蕉久久夜色| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 99精品久久久久人妻精品| 国产在线一区二区三区精| 18禁黄网站禁片午夜丰满| 丁香六月天网| 亚洲精品国产一区二区精华液| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频| 日本a在线网址| 亚洲专区国产一区二区| 波多野结衣一区麻豆| 精品亚洲乱码少妇综合久久| 精品欧美一区二区三区在线|