• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring topological corner states in photonic crystals by near-and far-field coupling effects

    2023-12-15 11:47:54ZhaoJianZhang張兆健ZhiHaoLan蘭智豪HuanChen陳歡YangYu于洋andJunBoYang楊俊波
    Chinese Physics B 2023年12期
    關(guān)鍵詞:于洋楊俊

    Zhao-Jian Zhang(張兆健), Zhi-Hao Lan(蘭智豪), Huan Chen(陳歡),Yang Yu(于洋), and Jun-Bo Yang(楊俊波),?

    1Department of Physics,National University of Defense Technology,Changsha 410073,China

    2Center of Material Science,National University of Defense Technology,Changsha 410073,China

    3Department of Electronic and Electrical Engineering,University College London,London WC1E 7JE,United Kingdom

    Keywords: topological corner states,photonic crystal slabs,optical coupling effects,surface lattice resonances

    1.Introduction

    With the advent of the intersection between topology and photonics, the research of topological photonics has offered new approaches to understanding and manipulating the behavior of light in micro-nano structures.[1,2]Over the past decade,a variety of platforms have been established to realize topological photonics, including photonic crystals (PhCs), metamaterials,and waveguide lattices.[3-5]Among these platforms,topological PhCs have received significant attention due to the straightforward analogue to solid state systems and the feasibility of on-chip integrated optical systems.[6]For example,topological valley-dependent edge states were introduced into PhC hole slabs to realize electromagnetic wave propagation with backscattering suppression,which could be applied to robust data transmission in the telecommunication and terahertz bands,[7-9]and even to quantum information processing.[10]Besides,higher-order topological insulators were further proposed recently,[11]where two-dimensional(2D)second-order topological insulators(SOTIs)could support localized corner states and serve as optical nanocavities with high quality (Q)factors in PhCs.[12,13]On this basis,several topological applications have been implemented,such as topological lasing and strong coupling.[14,15]

    Meanwhile, metasurfaces, the 2D counterparts of metamaterials,were also introduced into topological photonics.[16]One example was the topological metasurface based on patterned graphene, which can support edge plasmons that enhance the four-wave mixing nonlinear process.[17]Plasmonic metal metasurfaces could also be used for electrically active control of topological microwave transport.[18]Especially, it is natural to pay more attention to the optical coupling effect between topological states, since it is one of the most important features occurring in metasurfaces.Through arranging meta-atoms periodically, it was inevitable to include optical evanescent coupling between adjacent meta-atoms,which will regulate optical properties of resonances supported on metaatoms.[19]On the other hand, diffractively far-field coupling could also exist in metasurfaces, leading to surface lattice resonance (SLR) with spectral narrowing.[20]Recent studies have investigated by using coupling effects to tailor the optical properties of photonic topological states through periodically arranging PhC supercells like metasurfaces, namely,PhC supercell arrays,where each supercell is SOTI.[21,22]Interestingly, these corner states exhibit exotic characteristics such as nondegenerate eigenfrequencies and collective behaviors,caused by near-field coupling.Moreover,such arrays provide a versatile platform for studying the topological lightmatter interaction,[23]having potential applications in largearea topological photonic devices.However, these studies have involved only PhC hole slabs so far, where another typical PhC slab, the rod slab, is still missing.In addition, the influence of far-field coupling in corner states has remained unclear up to now.

    In this work, we extend the theoretical investigation of coupled corner states in supercell arrays to PhC rod slab frameworks.Following 2D Su-Schrieffer-Heeger (SSH)model,we construct SOTIs by surrounding topologically nontrivial unit cells with trivial ones,which are then arranged periodically to form the supercell array.This results in the coupling of multipole corner states in neighboring SOTIs, which are located above the light line and accessible to external excitation.Our eigenmode analysis demonstrates that there are three types of coupled corner states with nondegenerate eigenfrequencies atΓpoint,while full-wave simulation reveals that coupled dipole corner states can be excited as resonances with polarization insensitivity.We further illustrate that the resonant wavelength andQfactor of the coupled corner state can be effectively tuned through the adjustment of inter-and intrasupercell near-field coupling.In addition, our multipole decomposition calculation reveals the electric quadrupole (EQ)and magnetic dipole (MD) nature of coupled corner states,which distinguish them from those supported in supercell arrays based on PhC hole slab structures.Finally,we observe a sharp increase inQfactor and a unique spectral profile as the resonant wavelength of the coupled corner states approaches to the Rayleigh anomaly(RA)position via increasing the surrounding refractive index(SRI),suggesting the emergence of SLRs induced by far-field coupling.This work introduces more optical means for the customization of corner states in PhCs,and has the potential to be applied to mid-infrared topological lasers,sensors,and detectors.

    2.Structure and method

    Figure 1(a) shows the geometrical configuration of the topological supercell array.It includes periodically arranged supercells based on PhC rod slab structures surrounded by air, and each supercell is an SOTI,[24]consisting of a square topological nontrivial region(highlighted in blue)surrounded with a trivial region(highlighted in green).The trivial region and nontrivial region are composed of trivial/nontrivial unit cells with four compact dielectric rod and expanded dielectric rods, whose lattice constanta=2.03μm, heighth=2a,and permittivityε=16(corresponding to germanium in midinfrared[25]).Additionally,mandnrepresent the number of rows of trivial unit cells between neighboring nontrivial regions, and the number of rows of nontrivial unit cells within one supercell, respectively, thus the period of the supercellP=a(m+n).By varyingmorn, we can separately tune the evanescently optical interaction between corner states located in adjacent supercells or the same supercell respectively,namely, the inter-supercell coupling and intra-supercell coupling respectively.

    In Fig.1(b), we present the first three photonic bands of trivial unit cell and nontrivial unit cells,which is calculated via plane-wave expansion(PWE)method.Here,we only consider transverse magnetic (TM) modes below the light line since rods favor TM band gaps.[5]It is shown that the two unit cells possess identical band structures, and there exists a band gap between the first band and the second band.The topological properties of the two unit cells can be distinguished by 2D Zak phaseθ=(θx,θy),which is determined by the field parity atΓandX(Y)points as[26]

    Here,XαisXorYpoint forα=xory,respectively,ηdenotes the parity of field at high-symmetry point with respect to the middle plane atα=a/2,andiruns over all the bands below the gap,which only involves the first band in this case.Owing toC4symmetry of the unit cell, we also haveθx=θy.For trivial unit cell,we find that its fields of the first band possess even parity at bothΓpoint andXpoint as indicated by symbol+in green in Fig.1(b),thus it possesses 2D Zak phase(0,0),namely, a topologically trivial phase.For nontrivial unit cell,it has nontrivial 2D Zak phase(π,π)since its parity atXpoint becomes odd as indicated by symbol- in blue in Fig.1(b).Such a parity reversal is attributed to the band inversion between the first two bands during the topological phase transition process.[21]

    3.Results and discussion

    Then we turn to the investigation of the supercell array withm=2 andn=3 as given in Fig.1(a).Since we only consider the case of normal incidence in this work,the eigenmodes of the periodic supercells atΓpoint are calculated,and the results are shown in Fig.1(c).It is shown that there are six coupled edge states and four coupled corner states within the band gap of the unit cell,and we focus on the latter.Their field distributions of theEzcomponent, determined in thexyplane of the supercell at the middle of the slab (z=h/2),are presented in the insets of Fig.1(c).These plots show that electric fields of coupled corner states are tightly localized in four corners of the nontrivial region,and exhibit characteristics of multipole corner states defined by Kimet al.,[27]namely, monopole, dipole I,dipole II,and quadrupole corner states from low to high frequencies.Especially,different types of coupled corner states possess nondegenerate eigenfrequencies owing to near-field evanescent coupling,which is a unique feature that distinguishes them from conventional corner states in isolated SOTIs.However, the degeneracy of the two coupled dipole corner states remains unbroken.

    These coupled corner states are beyond the light line atΓpoint of the supercell array, thus they are radiative and accessible to external excitation.We perform the full-wave simulation of the supercell array based on finite-difference timedomain(FDTD)method,where one supercell is modeled under the periodic boundary condition in thexdirection andydirection and a plane wave source is introduced on the top with normal incidence for far-field excitation.The transmission spectrum is shown in Fig.1(d), which shows a resonant dip at 5.857μm,corresponding to the eigenfrequency of coupled dipole corner states.Field distributions at the resonant wavelength also exhibit features of coupled dipole corner states as shown in plots of Fig.1(d), confirming that they are excited as resonances.Owing to theC4symmetry of the supercell array, the spectral response of coupled dipole corner states is insensitive to the polarization angleφof the plane wave.Especially,different coupled dipole corner states can be selectively excited by tuning the polarization angle as shown in plots of Fig.1(d).Notably, there is no spectral evidence of coupled monopole and quadrupole corner states, since they cannot be directly stimulated by the source due to the symmetry mismatch,namely,there is no overlap between their fields and the plane waves.We will keepφ=0 in the following discussion.

    The transmission spectrum of coupled dipole corner states can be fitted by the following Fano formula:[28]

    wherea1,a2,andbdenote constant real parameters,ω0is the resonant frequency, andγrefers to the damping rate of the resonance.TheQfactor of the resonance can be calculated from the relationQ=ω0/(2γ).In this case, coupled dipole corner states possess a lowQfactor of 1252,and thus we further examine the near-field coupling effect for enhancing the resonance performance of coupled dipole corner states.By varyingmandn, the inter-supercell and intra-supercell coupling effects are investigated,and the corresponding transmission spectra are shown in Fig.2, where the positions of coupled dipole corner states are indicated by arrows.It is shown that these near-field couplings can alter the resonance properties of coupled dipole corner states effectively.For example,if we maintainn=3 and increase the inter-supercell coupling strength by reducingm, the resonant wavelength andQfactor of coupled dipole corner state can be modified as shown in Fig.2(b),and aQfactor of 3389 can be obtained at 5.934μm whenm=1.Similarly,if comparing the transmission spectra of different values ofnwith the samem(shown by curves with the same color in Fig.2),one can find that the intra-supercell coupling also plays an important role in determining the resonance behaviors of coupled dipole corner states.Especially,coupled dipole corner states reach a highQfactor of 1.68×104at 5.892μm whenm=n=2 as depicted in Fig.2(c).

    Fig.2.(a)-(d) Transmission spectra of the supercell array at different values of m and n, with arrows indicating positions of coupled dipole corner states.

    Fig.3.(a)Multipolar scattering cross-sections of coupled dipole corner states when(a)m=2 and n=3; (b)m=n=2.(c)Magnetic field vectors of coupled dipole corner states when m=n=2.Colors of vectors indicate the corresponding normalized magnitudes, blue arrows indicate flows of magnetic fields,and the red circle and cross indicate directions of displacement currents.(d)Displacement current density of coupled dipole corner states.Red arrows indicate their flows.

    To gain more insights into coupled dipole corner states,we perform the multipole decomposition under the Cartesian coordinate system.[29]Here, we consider two cases of coupled dipole corner states, the first beingm= 2 andn= 3,and the second beingm=n= 2.The corresponding multipolar scattering cross-sectionCsca, including electric dipole(ED),toroidal dipole(TD),MD,EQ,and magnetic quadrupole(MQ), is presented in Figs.3(a) and 3(b), respectively.It is shown that coupled dipole corner states in both cases are dominated by EQ and MD,where MD is slightly weaker than EQ.Further investigations reveal that the coupled dipole corner states are always dominated by EQ and MD in otherm-ncases.To exhibit the origin of the multipoles, the magnetic field vectors in thex-ymiddle plane of the supercell withm=n=2 are visualized in Fig.3(c).It is shown that the magnetic field vectors circulate clockwise around the left corners,while counterclockwise around right corners as indicated by the blue arrows.They also generate a pair of EDs with opposite phases as indicated by the red circles and crosses.Figure 3(d) shows the displacement current density in thexzcross-section of lower corners, confirming the formation of EDs as indicated by the red dashed straight arrows.Thus,these EDs with opposite phases form the EQ response.Meanwhile, the current loop appearing in Fig.3(d) is attributed to the MD response.Interestingly, these coupled dipole corner states show completely different multipole natures from those in PhC hole slabs,where coupled dipole corner states are dominated by TD and MQ.[22]Therefore,although coupled dipole corner states share the same topological origin(the topological charge)in PhC rod and hole slabs, their natures in real space will differ.This is due to the fact that their in-plane topologically enforced circular flows are caused by magnetic fields and electric currents,respectively.

    Owing to the highQ-factor of coupled dipole corner states whenm=n=2,we further investigate the diffractively far-field coupling effect in this case to see whether theQfactor can be further improved.In the metasurfaces, the localized resonances in individual micro-nano particles can be coupled with in-plane diffracted propagating waves,leading to the SLRs with narrower linewidth.In principle,the SLRs can also exist in any other periodic optical structures such as PhC slabs.In this work,the spectral position of SLR under the normal incidence is determined by the following RA equation:

    wherensis the SRI around the array,Pis the period of the supercell,and(i,j)is the diffraction order of the RAs.

    Fig.4.(a)Transmission spectra of supercell array under different SRIs.(b)Wavelength of coupled dipole corner state and RA at(1,1)under different SRIs.(c) Difference between two wavelengths and Q factor of coupled dipole corner state under different SRIs.(d) Transmission spectra of supercell array when SRI is 1.16,1.17,and 1.18.

    Although the current resonant wavelength of coupled dipole corner stateλcdoes not match anyλr, for theoretical investigation, we can assume that the structure is surrounded by a homogenous lossless medium, and slightly vary the SRI to make the two wavelength positions overlap,since they have different dispersive behaviors with the SRI.Figure 4(a)shows transmission spectra of coupled dipole corner states under different SRIs, exhibiting that the resonant wavelength will redshift with increasing SRI, and the correspondingQfactor is also modified simultaneously.Figure 4(b) displays the relationship of wavelength versusnsforλcandλr(at the diffraction order (1,1)), respectively, with the SRI, which shows that the two curves becomes closer as the SRI increases.In Fig.4(c), we further present the difference betweenλcandλr(1,1), and theQfactor of coupled dipole corner state, under different SRIs.It is evident that the two wavelengths exponentially approach to each other as the SRI increases, and when they coincide atns=1.17 (the position is indicated by the blue dashed line),theQfactor dramatically increases up to 6.43×104.The transmission spectra near the high-Qregime are plotted in Fig.4(d), which exhibit typical spectral profiles of SLRs, including small transmission peaks caused by diffraction next the main transmission dips atns=1.16 and 1.18, and the much narrower transmission dip resulting from the diffraction atns=1.17.The above features all indicate the occurrence of SLRs caused by the far-field coupling, which further enrich the optical approaches to tailoring the resonance properties of coupled dipole corner states.

    4.Conclusions

    In summary, we theoretically investigated the optical properties of coupled corner states in the supercell array based on PhC rod slabs.The eigenmode analysis shows the nondegenerate features of multipole coupled corner states, and the full-wave simulation reveals the accessibility of coupled dipole corner states by using the plane-wave stimulation,which exhibits polarization-independent resonance characteristics.The resonant wavelength andQfactor of coupled dipole corner states can be effectively tuned by inter-supercell nearfield coupling effect and intra-supercell near-field coupling effect, and the multipole decomposition reveals that coupled dipole corner states are dominated by the EQ and MD,which is completely different from the scenario in PhC hole slabs.Finally,by varying the SRI,theQfactor of coupled dipole corner state is further improved through matching the RA position of the structure,namely,forming the SLRs caused by diffractively far-field coupling effects.In practice, the array can be fabricated on germanium-on-insulator platforms.[30]The photoresist should be first deposited on the top surface, and patterns of PhCs can be written with electron beam lithography.Then, the patterns can be transferred into the top germanium layer by using reactive ion etching techniques.[31]Although the insulator (silica) substrate will introduce asymmetric environment, the corresponding low RI will only cause a slight shift at the resonant wavelength,and the physical mechanism introduced in this work still holds.[7-10,32]This work reveals that compared with conventional isolated corner states, coupled corner states possess rich optical phenomena and many degrees of freedom to control,and such topological supercell arrays have potential applications in mid-infrared lasing,sensing,and detection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62275271, 12272407, and 62275269), the National Key Research and Development Program of China (Grant No.2022YFF0706005), the Natural Science Foundation of Hunan Province, China (Grant Nos.2023JJ40683, 2022JJ40552, and 2020JJ5646), and the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0142).

    猜你喜歡
    于洋楊俊
    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    Little Women (V)
    Little Women (IV)Retold by M. Albers
    Little Woman(III)Retold by M.Albers
    于洋油畫(huà)作品選
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    副總一句話
    777久久人妻少妇嫩草av网站| 亚洲熟女精品中文字幕| 国产黄色免费在线视频| 国产色视频综合| tocl精华| 性高湖久久久久久久久免费观看| 日本欧美视频一区| 亚洲成人免费电影在线观看| 午夜成年电影在线免费观看| 国产精品 国内视频| 亚洲全国av大片| 黄片播放在线免费| 日本撒尿小便嘘嘘汇集6| 啦啦啦 在线观看视频| 另类精品久久| 成人18禁在线播放| 日韩人妻精品一区2区三区| 日本黄色视频三级网站网址 | 国产男女内射视频| 国产精品影院久久| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 成年人黄色毛片网站| 老司机靠b影院| 高清毛片免费观看视频网站 | 美女高潮喷水抽搐中文字幕| 欧美大码av| 久久中文看片网| 亚洲精品中文字幕在线视频| 国产精品电影一区二区三区 | 91精品三级在线观看| 亚洲 国产 在线| 午夜日韩欧美国产| 69精品国产乱码久久久| 老司机影院毛片| 纯流量卡能插随身wifi吗| 岛国在线观看网站| 美女福利国产在线| 欧美日韩亚洲综合一区二区三区_| 日韩免费av在线播放| 日韩免费高清中文字幕av| 国产亚洲午夜精品一区二区久久| 久久午夜亚洲精品久久| 日韩熟女老妇一区二区性免费视频| 亚洲全国av大片| 亚洲欧美日韩高清在线视频 | 黄色a级毛片大全视频| 人人妻人人澡人人看| 国产不卡av网站在线观看| 成人av一区二区三区在线看| 亚洲av成人一区二区三| 91国产中文字幕| 精品少妇黑人巨大在线播放| 女人被躁到高潮嗷嗷叫费观| www日本在线高清视频| 我的亚洲天堂| 一边摸一边抽搐一进一小说 | 麻豆国产av国片精品| 黄网站色视频无遮挡免费观看| 超色免费av| 国产在线一区二区三区精| 免费不卡黄色视频| 欧美精品高潮呻吟av久久| 国产高清激情床上av| 超碰成人久久| 免费久久久久久久精品成人欧美视频| 天天操日日干夜夜撸| 国产成人系列免费观看| 99九九在线精品视频| 亚洲伊人久久精品综合| 国产成人精品在线电影| 999精品在线视频| 热99国产精品久久久久久7| 一本大道久久a久久精品| 久久久久久久久免费视频了| 亚洲人成伊人成综合网2020| 一级,二级,三级黄色视频| 狠狠狠狠99中文字幕| 免费观看av网站的网址| 黄片小视频在线播放| 天堂动漫精品| 欧美午夜高清在线| 91字幕亚洲| 国产亚洲av高清不卡| 一本综合久久免费| 中文字幕av电影在线播放| 2018国产大陆天天弄谢| 99热网站在线观看| 久久精品91无色码中文字幕| 久久国产精品大桥未久av| 欧美在线黄色| 久久久久久久大尺度免费视频| 欧美精品亚洲一区二区| av电影中文网址| 久久久久久久久免费视频了| 久久久久国内视频| 日韩欧美免费精品| 欧美日本中文国产一区发布| 国产不卡av网站在线观看| 成年动漫av网址| 精品一区二区三卡| 在线观看一区二区三区激情| 深夜精品福利| 免费高清在线观看日韩| 欧美精品人与动牲交sv欧美| 午夜精品久久久久久毛片777| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 王馨瑶露胸无遮挡在线观看| 少妇 在线观看| 好男人电影高清在线观看| 亚洲第一av免费看| 视频区欧美日本亚洲| 免费人妻精品一区二区三区视频| 国产单亲对白刺激| 精品久久久精品久久久| 老汉色∧v一级毛片| 波多野结衣av一区二区av| 免费看a级黄色片| 精品一品国产午夜福利视频| 久久久欧美国产精品| 男女床上黄色一级片免费看| 男女床上黄色一级片免费看| 欧美黄色片欧美黄色片| 女性生殖器流出的白浆| 人成视频在线观看免费观看| 亚洲精华国产精华精| 国产色视频综合| 亚洲av国产av综合av卡| 精品久久久久久电影网| 男女之事视频高清在线观看| 国产又爽黄色视频| 一本一本久久a久久精品综合妖精| 免费女性裸体啪啪无遮挡网站| a在线观看视频网站| 在线av久久热| 高潮久久久久久久久久久不卡| 一区二区三区乱码不卡18| 欧美成人午夜精品| av线在线观看网站| 午夜福利乱码中文字幕| 一二三四社区在线视频社区8| cao死你这个sao货| 成年人黄色毛片网站| 在线观看免费午夜福利视频| 免费观看人在逋| 91成年电影在线观看| 亚洲av第一区精品v没综合| 国产在线免费精品| 19禁男女啪啪无遮挡网站| 99在线人妻在线中文字幕 | 超碰成人久久| 美女视频免费永久观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久视频综合| 日本av手机在线免费观看| 亚洲三区欧美一区| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 一区在线观看完整版| 成人18禁在线播放| 亚洲精品久久午夜乱码| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线| 国产淫语在线视频| 欧美激情极品国产一区二区三区| 91av网站免费观看| 久久精品成人免费网站| 中文字幕人妻熟女乱码| 色综合欧美亚洲国产小说| 色尼玛亚洲综合影院| 欧美日韩亚洲国产一区二区在线观看 | 色视频在线一区二区三区| 国产国语露脸激情在线看| 久久精品亚洲av国产电影网| 一边摸一边抽搐一进一小说 | 国产午夜精品久久久久久| 黄频高清免费视频| tocl精华| 成人影院久久| 三级毛片av免费| 久久中文字幕一级| 国产精品久久久人人做人人爽| 国产无遮挡羞羞视频在线观看| 欧美久久黑人一区二区| 国产国语露脸激情在线看| av网站免费在线观看视频| 国产精品九九99| 人妻 亚洲 视频| 久久久精品区二区三区| 9热在线视频观看99| 日韩免费高清中文字幕av| 一级毛片女人18水好多| 色视频在线一区二区三区| 久久午夜综合久久蜜桃| 日韩大片免费观看网站| 香蕉国产在线看| 欧美一级毛片孕妇| 国产免费视频播放在线视频| 精品少妇一区二区三区视频日本电影| 999久久久国产精品视频| 1024香蕉在线观看| 99国产综合亚洲精品| 最黄视频免费看| 亚洲成国产人片在线观看| 国产成人免费无遮挡视频| 国产亚洲av高清不卡| 午夜福利欧美成人| 国产免费av片在线观看野外av| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 日韩免费高清中文字幕av| 日韩欧美国产一区二区入口| 他把我摸到了高潮在线观看 | 国产成人影院久久av| 色婷婷av一区二区三区视频| 欧美国产精品一级二级三级| 看免费av毛片| 一本综合久久免费| 国产精品98久久久久久宅男小说| 在线观看www视频免费| 三上悠亚av全集在线观看| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| av视频免费观看在线观看| 欧美激情极品国产一区二区三区| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 日本av手机在线免费观看| 午夜福利影视在线免费观看| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 99香蕉大伊视频| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 脱女人内裤的视频| 久久精品国产a三级三级三级| 久久精品国产亚洲av高清一级| 国产欧美日韩综合在线一区二区| 老司机午夜福利在线观看视频 | 高清av免费在线| 搡老乐熟女国产| 精品高清国产在线一区| 久久久久网色| 黄色视频在线播放观看不卡| 新久久久久国产一级毛片| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 一区在线观看完整版| 日本撒尿小便嘘嘘汇集6| 国产激情久久老熟女| 黑人猛操日本美女一级片| 亚洲全国av大片| 久久精品亚洲精品国产色婷小说| 在线十欧美十亚洲十日本专区| 亚洲精品中文字幕在线视频| 国产亚洲精品第一综合不卡| 在线永久观看黄色视频| 99精品欧美一区二区三区四区| 亚洲中文av在线| 18在线观看网站| 久久久久久久精品吃奶| 天天添夜夜摸| 色精品久久人妻99蜜桃| 精品欧美一区二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 日韩制服丝袜自拍偷拍| 满18在线观看网站| av一本久久久久| 又紧又爽又黄一区二区| 黄片小视频在线播放| 天天操日日干夜夜撸| 午夜激情久久久久久久| 国产精品久久久久久精品电影小说| 亚洲精品在线观看二区| 久久国产精品大桥未久av| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 乱人伦中国视频| 国产成人精品久久二区二区91| bbb黄色大片| 国产免费视频播放在线视频| 国产一区二区三区视频了| h视频一区二区三区| 国产成人精品久久二区二区91| 操出白浆在线播放| 正在播放国产对白刺激| 午夜日韩欧美国产| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 亚洲av欧美aⅴ国产| 欧美另类亚洲清纯唯美| 中文字幕高清在线视频| 欧美成人午夜精品| 久久av网站| 久久久久久亚洲精品国产蜜桃av| 国产精品1区2区在线观看. | 精品福利观看| 亚洲少妇的诱惑av| 亚洲av电影在线进入| 又大又爽又粗| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| www.999成人在线观看| 国产精品成人在线| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 丁香欧美五月| 黑丝袜美女国产一区| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 免费观看av网站的网址| www.精华液| 一区二区三区激情视频| 日本黄色日本黄色录像| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美| 侵犯人妻中文字幕一二三四区| 人妻一区二区av| 无人区码免费观看不卡 | 一二三四社区在线视频社区8| 成人手机av| 久久影院123| 亚洲成人免费电影在线观看| 国产91精品成人一区二区三区 | 夜夜骑夜夜射夜夜干| 亚洲全国av大片| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 97人妻天天添夜夜摸| 成年动漫av网址| 久久久久久久精品吃奶| 精品久久蜜臀av无| 国产精品熟女久久久久浪| 少妇精品久久久久久久| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区久久| 亚洲欧美日韩高清在线视频 | 国产精品.久久久| 亚洲人成电影免费在线| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 日韩三级视频一区二区三区| 国产精品成人在线| 精品第一国产精品| 建设人人有责人人尽责人人享有的| 男女床上黄色一级片免费看| 91国产中文字幕| 国产精品电影一区二区三区 | 高清欧美精品videossex| 大型黄色视频在线免费观看| 老汉色av国产亚洲站长工具| 久久精品91无色码中文字幕| 成人三级做爰电影| 亚洲午夜理论影院| 老熟女久久久| 日本黄色日本黄色录像| 波多野结衣一区麻豆| 亚洲精品国产色婷婷电影| 美女国产高潮福利片在线看| 免费黄频网站在线观看国产| 国产精品av久久久久免费| 精品国产一区二区久久| 一级毛片精品| 国产无遮挡羞羞视频在线观看| 在线永久观看黄色视频| a级毛片在线看网站| 精品欧美一区二区三区在线| av电影中文网址| 精品亚洲成a人片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情久久久久久爽电影 | 九色亚洲精品在线播放| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 欧美日韩视频精品一区| 91大片在线观看| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| a级毛片在线看网站| 黑人猛操日本美女一级片| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| 一区二区三区精品91| 色视频在线一区二区三区| 精品国产超薄肉色丝袜足j| 国产欧美日韩精品亚洲av| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 午夜激情久久久久久久| www日本在线高清视频| 天天影视国产精品| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 国产日韩欧美视频二区| 午夜福利,免费看| 久久香蕉激情| 精品国内亚洲2022精品成人 | 夜夜夜夜夜久久久久| 午夜福利影视在线免费观看| 日韩 欧美 亚洲 中文字幕| 男女边摸边吃奶| 美女扒开内裤让男人捅视频| 看免费av毛片| 亚洲一区中文字幕在线| 999精品在线视频| 丁香欧美五月| 国产欧美日韩精品亚洲av| 亚洲一码二码三码区别大吗| 99热国产这里只有精品6| 国产精品 欧美亚洲| 91精品国产国语对白视频| 热99国产精品久久久久久7| 日韩免费av在线播放| 精品国产一区二区三区四区第35| 一本一本久久a久久精品综合妖精| 成在线人永久免费视频| 在线观看免费日韩欧美大片| 国产成人免费观看mmmm| 一级毛片电影观看| 久久精品亚洲熟妇少妇任你| 老司机靠b影院| 久久亚洲精品不卡| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 色老头精品视频在线观看| 他把我摸到了高潮在线观看 | 757午夜福利合集在线观看| kizo精华| 精品久久久久久电影网| 午夜激情av网站| 亚洲,欧美精品.| e午夜精品久久久久久久| 欧美性长视频在线观看| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 国产精品香港三级国产av潘金莲| 国产亚洲精品第一综合不卡| 69av精品久久久久久 | 波多野结衣av一区二区av| 亚洲av第一区精品v没综合| 国产精品一区二区在线不卡| 国产深夜福利视频在线观看| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 老熟女久久久| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 亚洲国产看品久久| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 国产一卡二卡三卡精品| 性少妇av在线| 在线观看66精品国产| 国产三级黄色录像| 久久久国产一区二区| 蜜桃国产av成人99| 国产精品av久久久久免费| 制服人妻中文乱码| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频| 9色porny在线观看| 伊人久久大香线蕉亚洲五| 纵有疾风起免费观看全集完整版| 国产单亲对白刺激| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| 久久精品人人爽人人爽视色| 最黄视频免费看| 天堂8中文在线网| 女同久久另类99精品国产91| 免费少妇av软件| 成在线人永久免费视频| 国产成人一区二区三区免费视频网站| 看免费av毛片| 国产无遮挡羞羞视频在线观看| 在线永久观看黄色视频| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲综合一区二区三区_| 超色免费av| av一本久久久久| 一级a爱视频在线免费观看| 日韩成人在线观看一区二区三区| av有码第一页| 日本av免费视频播放| 91老司机精品| 老汉色∧v一级毛片| 高清视频免费观看一区二区| 这个男人来自地球电影免费观看| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 日韩欧美一区视频在线观看| 国产精品 国内视频| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 下体分泌物呈黄色| 一个人免费在线观看的高清视频| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 汤姆久久久久久久影院中文字幕| 亚洲av成人一区二区三| 亚洲精品一二三| 一本色道久久久久久精品综合| 妹子高潮喷水视频| 精品福利永久在线观看| 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 日韩欧美免费精品| 精品国产乱子伦一区二区三区| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 日韩一区二区三区影片| 叶爱在线成人免费视频播放| 久久影院123| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 国产成人精品久久二区二区91| 99国产精品99久久久久| 欧美午夜高清在线| 老司机午夜福利在线观看视频 | 国产xxxxx性猛交| 精品久久久久久电影网| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 91九色精品人成在线观看| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 国产一区有黄有色的免费视频| 亚洲熟女精品中文字幕| a级毛片黄视频| 久久中文字幕人妻熟女| 国产精品电影一区二区三区 | 97在线人人人人妻| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| cao死你这个sao货| 香蕉久久夜色| 久久久水蜜桃国产精品网| 欧美大码av| 国产高清激情床上av| 国产成人欧美在线观看 | 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| netflix在线观看网站| 大香蕉久久网| 高潮久久久久久久久久久不卡| 考比视频在线观看| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 一边摸一边抽搐一进一小说 | 日日摸夜夜添夜夜添小说| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 巨乳人妻的诱惑在线观看| 性少妇av在线| 91字幕亚洲| 久久久国产成人免费| 午夜两性在线视频| 1024视频免费在线观看| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 欧美乱码精品一区二区三区| 国产在线免费精品| 午夜免费鲁丝| 日本精品一区二区三区蜜桃| 欧美大码av| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 久久久久视频综合| 新久久久久国产一级毛片| 极品人妻少妇av视频| www.自偷自拍.com| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 欧美成狂野欧美在线观看| 动漫黄色视频在线观看| 后天国语完整版免费观看| 中文字幕制服av| 色婷婷av一区二区三区视频| 一个人免费看片子| 久久久久国产一级毛片高清牌| 亚洲国产看品久久| av一本久久久久| 亚洲男人天堂网一区| 91精品国产国语对白视频| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| av超薄肉色丝袜交足视频| 久久国产精品影院| 国产黄频视频在线观看| 成人特级黄色片久久久久久久 | 操美女的视频在线观看| 99国产极品粉嫩在线观看| 国产精品秋霞免费鲁丝片| 午夜免费成人在线视频| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 成人18禁在线播放| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 亚洲中文av在线|