• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice

    2023-12-02 09:29:14YuLin林宇YuandanWang王元旦JunhaoYang楊俊豪YixuanFu符藝萱andXinyuanQi齊新元
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊俊新元

    Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(楊俊豪), Yixuan Fu(符藝萱), and Xinyuan Qi(齊新元)

    School of Physics,Northwest University,Xi’an 710127,China

    Keywords: Dirac point,imaginary coupling,Chern number,group velocity

    1.Introduction

    In recent years, topological photonic systems have attracted much attention from researchers,who have performed extensive studies on different topological photonic systems and achieved rich research results.[1]The study of topological photonic systems started in 1979, with the one-dimensional(1D) Su–Schrieffer–Heeger (SSH) model proposed by Suet al.[2]as a representative example, which realized topological phase transition through staggered coupling in the lattice.[3,4]Based on this,topological photonic devices have gradually attracted attention.[5–7]The SSH model has chiral and particle–hole symmetries,[8,9]and many novel phenomena have been discovered by studying the SSH model, such as topological invariants, topological phase transitions, edge states, etc.[10]With the progress of research,two-dimensional(2D)topological photonic systems have aroused great interest.[11]Quantum spin Hall effect (QSHE) and quantum valley Hall effect (QVHE) with time reversal symmetry can be realized in 2D photonic crystals.[12]QSHE can be realized in photonic crystals with strong spin–orbit coupling,[13]where spinup and spin-down bands are inverted and separated by a band gap,[14]each spin sector having a nonzero Chern number with opposite signs.Therefore, there exist topologically protected edge states propagating along the system boundary, with opposite spins and directions.These edge states are immune to disorder-induced backscattering.QVHE can be realized in photonic crystals with honeycomb or hexagonal lattices,[15]where valleys correspond to two inequivalent Dirac cones atKandK′points.By introducing a staggered potential or breaking the sublattice symmetry,[16–18]a band gap can be opened at the Dirac points (DPs), and valleys acquire opposite Chern numbers.[19]Therefore,there exist topologically protected edge states propagating along the system boundary,[20,21]with opposite pseudospins and opposite group velocities.Both QVHE and QSHE based photonic topological insulators(PTIs)preserve time-reversal symmetry,and moreover,these PTIs can also host higher-order topological phases, such as second-order PTIs with corner states or third-order PTIs with hinge states.[22–26]In 2008,Haldane and Raghu proposed a method of breaking time reversal symmetry using magneto-optical materials,[27,28]which can realize oneway transmission of chiral edge states of light.[29,30]Wanget al.,successfully observed the robust one-way transmission of edge states in a 2D magnetic photonic crystal experiment.[31]However, most of the aforementioned 2D photonic systems require the time reversal symmetry breaking,[32]and are non Hermitian.[33–38]The studies in 2D non-reciprocal Hermitian photonic systems are still rarely reported.

    In this paper,we constructed a 2D non-reciprocal Hermitian photonic lattice and studied theoretically and numerically the system’s topological states and group velocity control.By changing the coupling coefficients,we analyzed the movement of DPs in the energy band structure,and the transformation between any topological states corresponding to different Chern numbers.Finally,we studied the impact of the topology on the group velocity.

    2.Topological state and dispersion curve

    This section presents a 2D non-reciprocal coupled Hermitian photonic lattice and its unique properties.Figure 1 illustrates the structure of this lattice, which consists of two straight waveguides,An(blue) andBn(red), forming a unit cell (red dashed box).Each unit cell has an imaginary coupling coefficient±iγbetween the two sublattices.The system can be modeled by coupled mode equations for the amplitudesanandbnof the sublatticesAandB,respectively:

    wherenis the number of cells;?is the intralayer coupling coefficient;the interlayer coupling within a cell is non-reciprocal coupling with different imaginary coupling coefficientst±iγ;the interlayer coupling between cells isδandσ.zrepresents the propagation distance of the wave packet,an,bnare the field amplitudes of waveguidesAn,Bn.

    Fig.1.(a)Schematic diagram of a 2D non-reciprocal Hermitian photonic lattice with two sites per cell.(b)The effective 1D chain structure of the model in(a).

    For reduction of calculation, we simplify the Bloch Hamiltonian of the system to a 1D narrow-band chain model that is periodic alongxand confined alongy.Applying Bloch’s theorem:an+1=aneik,bn+1=bneik.In the momentum space,the equation can be written as

    wherem= 2?coskx;s=t-2σcoskx;u±=u±iγandu=t+2δcoskx.For a givenkx, wheng/=0 andu-/=u+,equation (4) describes a 1D narrow-band chain model with non-reciprocal intra-cell coupling,as shown in Fig.2(b).Analyzing the Bloch Hamiltonian reveals that it satisfiesH?=H,indicating that the system is a Hermitian system with real energy spectra.

    The dispersion relation can characterize and predict light transmission behavior in periodic photonic crystals.The Bloch Hamiltonian is given by Eq.(4), and a solution of the equation gave the dispersion relation, which was the expression of the system’s energy band structure

    The dispersion relation can characterize and predict a 2D Brillouin zone (BZ).We divide it into several small squares and calculate each square’s Berry curvature.We use the Chern number efficient method to simplify the calculation to solve whether the system has topological properties and transform the Berry curvature integral into a linear algebra problem.[49]This method is based on the Haldane model,[39–41]which assumes that the Hamiltonian can be expressed as

    whereσiis the Pauli matrix anddi(k)is the real function.For such Hamiltonian quantities, the Berry curvature can be expressed as

    whereεijkis the Levi–Civita notation.The Berry curvature can be transformed into a linear problem by fittingdi(k)with a cubic function

    whered(k)=[d1(k),d2(k),d3(k)]andCis a constant.This linear problem can be solved by computing the dot product of[d(k)×?kd(k)]·CandC, and then integrating the result to obtain the Berry curvature.Finally,the Chern number can be calculated by substituting the Berry curvature into the integral formula for the Chern number.

    The 2D non-reciprocal Hermitian system can be solved for whether it has topological properties by the above stale efficient method.We solve the topological states of the system separately whenδ=σandδ/=σ.Whenδ=σ,the coupling coefficient?=0,t=0.5 are fixed,and the Chern number of the system is calculated.The state is determined numerically,and the calculation results show that when the coupling coefficientδ=0.5 andγ=0,C=-2, corresponding to a topological non-trivial state;when the coupling coefficientδ<0.5 andγ>0.3,C=-1, corresponding to another topological non-trivial state; when the coupling coefficientδ>0.5 andγ>0.3,C=0, corresponding to a trivial topological state.The robustness of the topological state is further calculated,and it is found that the topological state remains unchanged when?∈[0,0.1].

    Whenδ/=σ, the coupling coefficient?=0.5,δ=-1,t=2,σ=1 is fixed, and the Chern number of the system is calculated.It is found thatC=0, regardless of the value of the imaginary coupling coefficientγ, implies that the system is in a topologically trivial state.For a fixed coupling constant?=0,δ=-1,t=2,σ=1,the band structure of the Bloch HamiltonianH(k)is shown in Figs.2(a)–2(c),where we plot the dispersion relation as a function of the wave vectorskxandky.

    When the intralayer coupling constant?=0,the system is chiral symmetric and preservesCH(k)C-1=-H(k).The band structure of the Bloch Hamiltonianγ=0 is shown in Fig.2(a);due to the chiral symmetry of the system,the upper and lower bands are symmetric,and there are two band inversion points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2).Because of the imaginary coupling constantγ=0, the bands are also symmetric about the origin,and there are three DPs located at the edge(A2,A3)and center(A1)of the BZ,with the edge DPs being symmetric about the origin (kx,ky)=(0,0).The 2D Dirac states reported to date are distributed only at high symmetry points in the BZ,and the low-energy dispersion of these Dirac states is isotropic due to symmetry constraints.Ref.[42] reported in 2022 that the Dirac states in antimony films are located at general momentum points.

    A DP at a non-high-symmetry point of an optical system can be realized by adjusting the imaginary coupling coefficient in a 2D photonic crystal,as shown in Fig.2.When the imaginary coupling coefficient increases gradually toγ=0.3, the DP shifts from the edge of the BZ to the center of the BZ,and the DP at the center breaks.Under this condition,there is only one non-high symmetry DP,The imaginary coupling coefficient can be interpreted as a phase factor that modifies the hopping amplitude between neighboring sites in the photonic crystal.This phase factor violates the time-reversal symmetry and leads to a non-reciprocal propagation of light.Consequently, the dispersion relation is distorted and shifted by the imaginary coupling coefficient.The DP,which is a degenerate point of two bands with opposite parity, is sensitive to the phase factor and can be manipulated or split by tuning the imaginary coupling coefficient.The band gap,which is determined by the band inversion between the two bands, is also influenced by the imaginary coupling coefficient.When the imaginary coupling coefficient is sufficiently large, the band inversion can be reversed and the band gap can be opened.as shown in Fig.2(b).When the imaginary coupling coefficientγincreases further,we find that the DP moves wholly and again breaks.The band gap widens with the rise of the imaginary coupling coefficient.By adjusting the coupling coefficient,we provide a simple model and method to locate the 2D DP at a general momentum point.

    Figure 2(d)shows the band structure forδ=σ=t=0.5.Due to the chiral symmetry of the system,the upper and lower bands are symmetric, and there is no degenerate point in the design,only two band sharp points.When the intralayer coupling coefficient?=0.1, the chiral symmetry of the system is broken.In Fig.2(e), due to the breaking of chiral symmetry,the balance of the upper and lower bands is destroyed,but the two band abrupt points at(kx,ky)=(π/2,π/2),(kx,ky)=(-π/2,-π/2)are not broken due to the breaking of symmetry,and as?increases,the maximum value of the band in the range ofkx=-π/2 tokx=π/2 andky=-π/2 toky=π/2 increases,and the maximum value of the band in the range ofkx=|π/2|tokx=|π|andky=|π/2|toky=|π|decreases.By adjusting the coupling coefficient,we provide a simple model and method to make the 2D DP at a general momentum point.

    When the system is in the topologically non-trivial state corresponding toC=-1,the band structure shows that,compared with the topological state corresponding toC=-2,the overall dispersion relation decreases inward, and the maximum value of the dispersion relation is lower.Nevertheless,the broadband sharp points do not disappear, as shown in Fig.2(f).

    A comparison of the six band diagrams reveals that there are always two sharp points in each band and that their positions do not depend on the imaginary coupling coefficientγ.The analytical solution indicates that the strong points are located at(kx,ky)=(π/2,π/2)and(kx,ky)=(-π/2,-π/2).

    3.Research on topological states

    However, not all topological systems exhibit consistent boundary state behavior under open boundary conditions.[43,44]Therefore, in specific studies, the system structure and boundary conditions must be considered to determine the energy spectrum of topological systems under open boundary conditions.

    When the intralayer coupling coefficient?=0 and the other coupling coefficients areγ= 0,δ= 0.5,t= 0.5 andσ=0.5, the system is in the topological state when Chern numberC=-2.Figure 3(a)shows the energy spectrum structure of the system with an open boundary in theydirection and an even number of lattice points, assumingny=40 andNy=80.There are zero energy degenerate bands in the energy spectrum of the system and several particular degenerate points in the bulk state.The numerical solution indicates that the positions of these points arekx=±1.04,±2.08,where there are four-fold degeneracies ofnyand the intracell couplingu±vanishes,that is,t+2δcoskx±iγ=0,as shown by the blue dashed line and the intersection point with the bulk state.If an odd number of lattice pointsNy=81 is chosen in theydirection, a flat band appears in the open boundary energy spectrum throughout the BZ,as shown in Fig.3(d).

    When the intralayer coupling coefficient?= 0.1, figures 3(b) and 3(e) show the change of the energy spectrum structure of the open boundary in theydirection when the intralayer coupling coefficient?/=0.Figure 3(b) is the energy band diagram when the number of lattice points is even(Ny=80),indicating that when the intralayer coupling coefficient?changes within a small range,it has a particular impact on the energy spectrum of the whole system.First,it changes the edge state of the system, making it from a topologically protected zero mode to a topologically protected near-zero way; second, it changes the symmetry of the system, making the upper and lower energy spectra no longer symmetrical but does not affect the position of the degenerate points in the bulk state.The bulk state is still decayed atkx=±1.04,±2.08.For the energy band diagram with an odd number of lattice points(Ny=81), the change of the energy spectrum diagram is consistent with Fig.3(d), and a zero-energy flat band appears throughout the BZ.The appearance of these states is closely related to the specific shape and topological properties of the lattice.However,increasing the number of lattice points does not change the existence and position of bulk degenerate points and topological edge states because the appearance of these states depends on the specific shape and topological characteristics of the lattice rather than just the increase in the number of lattice points.

    In general, the intralayer coupling coefficient?affects the edge state of the system: when the intralayer coupling coefficient?=0,the edge state of the system is a topologically protected zero mode;when the intralayer coupling coefficient?/=0,the edge state of the system is a topologically protected near-zero mode.

    The number of lattice points in theydirection affects the appearance of the zero-energy flat band in the open boundary energy spectrum,regardless of whether the system is topologically trivial or non-trivial.No flat band appears in the whole space when the number of lattice points in theydirection is even.When the number of lattice points in theydirection is odd,the zero-energy flat band always exists,regardless of how the coupling coefficients change.[45,46]In summary, we propose a method to realize a flat band at a single lattice point without considering the amplitude and phase of the lattice points.

    Figure 3 has simplified the 2D photonic crystal into a 1D non-reciprocal narrow-band chain model along theydirection.This narrow-band chain model simulates the light wave transmission behavior.

    Figure 4 illustrates the light wave transmission process at the boundary of a finite system under the topologically nontrivial condition.Assumingy=25, the number of lattices isNy=2ny=50,the wave vectork0=π,and a Gaussian wave packet is used for excitation.Figures 4(a) and 4(c) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-2,with the coupling coefficients?=0,δ=0.5,t=0.5,σ=0.5,γ=0.We observe topological edge states at the upper and lower waveguide edges, and the waveguide is localized on the outermost waveguide.Figures 4(b) and 4(d) show the evolution of the edge states under topological non-trivial condition when the system’s Chern numberC=-1,with the coupling coefficients?=0,δ=0.3,t=0.5,σ=0.3,γ=0.1.We observe that the light wave oscillates and couples with other waveguides, but due to the topological property of the system, the light wave eventually localizes on the edge waveguide,which is the topological edge state.

    4.Study on group velocity control

    This section investigates how to control the photonic crystal’s group velocity by tuning the system’s coupling coefficients.The group velocitieskxandkyof the wave packet along thexandydirections,respectively,are obtained by solving the first-order derivatives of Eq.(8)concerningvkxandvky.

    The formula for the group velocityvkxis derived as follows:

    whereA=(-2?±(1+eiky)2t(δ-σ)-(-1+e2iky)iγσ ?4(eikyδ-σ)(-δ+ eikyσ)coskx)),B= e2iky(t+ iγ+2δcoskx)(t-2σcoskx),C= eiky(2t2+γ2+2(δ2+σ2)),D=4t(δ-σ)+4t(δ-σ)coskx+2(δ2+σ2)cos2kx),E=t2-iγt-2δσ+2tδcoskx+2iγσcoskx.

    Figure 5 shows how tuningγ,an imaginary coupling coefficient in our system, affects group velocities alongx.Figures 5(a)–5(c) illustrate howvkxvaries withkxfor different values ofγ.Whenγ=0,there are three points wherevkx=0,corresponding to the edge and center of the BZ.The band jump point in the band structure remains a discontinuity invkxregardless ofγ.Whenγ=0.3,vkxchanges slightly: it becomes flatter around the center point and reaches higher maxima and lower minima.Asγincreases further, these trends continue:vkxbecomes more gentle at the center and more extreme at other points.Increasingγdoes not affect the zero group velocity points.Still, it causesvkxto increase or decrease continuously depending onkxand become flatter at the center.Figure 5(d) showsvkxunder topological conditions.There are still three points wherevkx= 0, as in the non-topological case, but there is no abrupt change at the band jump point; instead, two group velocity bands intersect at(kx,ky,vkx)=(±π/2,±π/2,0).The overall variation ofvkxis also significantly reduced due to topological suppression.

    Fig.5.Group velocity control in the x direction.(a)–(c) The group velocity variation curves for the topologically trivial state, with the same parameters as Figs.2(a)–2(c).(d)The group velocity variation curve for the topologically non-trivial state,with the same parameters as Fig.2(d).

    The formula for the group velocityvkyis derived as follows:

    Figure 6 shows the group velocity variation curve in theydirection.Figures 6(a)–6(c) illustrate how increasingγaffectsvky.Unlikevkx,vkyis not zero at the edge of the BZ; it has a value of 50 whenγ=0.Asγincreases,vkydecreases at most points except for the center point, where it remains zero.The slope around this point is also tiny and close to zero,which may result in localized or dispersion-less transmission of light waves.In addition,vkyis negative for most values ofkyin in the range of 0 toπ,indicating group velocity deceleration.Thus,we observe group velocity acceleration,deceleration,and zero group velocity within one period.Increasingγdoes not change these phenomena significantly;it only causesvkyto decrease further.Figure 6(d)showsvkyunder topological conditions.The variation ofvkyis tiny under this condition;only near(0,0)is there a noticeable curvature that may cause light wave diffraction due to topological suppression of group velocity variation.

    5.Conclusion

    As one of the most attractive optical systems for light manipulation, non-reciprocal photonic lattices provide abundant means to realize the topological edge states and regulate the group velocity.This paper presents a theoretical design of the non-reciprocal Hermite 2D photonic lattice, and the topological phase transition, topological edge state, optical transport behavior,and group velocity change in the non-reciprocal coupling photonic lattice are studied.The research results show that when the imaginary coupling coefficientγ<0.3 and interlayer coupling coefficientδ<0.5,the system has a topologically non-trivial state ofC=-1;when the imaginary coupling coefficientγ=0 and the interlayerδ=0.5,the system has a topologically non-trivial state ofC=-2.When the imaginary coupling coefficientγ=0,the system energy band is symmetric relative to the wave vector (kx,ky)=(0,0).In a finitely large system,the system has a zero-energy flat-top band when the lattice number in the directionyis odd.The study of group velocity shows that zero group velocity points exist regardless of the topological property of the system.However,the topological state can suppress the amplitude of the group velocity profile.To sum up, this work realizes different topological states of system and localized states of light waves in 2D photonic lattices,enriches the connotation of optical transmission and group velocity regulation in 2D non-reciprocal Hermitic photonic lattices, and has particular theoretical guiding significance in the fields of optical communication and photonic device fabrication.[47,48]

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.1217040857).

    猜你喜歡
    楊俊新元
    Topological resonators based on hexagonal-star valley photonic crystals
    舊歲千重錦,新元百尺竿
    楊俊德:農(nóng)業(yè)豐收的“守護(hù)神”
    DYNAMICS ANALYSIS OF A DELAYED HIV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND ANTIBODY IMMUNE RESPONSE?
    李泊城 隋邦平 楊俊顯 王綠竹 作品
    大眾文藝(2019年3期)2019-01-24 13:39:44
    《紅蜻蜓》教案
    《新元史·高防傳》勘補(bǔ)
    Eあects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks?
    王新元與“萬(wàn)家美”聯(lián)手推出“面子”針織時(shí)尚秀
    流行色(2005年5期)2005-04-29 18:26:58
    丝袜在线中文字幕| 一级毛片黄色毛片免费观看视频| 久久久欧美国产精品| 久久久欧美国产精品| 黄色配什么色好看| 成人毛片60女人毛片免费| 婷婷成人精品国产| 国产精品欧美亚洲77777| 两个人的视频大全免费| 国产精品麻豆人妻色哟哟久久| 天堂俺去俺来也www色官网| 九色亚洲精品在线播放| 欧美日韩视频高清一区二区三区二| 青春草亚洲视频在线观看| 成人影院久久| 一级毛片 在线播放| 黄片无遮挡物在线观看| av免费观看日本| 视频区图区小说| 国产精品一国产av| 大陆偷拍与自拍| 性高湖久久久久久久久免费观看| 久久亚洲国产成人精品v| 国产免费又黄又爽又色| 99久久人妻综合| 夫妻午夜视频| 伊人亚洲综合成人网| 乱码一卡2卡4卡精品| 中文字幕最新亚洲高清| 国产精品免费大片| 黑人猛操日本美女一级片| 国产精品欧美亚洲77777| av又黄又爽大尺度在线免费看| 街头女战士在线观看网站| 一区二区三区精品91| 国产精品成人在线| 亚洲精品自拍成人| 在线看a的网站| 国产成人精品福利久久| 日韩熟女老妇一区二区性免费视频| 午夜精品国产一区二区电影| 亚洲精品456在线播放app| 日日爽夜夜爽网站| 亚洲精品久久午夜乱码| 18禁在线播放成人免费| 如日韩欧美国产精品一区二区三区 | 亚洲国产精品一区二区三区在线| 久久这里有精品视频免费| 天天影视国产精品| 精品亚洲成a人片在线观看| 久久精品国产a三级三级三级| 亚洲av在线观看美女高潮| 国产69精品久久久久777片| 亚洲精品日本国产第一区| 亚洲国产色片| 中文字幕av电影在线播放| 18禁裸乳无遮挡动漫免费视频| 日韩三级伦理在线观看| 桃花免费在线播放| 日韩不卡一区二区三区视频在线| 少妇丰满av| 国产精品成人在线| 大香蕉久久成人网| 国产精品成人在线| 一本色道久久久久久精品综合| 亚洲精品乱久久久久久| av免费在线看不卡| 草草在线视频免费看| 99热国产这里只有精品6| 大香蕉久久成人网| 91久久精品电影网| 欧美精品人与动牲交sv欧美| 一个人看视频在线观看www免费| 老女人水多毛片| 一二三四中文在线观看免费高清| 哪个播放器可以免费观看大片| 久久99蜜桃精品久久| 天堂中文最新版在线下载| 国产乱人偷精品视频| 最近2019中文字幕mv第一页| 18禁在线无遮挡免费观看视频| 亚洲av中文av极速乱| 国产精品人妻久久久久久| 亚洲精品中文字幕在线视频| av不卡在线播放| 国产在视频线精品| 91久久精品国产一区二区成人| 久久综合国产亚洲精品| 99九九线精品视频在线观看视频| 观看av在线不卡| 久久99一区二区三区| 免费少妇av软件| 精品视频人人做人人爽| 一本色道久久久久久精品综合| 日韩av不卡免费在线播放| 亚洲国产精品999| 亚洲精品久久成人aⅴ小说 | 精品国产一区二区久久| 91午夜精品亚洲一区二区三区| 两个人的视频大全免费| 欧美xxⅹ黑人| 十八禁网站网址无遮挡| 亚洲五月色婷婷综合| 精品国产国语对白av| 少妇人妻久久综合中文| 人妻一区二区av| 精品99又大又爽又粗少妇毛片| 五月天丁香电影| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 国产精品嫩草影院av在线观看| 天美传媒精品一区二区| 亚洲av.av天堂| 亚洲精品乱码久久久久久按摩| 亚洲第一区二区三区不卡| 人成视频在线观看免费观看| 亚洲av欧美aⅴ国产| 一级毛片黄色毛片免费观看视频| 久久国产精品大桥未久av| 久热这里只有精品99| 国产不卡av网站在线观看| 久久av网站| 日韩,欧美,国产一区二区三区| 日韩在线高清观看一区二区三区| 人妻一区二区av| 伊人久久精品亚洲午夜| 插逼视频在线观看| 午夜福利网站1000一区二区三区| 色网站视频免费| 伊人久久国产一区二区| 亚洲国产精品成人久久小说| 一级二级三级毛片免费看| 欧美少妇被猛烈插入视频| 桃花免费在线播放| 高清黄色对白视频在线免费看| 九草在线视频观看| 伦理电影大哥的女人| 久久久精品免费免费高清| 日日啪夜夜爽| 久久久久久久久久久丰满| 国产成人免费无遮挡视频| xxxhd国产人妻xxx| 国产精品一国产av| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区黑人 | 下体分泌物呈黄色| 亚洲欧美中文字幕日韩二区| 亚洲中文av在线| 国产在视频线精品| 丝袜喷水一区| 黑丝袜美女国产一区| 一级,二级,三级黄色视频| 97超视频在线观看视频| av电影中文网址| 免费观看无遮挡的男女| 妹子高潮喷水视频| 国产免费又黄又爽又色| 少妇的逼水好多| videosex国产| 女人久久www免费人成看片| 欧美日本中文国产一区发布| 91aial.com中文字幕在线观看| 九九久久精品国产亚洲av麻豆| 免费久久久久久久精品成人欧美视频 | 亚洲精品国产av成人精品| 多毛熟女@视频| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 国产熟女午夜一区二区三区 | 午夜福利网站1000一区二区三区| 狠狠婷婷综合久久久久久88av| 午夜免费观看性视频| av不卡在线播放| 热99国产精品久久久久久7| 99九九线精品视频在线观看视频| 日本猛色少妇xxxxx猛交久久| 十分钟在线观看高清视频www| 在线观看免费日韩欧美大片 | 如日韩欧美国产精品一区二区三区 | 亚洲人成网站在线观看播放| 欧美老熟妇乱子伦牲交| 伦理电影大哥的女人| 欧美人与善性xxx| 免费看不卡的av| 国产精品麻豆人妻色哟哟久久| 麻豆成人av视频| 黑丝袜美女国产一区| 99国产综合亚洲精品| freevideosex欧美| 国产欧美日韩综合在线一区二区| 亚洲国产欧美在线一区| 综合色丁香网| 成年人午夜在线观看视频| 嫩草影院入口| 成年人午夜在线观看视频| 国产成人aa在线观看| 99热全是精品| 成年av动漫网址| 精品久久久噜噜| 国产午夜精品一二区理论片| 人人妻人人爽人人添夜夜欢视频| 五月开心婷婷网| 久久99一区二区三区| 欧美精品一区二区免费开放| 日韩制服骚丝袜av| 久久久国产一区二区| 日本爱情动作片www.在线观看| 美女视频免费永久观看网站| 亚洲中文av在线| 视频区图区小说| 热re99久久国产66热| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 女人精品久久久久毛片| 狂野欧美激情性bbbbbb| 在线观看免费视频网站a站| av免费观看日本| 国产av国产精品国产| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 欧美日韩精品成人综合77777| 午夜福利影视在线免费观看| 青春草视频在线免费观看| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频 | 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 欧美日韩在线观看h| 又粗又硬又长又爽又黄的视频| av卡一久久| 午夜激情福利司机影院| 特大巨黑吊av在线直播| 久久精品国产a三级三级三级| 久久久久久久久久久丰满| 99久久人妻综合| 嘟嘟电影网在线观看| av专区在线播放| 色5月婷婷丁香| 美女脱内裤让男人舔精品视频| 久久久精品免费免费高清| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 视频在线观看一区二区三区| 亚洲精品日韩av片在线观看| 久久久久久伊人网av| 丰满乱子伦码专区| 亚洲精品成人av观看孕妇| 高清毛片免费看| 少妇被粗大的猛进出69影院 | 能在线免费看毛片的网站| 丁香六月天网| 另类亚洲欧美激情| 日本av免费视频播放| 99久国产av精品国产电影| 国产色婷婷99| 国产极品天堂在线| 亚洲精品久久午夜乱码| 老女人水多毛片| 国产女主播在线喷水免费视频网站| 国产精品免费大片| 乱人伦中国视频| 午夜福利在线观看免费完整高清在| 免费久久久久久久精品成人欧美视频 | 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 午夜福利视频精品| 日韩电影二区| 99久久中文字幕三级久久日本| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 人成视频在线观看免费观看| 亚洲情色 制服丝袜| 午夜影院在线不卡| 国产极品天堂在线| 久久午夜福利片| 国产伦理片在线播放av一区| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 老女人水多毛片| 国产精品一区二区在线观看99| av又黄又爽大尺度在线免费看| 嫩草影院入口| 视频区图区小说| 日产精品乱码卡一卡2卡三| 男人操女人黄网站| 亚洲综合色惰| 午夜激情久久久久久久| 亚洲精品久久午夜乱码| 亚洲人与动物交配视频| av线在线观看网站| 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 国产在线一区二区三区精| 熟女av电影| 午夜福利在线观看免费完整高清在| 最黄视频免费看| 久久久国产一区二区| 天美传媒精品一区二区| 女性被躁到高潮视频| 精品一区二区三区视频在线| 久久精品国产亚洲av天美| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| av卡一久久| 精品视频人人做人人爽| 日产精品乱码卡一卡2卡三| 老司机亚洲免费影院| 久久亚洲国产成人精品v| 日韩不卡一区二区三区视频在线| a 毛片基地| 国产精品久久久久久久电影| 亚洲国产精品一区三区| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频高清一区二区三区二| 三上悠亚av全集在线观看| 高清午夜精品一区二区三区| 搡老乐熟女国产| 韩国av在线不卡| 国产成人精品久久久久久| 97在线视频观看| 嘟嘟电影网在线观看| 大陆偷拍与自拍| 国国产精品蜜臀av免费| 精品视频人人做人人爽| 又大又黄又爽视频免费| 久久韩国三级中文字幕| av黄色大香蕉| www.色视频.com| 国产欧美日韩一区二区三区在线 | 能在线免费看毛片的网站| 黄色一级大片看看| 黄色怎么调成土黄色| 免费看不卡的av| 夫妻午夜视频| 免费人成在线观看视频色| 一级毛片 在线播放| 国产爽快片一区二区三区| 制服诱惑二区| 国产日韩欧美视频二区| 一区二区三区精品91| 九色亚洲精品在线播放| 久久免费观看电影| 最近2019中文字幕mv第一页| 男女啪啪激烈高潮av片| 下体分泌物呈黄色| 永久网站在线| 久久国内精品自在自线图片| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 亚洲国产日韩一区二区| 久久 成人 亚洲| 亚洲人成网站在线观看播放| 草草在线视频免费看| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 色婷婷久久久亚洲欧美| 亚洲国产精品999| 狂野欧美激情性xxxx在线观看| 亚洲不卡免费看| 伊人亚洲综合成人网| 天美传媒精品一区二区| 亚洲无线观看免费| 高清av免费在线| 亚洲国产欧美日韩在线播放| 国产免费一级a男人的天堂| 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| 一区在线观看完整版| 女性被躁到高潮视频| 成年美女黄网站色视频大全免费 | 国产高清有码在线观看视频| 国产成人freesex在线| 亚洲欧美成人综合另类久久久| 亚洲av不卡在线观看| 久久久久久久久久人人人人人人| 国产欧美日韩综合在线一区二区| 少妇的逼好多水| 26uuu在线亚洲综合色| 精品国产一区二区久久| 综合色丁香网| 91精品国产九色| 十八禁网站网址无遮挡| 欧美日韩在线观看h| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 国产精品国产三级专区第一集| 又大又黄又爽视频免费| a级片在线免费高清观看视频| 国产高清三级在线| 新久久久久国产一级毛片| 91精品三级在线观看| 国产伦理片在线播放av一区| 亚洲av二区三区四区| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 两个人免费观看高清视频| 中国美白少妇内射xxxbb| av播播在线观看一区| 久久青草综合色| 国产乱来视频区| 亚洲精华国产精华液的使用体验| 男的添女的下面高潮视频| 七月丁香在线播放| 精品久久久精品久久久| 精品99又大又爽又粗少妇毛片| 久久久国产精品麻豆| 国产成人免费观看mmmm| 国产亚洲欧美精品永久| 日韩亚洲欧美综合| 亚洲经典国产精华液单| 天堂8中文在线网| 十八禁高潮呻吟视频| 国产成人精品久久久久久| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲情色 制服丝袜| 又黄又爽又刺激的免费视频.| 亚洲国产欧美在线一区| 内地一区二区视频在线| 街头女战士在线观看网站| 简卡轻食公司| av有码第一页| 久久午夜福利片| 欧美日韩国产mv在线观看视频| 看十八女毛片水多多多| 综合色丁香网| 考比视频在线观看| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 在线看a的网站| 卡戴珊不雅视频在线播放| 80岁老熟妇乱子伦牲交| 桃花免费在线播放| 美女视频免费永久观看网站| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 欧美日韩成人在线一区二区| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 亚洲精品国产av成人精品| 看十八女毛片水多多多| 观看美女的网站| 乱人伦中国视频| 亚州av有码| 欧美成人午夜免费资源| 亚洲美女黄色视频免费看| 国产黄片视频在线免费观看| 精品人妻熟女av久视频| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片 | 亚洲精品456在线播放app| 99视频精品全部免费 在线| 一区在线观看完整版| 久久久久人妻精品一区果冻| 久热久热在线精品观看| 久久久久久久久久久免费av| 一区在线观看完整版| av国产久精品久网站免费入址| 亚洲不卡免费看| 久久人妻熟女aⅴ| 大香蕉久久成人网| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 亚洲性久久影院| 久久久久精品久久久久真实原创| 午夜老司机福利剧场| 久久国产精品男人的天堂亚洲 | 七月丁香在线播放| 一本大道久久a久久精品| 国产精品国产av在线观看| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 在线精品无人区一区二区三| 天天操日日干夜夜撸| 黑人猛操日本美女一级片| a 毛片基地| 少妇精品久久久久久久| 岛国毛片在线播放| av在线观看视频网站免费| 观看av在线不卡| 日日摸夜夜添夜夜爱| 国产视频内射| 熟女av电影| 人妻一区二区av| 成人国产麻豆网| 人人澡人人妻人| 一区二区三区免费毛片| 亚洲美女搞黄在线观看| 国产成人精品福利久久| 爱豆传媒免费全集在线观看| 51国产日韩欧美| av专区在线播放| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 国产成人精品无人区| 欧美日韩视频高清一区二区三区二| 日日啪夜夜爽| 五月伊人婷婷丁香| 亚洲欧美中文字幕日韩二区| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 免费看不卡的av| 免费观看无遮挡的男女| 两个人的视频大全免费| 国产一级毛片在线| xxx大片免费视频| 尾随美女入室| 一本久久精品| 免费高清在线观看视频在线观看| 精品亚洲乱码少妇综合久久| 免费av中文字幕在线| 亚洲中文av在线| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | 91国产中文字幕| 高清在线视频一区二区三区| 日韩强制内射视频| .国产精品久久| 狂野欧美激情性bbbbbb| 视频区图区小说| 秋霞伦理黄片| 卡戴珊不雅视频在线播放| 男女免费视频国产| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 欧美激情国产日韩精品一区| 一本大道久久a久久精品| 只有这里有精品99| videos熟女内射| 青春草亚洲视频在线观看| 夫妻性生交免费视频一级片| 在线免费观看不下载黄p国产| 国产欧美日韩综合在线一区二区| 青春草视频在线免费观看| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区| 老女人水多毛片| 亚洲国产精品一区三区| 你懂的网址亚洲精品在线观看| 亚洲精品第二区| 久久久久久久久大av| 91精品一卡2卡3卡4卡| 午夜福利影视在线免费观看| 大香蕉久久成人网| 丝袜喷水一区| 色视频在线一区二区三区| 大话2 男鬼变身卡| 18禁动态无遮挡网站| 少妇的逼好多水| 女性生殖器流出的白浆| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 亚洲国产欧美在线一区| 色婷婷av一区二区三区视频| 国产精品国产av在线观看| 一区二区三区免费毛片| 久久99精品国语久久久| 老女人水多毛片| 人人澡人人妻人| 欧美xxⅹ黑人| 中文字幕制服av| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看| 水蜜桃什么品种好| 国产一区二区在线观看av| 日韩视频在线欧美| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 亚洲不卡免费看| 搡老乐熟女国产| 成年美女黄网站色视频大全免费 | 色吧在线观看| 欧美激情国产日韩精品一区| 亚洲国产色片| 人人妻人人澡人人看| 在线观看免费视频网站a站| 国产精品久久久久久av不卡| 亚洲精品久久久久久婷婷小说| 极品少妇高潮喷水抽搐| 美女xxoo啪啪120秒动态图| 男女免费视频国产| 美女视频免费永久观看网站| 一级片'在线观看视频| 看十八女毛片水多多多| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看| 欧美日本中文国产一区发布| 熟女人妻精品中文字幕| 亚洲国产av影院在线观看| 免费看不卡的av| 亚洲av免费高清在线观看| 免费观看a级毛片全部| 秋霞伦理黄片| 一本久久精品| 成人黄色视频免费在线看|