• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE FIELD ALGEBRA IN HOPF SPIN MODELS DETERMINED BY A HOPF ?-SUBALGEBRA AND ITS SYMMETRIC STRUCTURE?

    2021-06-17 13:59:46魏曉敏蔣立寧

    (魏曉敏) (蔣立寧)

    School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

    E-mail:wxiaomin1509@163.com;jianglining@bit.edu.cn

    Qiaoling XIN(辛巧玲)

    School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China

    E-mail:xinqiaoling0923@163.com

    Abstract Denote a finite dimensional Hopf C?-algebra by H,and a Hopf?-subalgebra of H by H1.In this paper,we study the construction of the field algebra in Hopf spin models determined by H1 together with its symmetry.More precisely,we consider the quantum double D(H,H1)as the bicrossed product of the opposite dual of H and H1 with respect to the coadjoint representation,the latter acting on the former and vice versa,and under the non-trivial commutation relations between H1 and we define the observable algebra Then using a comodule action of D(H,H1)on we obtain the field algebra which is the crossed product and show that the observable algebra is exactly a D(H,H1)-invariant subalgebra of Furthermore,we prove that there exists a duality between D(H,H1)and implemented by a?-homomorphism of D(H,H1).

    Key words Comodule algebra;field algebra;observable algebra;commutant;duality

    1 Introduction

    A system is made up of a large number of composite subsystems called“atoms”,which can be in a certain small number of microstates.Each state σ of the system,given by a microstate assigned to every atom,possesses a certain energy E(σ).A mathematical description of the system and the energy function E(σ)is called a model([1]).Quantum chains considered as models of 1+1-dimensional quantum field theory exhibit many features,including braid group statistics and quantum symmetry.These interesting features can be discussed in terms of Hopf spin models as a general class of quantum chains and can be described by Drinfeld’s quantum double D(H)of the underlying Hopf algebra H.

    The most famous and fundamental of all models is the G-spin model,where G is a finite group.The G-spin models consist of atoms placed on the vertices and edges of a one-dimensional lattice,which can provide the simplest example of lattice field theory and exhibits quantum symmetry:

    Generally,G-spin models with abelian group G have a symmetry group G×^G,where^G denotes the Pontryagin dual of G(the group of characters of G).If G is non-abelian,the Pontryagin dual of G is meaningless.Szlachányi and Vecsernyés in[2]generalized G×^G to D(G),which is defined as the crossed product of algebra C(G)of complex functions on G and algebra CG,and can be interpreted as the order-disorder type of quantum symmetry of G-spin models.On the foundations of commutation relations of order-disorder operators,Szlachányi and Vecsernyés defined the field algebra F in G-spin models,and furthermore,established the observable algebra A as a D(G)-invariant subalgebra.However,as the disorder part of the double D(G),the algebra C(G)is always abelian,so G-spin models cannot be selfdual in the Kramers-Wannier sense([3]),unless the group G is abelian.Non-abelian Kramers-Wannier duality therefore needs to be considered in a larger class of models.It makes sense to further generalize the G-spin models in terms of the general models.In 1997,Nill and Szlachányi([4])studied the Hopf spin models as the generalization of G-spin models,since the finite group algebra CG is a Hopf C?-algebra of finite dimension.In Hopf spin models,there is a copy of finite dimensional Hopf C?-algebra H on each lattice site,and a copy of its dualon the link;non-trivial commutation relations are postulated only between neighboring links and sites,so the observable algebra A can be constructed by generators H and.Subsequently,the corresponding field algebra F is obtained under the coaction of D(H)on A.At the same time,V.Schomerus discussed the construction of field algebras with quantum symmetry from local algebras([5]).Specifically,it was shown that field algebras can be constructed by some field operators which are obtained by acting on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry,and that they obey local braid relations.

    The article[6]defines the field algebra FNdetermined by a normal subgroup N in G-spin models,where G is a finite group,and gives the observable algebra ANas the D(N,G)-invariant subalgebra of FN.Furthermore,the symmetric structure of FNis fulfilled by the double D(N,G),which is the crossed product of the algebra C(N)and group algebra CG.Motivated by all of the above,this paper considers a more general situation in Hopf spin models,which can be shown in the following one-dimensional lattice model:let H be a Hopf C?-algebra of finite dimension over a complex field,H1be a Hopf?-subalgebra of H,with the model consisting of copies of H1on lattice sites andon links together with non-trivial commutation relations between H1and,such that

    Then one can construct a C?-subalgebra AH1of the observable algebra A in Hopf spin models by generators H1and;this is called the observable algebra in Hopf spin models determined by H1.

    2 Preliminaries

    Definition 2.1([7]) Let(H,m,ι,Δ,ε,S)be a Hopf algebra over the complex field C.We say that H is a Hopf?-algebra if there exists an antilinear involution?on H satisfying the following two conditions:

    (1)the map?is an antimorphism of real algebras,as well as a morphism of real coalgebras.In other words,for every a∈H,

    (2)the map?is compatible with the antipode S of H,

    Definition 2.2([8]) Suppose that(H,Δ)is a pair of finite dimensional C?-algebra with a unital?-homomorphism Δ:H→H?H.We call this pair a Hopf C?-algebra if the following conditions hold:

    (1)(Δ?id)°Δ=(id?Δ)°Δ;

    (2)the linear spaces span{Δ(H)(H?1)}and span{Δ(H)(1?H)}both are equal to H?H.

    Such a Δ is called the comultiplication of H.(H,Δ)is said to be cocommutative if τ°Δ=Δ,where τ:H?H→H?H is a flip,τ(a?b)=b?a,a,b∈H.

    There exist linear maps

    satisfying the following properties:

    (1)ε is a unital?-homomorphism,and S is a unital?-preserving anti-multiplicative involution;

    (2)(ε?id)°Δ=(id?ε)°Δ=id;

    (3)m°(S?id)°Δ=m°(id?S)°Δ=ι°ε,where m,ι are the multiplication and unit,respectively.

    We say that ε is a counit,and S is an antipode of(H,Δ).In this case,(H,Δ,ε,S,?)is a Hopf C?-algebra of finite dimension.

    Example 2.4Let H be a finite dimensional Hopf C?-algebra.Then Drinfeld’s quantum double D(H)([7])is also a Hopf C?-algebra.

    Definition 2.5Let H be a Hopf?-algebra,and A be a?-algebra.A bilinear map γ:H?A→A is an action of H on A if the following hold for any a,b∈A,x,y∈H:

    In this case,A is called a left H-module algebra.

    Remark 2.6The map γ is assumed to be weakly continuous with respect to A and continuous with respect to some C?-norm on H(which is unique in the case of finite dimensionality).In the case of Hopf C?-algebra,γ is assumed to be continuously related to the C?-norm on H.

    Definition 2.7Let H be a Hopf algebra,and A be a coalgebra.If A is a left H-module with respect to the linear map γ:H?A→A,and the comultiplication and counit structure maps of A are H-module morphisms,namely,for any a,b∈A,x,y∈H,

    then A is said to be a left H-module coalgebra.

    For more detail about Hopf algebras one can refer to[9–12],and some definitions and properties about Hopf C?-algebras can be found in[13–17],etc..We now present Sweedler’s sigma notation,which is standard in Hopf algebra theory.Denote the comultiplication,the counit and the antipode of Hopf algebra H by Δ,ε and S,respectively.If c is an element of H,the element Δ(c)of H?H is of the form

    Moreover,if the coassociative law

    holds,then

    The counitary and antipode properties can be expressed by Sweedler’s notation as well.

    3 The Field Algebra Determined by D(H,H1)

    From now on,let(H,m,ι,Δ,ε,S,?)be a finite dimensional Hopf C?-algebra,and let H1be a Hopf?-subalgebra of H.Then H and H1are semisimple and involutive with S2=id([16]).We still denote the structure maps of H1by Δ,ε,S,and denote the dual of H1bywhich is also a Hopf C?-algebra.

    3.1 The quantum double D(H,H1)

    As shown in[18,19],the construction of Drinfeld’s double is investigated for any regular multiplier Hopf?-algebra pairings,which generalizes the quantum double construction of ordinary Hopf algebra pairings.In these papers,two dually paired regular multiplier Hopf?-algebras A and B,associated with a bilinear mapping〈·,·〉:A×B→C and satisfying certain properties,can yield a quantum double which is again a regular multiplier Hopf?-algebra.Delvaux and Van Daele in[19]constructed Drinfeld’s double related to the pairing〈A,B〉by using appropriate representations of A and B on the vector space B?A.If A and B are Hopf algebras,then the quantum double multiplier Hopf algebra is the usual quantum double.In particular,the finite dimensional Hopf?-algebrasand H1form a regular multiplier Hopf?-algebra pairing which allows us to construct the quantum double D(H,H1)by using appropriate representations.

    Now we review the definition of the quantum double D(H,H1).

    We will have one between us, continued the old dame; and as you are the visitor, you shall have the half which contains the stone; but be very careful that you don t swallow it, for I keep them against the winter, and you have no idea what a good fire they make

    Lemma 3.1Let H be a finite dimensional Hopf?-algebra,and let H1be a Hopf?-subalgebra of H.Let α:be the coadjoint representations given by

    in terms of(S°?)2=id for ?∈and x∈H1.Combining these results,D(H,H1)is a Hopf?-algebra. □

    A left invariant Haar functional on the Hopf algebra H is a non-zero linear map ?:H→C satisfying the property(id??)Δ(a)=?(a)1 for all a∈H.Similarly,a right invariant Haar functional is a linear map ψ:H→C with the property(ψ?id)Δ(a)=ψ(a)1.When the left and the right invariant Haar functionals coincide,we called it the Haar functional,or the Haar measure.If H is a Hopf C?-algebra of finite dimension,there exists a normalized Haar measure on H so that H is involutive([16]).Denoting λ,Λ as the normalized Haar measures onand H1,respectively,we then get that for ??x∈D(H,H1),

    defines a faithful positive linear functional on D(H,H1).According to the GNS construction([20]),the map〈·,·〉:D(H,H1)→C given by〈??x,ψ?y〉=θ((ψ?y)?(??x))is an inner product on D(H,H1)such that D(H,H1)is a Hilbert space.For each ??x∈D(H,H1),

    is a faithful?-representation on D(H,H1),so D(H,H1)is a C?-algebra of finite dimension with C?-norm([21])

    Therefore the quantum double D(H,H1)is a Hopf C?-algebra of finite dimension.

    3.2 The field algebra in Hopf spin models determined by a Hopf?-subalgebra

    With the assumptions and notations as above,H is a finite dimensional Hopf C?-algebra,and H1is a Hopf?-subalgebra of H.We denote the elements of D(H,H1)by ?x instead of ??x=just to make the subsequent computation clearer.Thus D(H,H1)can be denoted as a?-algebra generated by H1andtogether with the following cross relation,which is in accord with the relation(3.1):

    Here x∈H1,?∈,and(x?)?=??x?.The structure maps Δ,ε and S are still adopted as relations(3.2)?(3.4).

    The dual Hopf?-algebra of the D(H,H1)is determined by the following structure maps(we still denote them by Δ,ε,S):

    Remark 3.5By the antipode of H1,together with the relation S2=id,the commutation relations above are equivalent to the following relations:

    Our method for constructing the field algebra determined by H1will be to give the coaction of D(H,H1)on the local observable algebraof the finite interval.Here we review some conceptions of right comodule algebra.

    Definition 3.7([9]) Let(H,m,ι,Δ,ε)be a bialgebra.If an algebra A is also a right H-comodule with respect to the map γ:A→A?H,that is,

    and the structure maps,multiplication and unit of A are right H-comodule morphisms,namely,when

    then A is said to be a right H-comodule algebra.

    Actually,A is a right H-comodule algebra if and only if A has an H-comodule structure given by a map γ:A→A?H,and the map γ is a morphism of algebras.

    Then the coaction of D(H,H1)onis given by the follows:

    Proposition 3.8For i∈Z,the linear maps ρ2i,2i+1:A2i,2i+1→A2i,2i+1?D(H,H1)with respect to the natural comultiplicationwhich are given by

    and

    which forms the desired result.

    and the penultimate equation follows from the relation S2=id in D(H,H1).Hence the local observable algebra of finite interval A2i,2i+1is a right D(H,H1)-comodule algebra. □

    Remark 3.9We have an equivalent definition of ρ2i,2i+1as follows:

    Similarly,there is a right(D(H,H1),Δop)-comodule algebrastructure on the algebra A2i?1,2i,i∈Z given by

    Now we construct the coaction of D(H,H1)on the local observable algebra of finite interval A2i,2i+2n+1(n∈N).According to iterated application of the Takesaki duality theorem,we have the?-algebra inclusion

    where Ti,i+1is given by

    Next,we put

    Then Li,i+2n+1and Ri,i+2n+1define?-algebra inclusions.

    Therefore,when n≥1,we can define ρ2i,2i+2n+1:A2i,2i+2n+1→A2i,2i+2n+1?D(H,H1)by

    obeys the following relation:

    and ρε(A)=A,meaning that the comodule algebra structure of D(H,H1)on the algebra A2i,2i+1uniquely determines the module algebra structure on A2i,2i+1fulfilled by the map

    Using the continuity and uniqueness of the C?-inductive limit,one can get

    and,

    Remark 3.12Sinceis a left D(H,H1)-module algebra,and D(H,H1)is a semisimple algebra([21]),the field algebrais completely reducible,and can be decomposed into a direct sum

    Here we omit the proofs,since the above result can be obtained in the following way:for locally compact quantum groups in a von Neumann algebraic setting,the fixed point subalgebra of the crossed product N?M,associated to the the natural dual action ofon N?M,is given by the original algebra N([26]).Furthermore,in the algebraic framework,this property also holds for algebraic quantum groups without the assumption on the topological structure([27]).

    In particular,we have

    Corollary 3.14where Z∈D(H,H1)is a normalized integral.

    4 The Duality Between the Observable Algebra and D(H,H1)

    This section will consider the symmetric structure of field algebra in Hopf spin models determined by a Hopf?-subalgebra.

    This is exactly

    One can verify that

    Now we come to the final result of this section,which gives a duality between the finite dimensional C?-algebra D(H,H1)and the observable algebraand thus exhibits the quantum symmetry in Hopf spin models determined by H1exactly.

    Theorem 4.2With the assumptions and notations as above,

    or

    where the equality follows from the fact that U(D(H,H1))′is a von Neumann algebra,and is thus closed in the weak operator topology.

    The last shows that

    In particular,letting X=Z be the normalized integral of D(H,H1),one can get

    九草在线视频观看| 欧美日韩综合久久久久久| 老司机靠b影院| 色播在线永久视频| 91老司机精品| 少妇猛男粗大的猛烈进出视频| 久久国产精品人妻蜜桃| 搡老乐熟女国产| 一级毛片电影观看| 各种免费的搞黄视频| 黄色片一级片一级黄色片| 在线观看免费午夜福利视频| 99精品久久久久人妻精品| 汤姆久久久久久久影院中文字幕| 亚洲五月婷婷丁香| 国产一区二区三区av在线| 欧美日韩视频精品一区| 欧美日韩视频精品一区| 少妇人妻 视频| 国产精品亚洲av一区麻豆| 2018国产大陆天天弄谢| 熟女少妇亚洲综合色aaa.| 久久影院123| 男女高潮啪啪啪动态图| 激情五月婷婷亚洲| 搡老乐熟女国产| 久久人人爽av亚洲精品天堂| 看免费av毛片| 午夜福利影视在线免费观看| 亚洲国产精品成人久久小说| 亚洲欧美精品综合一区二区三区| 亚洲精品成人av观看孕妇| 又紧又爽又黄一区二区| 看免费av毛片| 日日摸夜夜添夜夜爱| 久久 成人 亚洲| 国产av国产精品国产| 久久综合国产亚洲精品| av天堂久久9| 国产精品 欧美亚洲| 日韩中文字幕视频在线看片| 久久久久视频综合| 婷婷丁香在线五月| e午夜精品久久久久久久| 亚洲欧美成人综合另类久久久| 国产成人一区二区三区免费视频网站 | 免费一级毛片在线播放高清视频 | 亚洲精品久久午夜乱码| 亚洲 欧美一区二区三区| 中国国产av一级| 国产成人啪精品午夜网站| 成人三级做爰电影| 大片电影免费在线观看免费| 十分钟在线观看高清视频www| 美女大奶头黄色视频| 精品福利永久在线观看| 国产精品一区二区在线观看99| 国产av精品麻豆| 久久中文字幕一级| 你懂的网址亚洲精品在线观看| 国产高清不卡午夜福利| 国产成人一区二区在线| 深夜精品福利| 男女床上黄色一级片免费看| 亚洲男人天堂网一区| 欧美老熟妇乱子伦牲交| 久久精品熟女亚洲av麻豆精品| 欧美在线黄色| 国产日韩欧美在线精品| 中文字幕制服av| 在线亚洲精品国产二区图片欧美| 91成人精品电影| 在现免费观看毛片| 色婷婷久久久亚洲欧美| 色婷婷久久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 9热在线视频观看99| 一级黄色大片毛片| 水蜜桃什么品种好| 欧美日韩黄片免| 极品少妇高潮喷水抽搐| 国产午夜精品一二区理论片| 深夜精品福利| 中文字幕另类日韩欧美亚洲嫩草| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 久久久久国产一级毛片高清牌| 少妇猛男粗大的猛烈进出视频| 下体分泌物呈黄色| 少妇粗大呻吟视频| 亚洲国产成人一精品久久久| 国精品久久久久久国模美| 国产片特级美女逼逼视频| 女人被躁到高潮嗷嗷叫费观| 日韩精品免费视频一区二区三区| 中文字幕亚洲精品专区| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美在线一区二区| 日韩一本色道免费dvd| 国产精品一国产av| 精品欧美一区二区三区在线| 人人澡人人妻人| 又紧又爽又黄一区二区| 国产野战对白在线观看| 亚洲国产精品999| 美女大奶头黄色视频| 午夜老司机福利片| 一级片'在线观看视频| 国产免费视频播放在线视频| 91九色精品人成在线观看| 成年人午夜在线观看视频| 婷婷色av中文字幕| 天天躁夜夜躁狠狠躁躁| 久久毛片免费看一区二区三区| 大香蕉久久网| 日韩av不卡免费在线播放| 日本午夜av视频| 亚洲成人免费av在线播放| 巨乳人妻的诱惑在线观看| 在线亚洲精品国产二区图片欧美| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 国产精品久久久人人做人人爽| 啦啦啦 在线观看视频| 男女下面插进去视频免费观看| 欧美日韩成人在线一区二区| 别揉我奶头~嗯~啊~动态视频 | av网站免费在线观看视频| 国产精品偷伦视频观看了| 亚洲成国产人片在线观看| 91老司机精品| 欧美日韩精品网址| 久久精品国产a三级三级三级| 两个人免费观看高清视频| 亚洲精品美女久久av网站| 黄频高清免费视频| 久久99精品国语久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲av电影在线观看一区二区三区| 日日夜夜操网爽| 老司机深夜福利视频在线观看 | 婷婷成人精品国产| 精品人妻一区二区三区麻豆| 欧美黑人精品巨大| 男女之事视频高清在线观看 | 50天的宝宝边吃奶边哭怎么回事| 精品久久久精品久久久| 国产片特级美女逼逼视频| 中文字幕制服av| 日韩视频在线欧美| 国产一区二区三区综合在线观看| 99国产精品一区二区蜜桃av | 国产精品人妻久久久影院| 91老司机精品| 国产片特级美女逼逼视频| 亚洲专区中文字幕在线| 青春草视频在线免费观看| 精品久久久久久久毛片微露脸 | 欧美人与善性xxx| 欧美激情高清一区二区三区| 99精品久久久久人妻精品| 国产亚洲午夜精品一区二区久久| 看免费av毛片| 亚洲自偷自拍图片 自拍| 亚洲专区中文字幕在线| 亚洲国产看品久久| 最近中文字幕2019免费版| 久久九九热精品免费| 一级片'在线观看视频| 欧美乱码精品一区二区三区| 97精品久久久久久久久久精品| 欧美亚洲日本最大视频资源| 青春草视频在线免费观看| 巨乳人妻的诱惑在线观看| 亚洲精品一区蜜桃| 另类亚洲欧美激情| 精品国产一区二区三区久久久樱花| 一区在线观看完整版| 国产精品免费大片| xxxhd国产人妻xxx| 午夜两性在线视频| 亚洲成人免费av在线播放| 19禁男女啪啪无遮挡网站| 一级,二级,三级黄色视频| 国产成人av教育| svipshipincom国产片| 日日爽夜夜爽网站| 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕av电影在线播放| 下体分泌物呈黄色| 国产亚洲精品第一综合不卡| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 国产精品人妻久久久影院| 黑人欧美特级aaaaaa片| 精品国产国语对白av| 亚洲精品第二区| 中文字幕亚洲精品专区| 日韩电影二区| a级毛片在线看网站| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 黄色怎么调成土黄色| 国产高清视频在线播放一区 | 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 嫩草影视91久久| 老司机影院毛片| 成人国语在线视频| 午夜91福利影院| 亚洲少妇的诱惑av| 国产成人精品在线电影| 国产国语露脸激情在线看| 咕卡用的链子| 人人妻,人人澡人人爽秒播 | xxx大片免费视频| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 亚洲成av片中文字幕在线观看| 欧美精品一区二区大全| 色婷婷av一区二区三区视频| 国产精品一区二区免费欧美 | 日韩中文字幕欧美一区二区 | 91老司机精品| 亚洲精品一卡2卡三卡4卡5卡 | www.自偷自拍.com| 亚洲三区欧美一区| 少妇精品久久久久久久| 国产高清不卡午夜福利| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 欧美变态另类bdsm刘玥| 亚洲国产精品一区二区三区在线| 亚洲伊人久久精品综合| 两个人看的免费小视频| 热re99久久精品国产66热6| av视频免费观看在线观看| 亚洲七黄色美女视频| 久久久久久亚洲精品国产蜜桃av| 脱女人内裤的视频| 丝瓜视频免费看黄片| 国产亚洲精品久久久久5区| 一级毛片 在线播放| 欧美性长视频在线观看| 18禁国产床啪视频网站| 69精品国产乱码久久久| 国语对白做爰xxxⅹ性视频网站| 在线亚洲精品国产二区图片欧美| 免费少妇av软件| 在线天堂中文资源库| 99热国产这里只有精品6| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 91麻豆精品激情在线观看国产 | 制服人妻中文乱码| 九色亚洲精品在线播放| 国产av一区二区精品久久| 国产成人精品久久久久久| 日韩大片免费观看网站| a级毛片黄视频| 日韩精品免费视频一区二区三区| 性色av乱码一区二区三区2| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看视频在线观看| 国产免费视频播放在线视频| 国产xxxxx性猛交| 免费人妻精品一区二区三区视频| 亚洲精品乱久久久久久| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区国产| 国产日韩欧美亚洲二区| 精品人妻熟女毛片av久久网站| 免费观看av网站的网址| av福利片在线| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看 | xxx大片免费视频| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 51午夜福利影视在线观看| 啦啦啦在线观看免费高清www| 国产黄色视频一区二区在线观看| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品自产自拍| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 男女无遮挡免费网站观看| 一区二区日韩欧美中文字幕| www.999成人在线观看| 国产有黄有色有爽视频| 亚洲精品自拍成人| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 亚洲美女黄色视频免费看| 亚洲成人手机| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 久久精品久久精品一区二区三区| 国产淫语在线视频| 婷婷色麻豆天堂久久| 多毛熟女@视频| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| 一区二区av电影网| 国产免费视频播放在线视频| 亚洲欧美激情在线| 精品一区二区三卡| 51午夜福利影视在线观看| 日韩制服骚丝袜av| 啦啦啦在线免费观看视频4| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 午夜老司机福利片| 亚洲欧美清纯卡通| tube8黄色片| 母亲3免费完整高清在线观看| 欧美国产精品一级二级三级| 97精品久久久久久久久久精品| 国产成人一区二区在线| 人人妻人人澡人人看| 精品久久久精品久久久| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 妹子高潮喷水视频| www.av在线官网国产| 欧美日韩福利视频一区二区| 色播在线永久视频| 搡老岳熟女国产| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 久久久精品免费免费高清| 久久久精品国产亚洲av高清涩受| 男人操女人黄网站| 精品福利观看| 在线观看www视频免费| 亚洲专区中文字幕在线| 国产av一区二区精品久久| 久久99一区二区三区| 久久久久视频综合| 中文字幕精品免费在线观看视频| 久久狼人影院| 99国产综合亚洲精品| 成人黄色视频免费在线看| 91精品伊人久久大香线蕉| 午夜免费成人在线视频| 五月开心婷婷网| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 久久这里只有精品19| 欧美乱码精品一区二区三区| 日本91视频免费播放| 国产成人精品久久久久久| 午夜久久久在线观看| 久久久久久免费高清国产稀缺| 国产精品九九99| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 国产成人精品无人区| av天堂久久9| 国产无遮挡羞羞视频在线观看| 在线天堂中文资源库| 国产麻豆69| 日本欧美国产在线视频| 青春草视频在线免费观看| 亚洲五月婷婷丁香| 一级毛片女人18水好多 | 看十八女毛片水多多多| 两人在一起打扑克的视频| 夜夜骑夜夜射夜夜干| 男人添女人高潮全过程视频| 伊人亚洲综合成人网| 国产成人av激情在线播放| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片 | 久久99热这里只频精品6学生| 欧美日韩黄片免| 午夜福利在线免费观看网站| 桃花免费在线播放| 在线 av 中文字幕| 国产精品久久久人人做人人爽| 欧美日韩成人在线一区二区| 免费在线观看日本一区| 精品人妻1区二区| 亚洲av日韩在线播放| 久久ye,这里只有精品| 老汉色∧v一级毛片| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片| www日本在线高清视频| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 亚洲精品第二区| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 性少妇av在线| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 亚洲国产中文字幕在线视频| 91字幕亚洲| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 亚洲国产精品国产精品| 国产精品 国内视频| 在线观看免费高清a一片| 国产精品香港三级国产av潘金莲 | 国产无遮挡羞羞视频在线观看| 亚洲国产毛片av蜜桃av| 国产黄频视频在线观看| 丁香六月欧美| 亚洲人成网站在线观看播放| 在线观看免费午夜福利视频| 中文乱码字字幕精品一区二区三区| h视频一区二区三区| 久久九九热精品免费| 欧美国产精品va在线观看不卡| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 丁香六月欧美| 午夜免费观看性视频| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 久久久精品94久久精品| 自线自在国产av| 在线看a的网站| 丰满迷人的少妇在线观看| 两性夫妻黄色片| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 看免费av毛片| 亚洲精品美女久久av网站| 久久综合国产亚洲精品| 日本五十路高清| 国产成人影院久久av| 亚洲欧美清纯卡通| 老汉色av国产亚洲站长工具| 久久久久视频综合| 免费看av在线观看网站| 国产免费福利视频在线观看| 丁香六月欧美| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 在线 av 中文字幕| 亚洲国产日韩一区二区| 多毛熟女@视频| 人人妻,人人澡人人爽秒播 | 老司机影院毛片| 在线av久久热| 成年av动漫网址| 亚洲精品自拍成人| netflix在线观看网站| 国产成人精品在线电影| 午夜久久久在线观看| 精品人妻1区二区| 汤姆久久久久久久影院中文字幕| 亚洲中文字幕日韩| 久久久久久久久久久久大奶| 亚洲欧美精品综合一区二区三区| 精品少妇黑人巨大在线播放| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 人人妻人人添人人爽欧美一区卜| 日韩 欧美 亚洲 中文字幕| 成人三级做爰电影| 一区福利在线观看| 亚洲国产中文字幕在线视频| 精品国产一区二区三区四区第35| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| www.自偷自拍.com| 日本wwww免费看| 国产在线一区二区三区精| 久久这里只有精品19| 99久久人妻综合| 国产成人一区二区三区免费视频网站 | 欧美国产精品va在线观看不卡| 男女之事视频高清在线观看 | 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| av欧美777| 一级毛片电影观看| 国产欧美日韩一区二区三 | 免费不卡黄色视频| 91成人精品电影| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| 97人妻天天添夜夜摸| 电影成人av| 亚洲五月色婷婷综合| 免费人妻精品一区二区三区视频| 一级黄色大片毛片| 十八禁人妻一区二区| 亚洲精品在线美女| 久9热在线精品视频| 国产成人欧美| 国产极品粉嫩免费观看在线| 日韩制服丝袜自拍偷拍| 一区二区av电影网| 丁香六月天网| 91麻豆av在线| 人妻 亚洲 视频| 中国国产av一级| 欧美日本中文国产一区发布| 亚洲欧美日韩高清在线视频 | 9191精品国产免费久久| 免费高清在线观看日韩| 日日夜夜操网爽| 久久久国产精品麻豆| 日日爽夜夜爽网站| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 岛国毛片在线播放| 国产成人啪精品午夜网站| 精品少妇内射三级| 亚洲第一青青草原| 免费久久久久久久精品成人欧美视频| 十八禁高潮呻吟视频| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 成年人黄色毛片网站| 丰满饥渴人妻一区二区三| 欧美成狂野欧美在线观看| 亚洲国产欧美日韩在线播放| 国产精品秋霞免费鲁丝片| 欧美av亚洲av综合av国产av| xxx大片免费视频| 一区福利在线观看| 国产精品一区二区免费欧美 | 久久精品aⅴ一区二区三区四区| 狂野欧美激情性xxxx| 欧美97在线视频| av网站在线播放免费| kizo精华| 99国产精品99久久久久| 精品国产乱码久久久久久男人| www日本在线高清视频| 高清黄色对白视频在线免费看| 无限看片的www在线观看| 国产伦人伦偷精品视频| 免费日韩欧美在线观看| 男女免费视频国产| 9热在线视频观看99| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| 两性夫妻黄色片| 999久久久国产精品视频| 日本wwww免费看| 欧美av亚洲av综合av国产av| 亚洲精品国产一区二区精华液| 久久毛片免费看一区二区三区| 欧美久久黑人一区二区| 国产在线免费精品| 女人爽到高潮嗷嗷叫在线视频| 男女免费视频国产| 少妇 在线观看| 日本av免费视频播放| 成年av动漫网址| 七月丁香在线播放| 国产淫语在线视频| 久久影院123| 亚洲精品美女久久久久99蜜臀 | 国产一区二区激情短视频 | 色婷婷久久久亚洲欧美| 久久天躁狠狠躁夜夜2o2o | 香蕉国产在线看| 亚洲 国产 在线| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 亚洲av日韩精品久久久久久密 | 国产真人三级小视频在线观看| 成人三级做爰电影| a级片在线免费高清观看视频| av国产精品久久久久影院| 最近中文字幕2019免费版| 丝袜脚勾引网站| 久久精品亚洲av国产电影网|