• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UNIQUENESS OF THE INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION?

    2021-06-17 13:59:50向建立嚴(yán)國政
    關(guān)鍵詞:國政

    (向建立) (嚴(yán)國政)

    School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China

    E-mail:xiangjl@mails.ccnu.edu.cn;yangz@mail.ccnu.edu.cn

    Abstract This paper considers the inverse acoustic wave scattering by a bounded penetrable obstacle with a conductive boundary condition.We will show that the penetrable scatterer can be uniquely determined by its far-field pattern of the scattered field for all incident plane waves at a fixed wave number.In the first part of this paper,adequate preparations for the main uniqueness result are made.We establish the mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves.Then the well-posedness of a modified interior transmission problem is deeply investigated by the variational method.Finally,the a priori estimates of solutions to the general transmission problem with boundary data in Lp(?Ω)(1

    Key words Acoustic wave;uniqueness;mixed reciprocity relation;modified interior transmission problem;a priori estimates

    1 Introduction

    The inverse scattering problem we are concerned with here is determining the shape of an obstacle by measurements of the far-field patterns of acoustic waves.We are interested in the scattering of a penetrable obstacle covered by a thin layer of high conductivity;that is,the so-called conductive boundary condition([1,2]),which is a generalization of the classical transmission problem.

    Let ? denote a penetrable bounded open domain in R3withconnected.Let n(x)be the refractive index,let k>0 be the wave number,and set a jump parameter λ∈C{0}and a complex-valued functionμon the smooth boundary??.Then the conductive scattering problem we consider is modeled as follows:

    where u=ui+usis the total field,which is a superposition of the incident wave ui=ui(x,d):=eikx·d(note that the incident wave will be a plane wave or a point source in our later proofs and that d denotes the incident direction)and the scattered wave us,and ν is the unit outward normal to the boundary??.Here,u±anddenote the limit of u andfrom the exterior(+)and interior(?),respectively.Furthermore,the scattered field ussatisfies the Sommerfeld radiation condition

    and the convergence holds uniformly with respect to=x/|x|∈S,where S denotes the unit sphere in R3.

    Referring to Section 2 of paper[4],we make following assumptions on n,λ andμto guarantee the well-posedness of the direct problem(1.1):

    Assumption 1.1(1)The refractive function n∈L∞(?)satisfies Re(n)>0 and Im(n)≥0 almost everywhere(a.e.)in ?.

    (2)λ is a non-zero complex constant,such that there exists>0,such that Re(λ)≥and Im(λ)≤0,Im(λn)≥0 a.e.in ?.

    (3)μ∈L∞(??)with Re(μ)≤0 and Im(μ)≥0 a.e.on??.

    It is well known that the radiating solution ushas the asymptotic expansion

    uniformly for all directions=x/|x|∈S.Here,u∞is called the far-field pattern of us,which is an analytic function defined on S.

    The problem of uniqueness in the inverse obstacle scattering theory is of central importance both for the theoretical study and the implementation of numerical algorithms in acoustic,electromagnetic,fluid-solid interaction and elastic waves,etc..The first uniqueness result was shown by Schiffer[20]in acoustic waves with a Dirichlet boundary condition whose argument cannot be transferred to other boundary conditions.In 1990,Isakov[17]gave a uniqueness proof for transmission problems(ui=ue,?ue/?ν=μ?ui/?ν,μ/=1)based on the variational method by constructing a sequence of singular solutions.In 1993,Kirsch and Kress[18]simplified Isakov’s proof and also transferred it to the Neumann boundary condition by proving a continuous dependence result in a weighted Banach space of continuous functions.In the same year,Ramm[31]used a new method to prove the uniqueness of the impenetrable obstacle with a Dirichlet or Neumann boundary condition.

    In 1994,Hettlich[16]achieved the uniqueness theorem for the general conductive boundary condition(u+?u?=0,?u+/?ν?μ?u?/?ν=λu,the interior wave number is a constant)based on the idea of Isakov.Furthermore,the uniqueness of coefficientsμ,λ and the constant interior wave number were also proven.Later,in 1996,Gerlach and Kress[12]simplified and shortened the analysis of Hettlich.In order to present a refinement in the case when the boundary of the scatterer is allowed to have irregularities,in 1998,Mitrea[24]studied its uniqueness dependent upon boundary integral techniques and the Calderón-Zygmund theory.In 2004,Valdivia[33]worked on the uniqueness again based on the original idea of Isakov.Since then,there have been many other uniqueness problems,such as impenetrable scatterers with an unknown type of boundary condition([10,19]),local uniqueness([13,32]),penetrable orthotropic[11]or anisotropic inhomogeneous obstacles([14,25]),a piecewise homogeneous medium([21–23]),etc..

    In this paper,we again consider the uniqueness of the inverse transmission scattering with a conductive boundary condition by an inhomogeneous medium.The idea is inspired by[29](an inhomogeneous acoustic cavity),[30](fluid-solid interaction with embedded obstacles)and[34](penetrable obstacles with embedded objects in acoustic and electromagnetic scattering).Hence,before showing the main uniqueness proof,we discuss some important preparations,which are also of interest in their own right.

    Firstly,we establish a mixed reciprocity relation between the far-field pattern corresponding to point sources and the scattered field corresponding to plane waves of this general transmission problem.The mixed reciprocity relation was shown in[26](Theorem1)for sound-soft and sound-hard obstacles,in[9](Theorem 3.24)for generalized impedance objects,in[28](Theorem 2.2.4)for inhomogeneous media,and in[23]for a piecewise homogeneous medium,etc..In the derivation of(2.1)and the above references,we can conclude that the relation for y∈R3? is valid for all possible boundary conditions of penetrable or impenetrable scatterers.Furthermore,for y∈?,relation(2.1)has a close connection with the jump parameter λ(Lemma 3.2 in[23]),but that disregards the complex-valued functionμ.

    Secondly,we study the well-posedness of a modified interior transmission problem by the variational method.Though the interior transmission problems have been deeply investigated in the book[6],there are few results about the conductive boundary([3,15]for λ=1).The well-posedness is achieved under some limitations on λ andμ,and the discreteness of interior transmission eigenvalues is a by-product.In the future,we want to conduct further research on the interior transmission eigenvalues problem.

    Thirdly,we prove the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    Finally,the novel and simple method for proving the uniqueness of the conductive boundary by its far field pattern is easy to implement for our inverse transmission problem.

    The remainder section of the paper is organized as follows:Section 2 is devoted to making preparations;we show a mixed reciprocity relation,investigate the well-posedness of a modified interior transmission problem,and construct the a priori estimates of solutions to the general transmission problem with boundary data in Lp(??)(1

    2 Preparations

    In this section,we make some necessary preparations before showing the uniqueness of the inverse problem(1.1).

    2.1 Mixed reciprocity relation

    where the last equality is obtained by adding formula(2.2).

    Using Green’s representation theorem again,for y∈

    Applying Green’s second integral theorem to ui(·,d)and Φk(·,y)in ? yields

    Adding up the previous two equalities,we arrive at

    Combining(2.3)with(2.4),we find that

    Use the conductive boundary condition and Green’s formula in ?,we conclude that

    This implies that 4πu∞(?d;y)=us(y,d)for all d∈S,y∈

    Secondly,we consider the case y∈?.Recalling equality(2.3),which holds also for y∈?,using the conductive boundary condition,we obtain

    The last equality is obtained completely similar to the proof of(3.13)to(3.14)in Lemma 3.2([23]).

    On the other hand,with the help of Green’s representation formula,we know that

    Combining(2.5)with(2.6)and using the conductive boundary condition,we have

    For y∈?,both Φk(·,y)and us(·,d)satisfy the Helmholtz equation inand the Sommerfeld radiation condition(1.2),hence

    Consequently,

    This implies that 4πu∞(?d;y)=λus(y,d)+(λ?1)ui(y,d)for all d∈S,y∈?.The proof is complete. □

    Remark 2.2If there is a buried object inside ?,Theorem 2.1 also holds.Lemma 3.2 in[23]is a special case when n is a constant andμ=0 a.e.on??.

    Remark 2.3Theorem 2.1 also holds in two dimensional space with some modifications of the coefficient.

    2.2 Modified interior transmission problem

    Given ?1,?2∈L2(?),f1∈H1/2(??),f2∈H?1/2(??),we consider the following modified interior transmission problem:

    In order to reformulate(2.7)as an equivalent variational problem,we define the Hilbert space

    Using the conductive boundary condition in(2.7),we see that

    wherev=?v,and thenv∈X.After arranging,we obtain that

    We multiply the first equation in(2.7)by a test function ψ∈X.Similarly,integrating in ?and using the boundary condition,we obtain

    that is

    Based on the above calculations,we introduce the sesquilinear form A1(U,V),defined on{H1(?)×X}2by

    whereU:=(w,v)andV:=(?,ψ)are in H1(?)×X.We denote by L1:H1(?)×X?→C the bounded antilinear functional given by

    Therefore,the variational formulation of problem(2.7)is to findU=(w,v)∈H1(?)×X such that

    Changing the roles of w and v,we can obtain another different variational formulation of problem(2.7);namely,we multiply the first equation in(2.7)by a test function ?∈H1(?)and the second equation by a test function ψ∈X,integrate in ?,and use the boundary condition to obtain

    wherew=?w,and thenw∈X.

    We introduce the sesquilinear form A2(U,V)defined on{H1(?)×X}2and the bounded antilinear functional L2:H1(?)×X?→C given by

    where U:=(v,w)and V:=(?,ψ)are in H1(?)×X.Then,the variational formulation of problem(2.7)is to find U=(v,w)∈H1(?)×X such that

    The following Theorem states the equivalence between problems(2.7)and(2.8)or(2.9)(the detailed proof is the same as that of Theorem 3.3 in the paper[7]and Theorem 6.5 in the book[5],so for brevity we omit it here):

    Theorem 2.4Problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)if and only if problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X or problem(2.9)has a unique solution U=(v,w)∈H1(?)×X.

    Now,we investigate the modified interior transmission problem in the variational formulations(2.8)and(2.9).

    Theorem 2.5(1)If Re(λ)≥>1 and Re(μ)≤0,then the variational problem(2.8)has a unique solutionU=(w,v)∈H1(?)×X that satisfies

    where cj>0(j=1,2)is independent of ?1,?2,f1and f2.

    ProofThe trace theorems and Schwarz’s inequality ensure the continuity of the antilinear functional Lj(j=1,2)on H1(?)×X and the existence of a constant cjwhich is independent of ?1,?2,f1and f2such that

    For the first part,ifU=(w,v)∈H1(?)×X,the assumptions that Re(λ)≥>1 and Re(μ)≤0 imply that

    For the second part,if U=(v,w)∈H1(?)×X,the assumptions that 0<≤Re(λ)<1 and Re(μ)≡0 imply that

    Hence Aj(j=1,2)is coercive.The continuity of Ajfollows easily from Schwarz’s inequality and the classical trace theorems.Then Theorem 2.5 is a direct consequence of the Lax-Milgram Lemma applied to(2.8)and(2.9). □

    Combining the above two Theorems 2.4 and 2.5,we obtain the well-posedness of the modified interior transmission problem(2.7).

    Theorem 2.6Assume that Re(λ)≥>1,Re(μ)≤0 or 0<≤Re(λ)<1,Re(μ)≡0.Then the modified interior transmission problem(2.7)has a unique solution(w,v)∈H1(?)×H1(?)that satisfies

    Using the analytic Fredholm theory(see Section 8.5 in the book[9]),we get a by-product regarding the discreteness of the following interior transmission eigenvalues problem:

    Definition 2.7Values of k for which the above interior transmission problem(2.10)has a nontrivial solution pair(v,w)∈H1(?)×H1(?)are called transmission eigenvalues.

    Before we establish the discreteness result,we first study the case when there are no real transmission eigenvalues.

    Lemma 2.8Assume that n,λ andμsatisfy Assumption 1.1.If either Im(λ)<0 or Im(n)>0 almost everywhere in ?,then there are no real transmission eigenvalues of the problem(2.10).

    ProofLet v and w be a solution pair of the interior transmission problem(2.10).Applying Green’s identity to v and w,we have

    Since Im(μ)≥0,Im(λ)≤0,Im(λn)≥0,we have that

    If Im(λ)<0 a.e.in ?,then?w=0 in ?,from the equation w=0.From the boundary condition in(2.10)and the integral representation formula,v also vanishes in ?.

    If Im(λ)=0 and Im(n)>0 a.e.in ?,then λ≥>0 and Im(λn)=λIm(n)>0.Hence,w=0 and v=0 in ?.This completes the proof. □

    Remark 2.9From the proof of Lemma 2.8,we conclude that k may be an interior transmission eigenvalue of(2.10)if Im(λ)=0 and Im(n)=0.In this case,if Im(μ)>0 almost everywhere on??,we further obtain that v=0 on??,whence the eigenvalues of(2.10)form a subset of the classical Dirichlet eigenvalues of?Δ in ?.

    Theorem 2.10Assume that n,λ andμsatisfy Assumption 1.1 and that Im(λ)=0 and Im(n)=0.If either λ≥>1,Re(μ)≤0 or 0<≤λ<1,Re(μ)≡0,then the transmission eigenvalues of(2.10)form a discrete(possibly empty)set with+∞as the only possible accumulation point.

    ProofLet us set

    Since(Fi,1?Fk,n)(w,v)=(?(1+k2)v,?(1+k2n)w,0,0)is compact based on the compact embedding of H1(?)to L2(?),we conclude that the transmission eigenvalues form a discrete(possibly empty)set with+∞as the only possible accumulation point by the analytic Fredholm theory(Section 8.5 of the book[9]).The proof is complete. □

    Remark 2.11For the case λ=1,the discreteness and existence of the transmission eigenvalues have been proven clearly in[3].

    2.3 A priori estimates for the transmission problem with Lp data

    By employing the boundary integral equation method([8,27,34]),we establish the a priori estimates of the solution to the following general transmission problem(2.11)with boundary data in Lp(??)(1

    We introduce the single-and double-layer boundary integral operators

    and their normal derivative operators

    Theorem 2.12Assuming that n,λ andμsatisfy Assumption 1.1.For h1,h2∈Lp(??)with 4/3≤p<2,the transmission problem(2.11)has a unique solution pair(w1,w2)∈satisfying that

    where BRdenotes a large ball centered at the origin with radius R such thatand C is a positive constant depending on R.

    ProofIn order to apply the boundary integral equation method,we divide our proof into two steps(refer to Theorem 2.5 in[34]).

    Step OneAssume that k2n(x)≡>0 is a constant.We seek a solution pairof problem(2.11)in the following form:

    Here,I denotes the identity operator.Then the transmission problem(2.11)can be reduced to a system of the integral equations

    where the integral matrix operator A is given by

    Since all elements of A are compact operators in the corresponding Banach spaces,it is easy to see that A+I(I denotes the identity matrix)is a Fredholm operator with index zero.Together with the uniqueness of the direct transmission problem(2.11),there exists a unique solution(?,ψ)∈Lp(??)×Lp(??)of system(2.13)satisfying the estimate

    Referring to inequalities(2.22)and(2.23)in the paper[34](Theorem 2.5),that is,

    where 1/p+1/q=1 and

    we achieve estimate(2.12).

    Step TwoFor the general case n(x)∈L∞(?),we consider the following problem:

    3 Uniqueness of the Inverse Transmission Problem

    In this section,we consider the uniqueness of the inverse transmission problem(1.1).Under some restrictions on λ andμ,we use a simple and novel method to show that the penetrable obstacle can be uniquely determined by its far-field pattern associated with plane waves.

    Figure 1 Possible choice of x?

    uniformly for all j∈N,where C2>0 is independent of j.

    where

    Remark 3.2If there are impenetrable buried objects inside ?,the penetrable obstacle can also be uniquely determined by our method,with small modifications in subsections 2.1(Remark 2.2)and 2.3(Theorem 2.5 in[34]).Furthermore,the buried object will be determined by the mixed reciprocity relation(2.1),after discovering the penetrable surface(Theorem 3.7 in[23]).

    猜你喜歡
    國政
    孤島“魯濱遜”的38年
    新傳奇(2021年18期)2021-05-21 08:34:10
    韓國瑜競選“國政”團隊或已成型
    翻蓋房子起風(fēng)波
    我的家鄉(xiāng)最美之貴港
    排水溝引發(fā)的爭議
    “我很忙”
    新四軍中的日本勇士——國政憲郎
    黨史文匯(2013年2期)2013-02-20 06:45:10
    两个人看的免费小视频| 大型av网站在线播放| 成人国产一区最新在线观看| 亚洲人成网站高清观看| 亚洲人成伊人成综合网2020| 久久亚洲真实| 日韩欧美三级三区| 日韩中文字幕欧美一区二区| 亚洲精品av麻豆狂野| 亚洲黑人精品在线| 久久亚洲精品不卡| 精品国产超薄肉色丝袜足j| 久久青草综合色| 露出奶头的视频| 国产成人欧美| 美女扒开内裤让男人捅视频| 最近最新免费中文字幕在线| 午夜福利一区二区在线看| 日韩欧美国产一区二区入口| 国产亚洲精品久久久久久毛片| 又紧又爽又黄一区二区| 久久婷婷成人综合色麻豆| 香蕉久久夜色| 夜夜看夜夜爽夜夜摸| 国产成人欧美| 国内揄拍国产精品人妻在线 | 99热只有精品国产| 嫩草影院精品99| 老鸭窝网址在线观看| 色播亚洲综合网| 一本久久中文字幕| 一级片免费观看大全| 亚洲色图 男人天堂 中文字幕| 十分钟在线观看高清视频www| 欧美国产日韩亚洲一区| 欧美最黄视频在线播放免费| 成人国产综合亚洲| 少妇 在线观看| 欧美日韩精品网址| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐gif免费好疼| 美国免费a级毛片| 制服人妻中文乱码| 丁香六月欧美| 麻豆成人av在线观看| 国产午夜福利久久久久久| 女人高潮潮喷娇喘18禁视频| 啦啦啦 在线观看视频| 久久人妻福利社区极品人妻图片| 久久九九热精品免费| 一级作爱视频免费观看| 亚洲精品美女久久av网站| 波多野结衣高清无吗| 人妻久久中文字幕网| 夜夜夜夜夜久久久久| 99riav亚洲国产免费| 亚洲av电影在线进入| 少妇被粗大的猛进出69影院| 国产精品久久久av美女十八| 不卡一级毛片| 精品福利观看| 久久人妻av系列| 中文字幕人妻熟女乱码| 丝袜美腿诱惑在线| 亚洲精品粉嫩美女一区| www.自偷自拍.com| 成人特级黄色片久久久久久久| 91九色精品人成在线观看| 十分钟在线观看高清视频www| a在线观看视频网站| 淫秽高清视频在线观看| av在线播放免费不卡| 一区二区三区高清视频在线| 欧美精品啪啪一区二区三区| 黄色a级毛片大全视频| 国产激情久久老熟女| 国产日本99.免费观看| 久久九九热精品免费| 1024视频免费在线观看| 狠狠狠狠99中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人精品巨大| 亚洲真实伦在线观看| 欧美日本亚洲视频在线播放| 久久久国产欧美日韩av| 曰老女人黄片| 人妻久久中文字幕网| 校园春色视频在线观看| 国产麻豆成人av免费视频| 午夜亚洲福利在线播放| 久久久久久久久久黄片| 日韩 欧美 亚洲 中文字幕| 午夜福利18| 国产男靠女视频免费网站| 18禁黄网站禁片免费观看直播| 久久香蕉国产精品| 午夜福利视频1000在线观看| 成人18禁在线播放| 香蕉久久夜色| 村上凉子中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 一本一本综合久久| 色综合婷婷激情| 日本一本二区三区精品| www.熟女人妻精品国产| 亚洲精品国产精品久久久不卡| 曰老女人黄片| 精品国内亚洲2022精品成人| 国产高清videossex| www.www免费av| 日日干狠狠操夜夜爽| 免费看美女性在线毛片视频| 免费看美女性在线毛片视频| 少妇裸体淫交视频免费看高清 | 美女高潮喷水抽搐中文字幕| 亚洲精品av麻豆狂野| 我的亚洲天堂| 久久人妻av系列| 91老司机精品| 亚洲国产中文字幕在线视频| 91麻豆av在线| 国产精品久久电影中文字幕| 成人三级做爰电影| 久久久久久免费高清国产稀缺| 91老司机精品| 欧美另类亚洲清纯唯美| 免费看日本二区| 后天国语完整版免费观看| 视频在线观看一区二区三区| 亚洲五月天丁香| 夜夜爽天天搞| 亚洲成人久久爱视频| 欧美黄色片欧美黄色片| 国产精品久久久人人做人人爽| 日本 av在线| 巨乳人妻的诱惑在线观看| 亚洲欧美日韩无卡精品| 午夜福利18| 日本五十路高清| 一二三四在线观看免费中文在| 美国免费a级毛片| 国产一区二区三区视频了| 久久国产精品人妻蜜桃| 亚洲成av人片免费观看| 日韩欧美免费精品| 成人亚洲精品一区在线观看| 国产黄a三级三级三级人| 婷婷六月久久综合丁香| 亚洲全国av大片| 特大巨黑吊av在线直播 | 国产av不卡久久| 午夜福利18| 97人妻精品一区二区三区麻豆 | 国产单亲对白刺激| 欧美日韩福利视频一区二区| 久久午夜亚洲精品久久| cao死你这个sao货| 国产一区二区在线av高清观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美性猛交黑人性爽| 免费看美女性在线毛片视频| 久久久久久大精品| 99国产综合亚洲精品| 久久人妻福利社区极品人妻图片| 亚洲精品美女久久久久99蜜臀| 久久狼人影院| 波多野结衣高清无吗| 一区二区三区激情视频| 亚洲电影在线观看av| 黑人巨大精品欧美一区二区mp4| 夜夜看夜夜爽夜夜摸| av免费在线观看网站| 免费在线观看视频国产中文字幕亚洲| 亚洲色图av天堂| 老司机在亚洲福利影院| 亚洲国产欧美日韩在线播放| 男人舔奶头视频| 99re在线观看精品视频| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 啦啦啦 在线观看视频| 久久天躁狠狠躁夜夜2o2o| 首页视频小说图片口味搜索| xxxwww97欧美| 亚洲av熟女| 亚洲av电影在线进入| 久久中文字幕人妻熟女| 男人的好看免费观看在线视频 | 一个人免费在线观看的高清视频| 欧美人与性动交α欧美精品济南到| 亚洲人成网站高清观看| 一区二区三区激情视频| 国产午夜精品久久久久久| 非洲黑人性xxxx精品又粗又长| 国产伦在线观看视频一区| 波多野结衣av一区二区av| 成人午夜高清在线视频 | 久久99热这里只有精品18| 丝袜人妻中文字幕| 久久青草综合色| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 黄色丝袜av网址大全| 亚洲中文字幕一区二区三区有码在线看 | 免费看日本二区| 国产精品1区2区在线观看.| 国产91精品成人一区二区三区| 18禁裸乳无遮挡免费网站照片 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲专区字幕在线| 午夜两性在线视频| 草草在线视频免费看| 1024手机看黄色片| 国产熟女午夜一区二区三区| 久久久久国产一级毛片高清牌| 丰满人妻熟妇乱又伦精品不卡| 特大巨黑吊av在线直播 | 日日摸夜夜添夜夜添小说| 成人欧美大片| av电影中文网址| 国产99白浆流出| 亚洲中文字幕日韩| av天堂在线播放| 亚洲成人国产一区在线观看| 欧美日韩乱码在线| 午夜福利视频1000在线观看| 亚洲第一欧美日韩一区二区三区| 久久青草综合色| 久久久久国产精品人妻aⅴ院| 久久伊人香网站| bbb黄色大片| 女人被狂操c到高潮| 两个人看的免费小视频| 国产在线精品亚洲第一网站| 法律面前人人平等表现在哪些方面| 亚洲五月天丁香| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 亚洲成a人片在线一区二区| 欧美日韩福利视频一区二区| av片东京热男人的天堂| 级片在线观看| 亚洲午夜理论影院| 国产亚洲精品第一综合不卡| 99国产综合亚洲精品| 亚洲免费av在线视频| 亚洲国产欧美网| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 亚洲国产精品成人综合色| www.熟女人妻精品国产| 一区二区三区高清视频在线| 国产三级黄色录像| 欧美中文日本在线观看视频| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 日本 欧美在线| 久久热在线av| 一区二区三区高清视频在线| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 成人一区二区视频在线观看| 午夜福利18| 亚洲狠狠婷婷综合久久图片| 国产成人欧美在线观看| av免费在线观看网站| 欧美黄色片欧美黄色片| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 国产野战对白在线观看| 国产主播在线观看一区二区| 中文字幕人成人乱码亚洲影| 精品国产一区二区三区四区第35| 欧美在线黄色| 1024香蕉在线观看| 制服丝袜大香蕉在线| 亚洲久久久国产精品| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片 | 无人区码免费观看不卡| 国产1区2区3区精品| www.自偷自拍.com| 欧美黑人精品巨大| 亚洲av电影在线进入| 国产欧美日韩一区二区三| www.999成人在线观看| 在线观看免费午夜福利视频| 白带黄色成豆腐渣| 免费高清在线观看日韩| 天天添夜夜摸| 青草久久国产| 9191精品国产免费久久| 美女午夜性视频免费| bbb黄色大片| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 国产av在哪里看| 母亲3免费完整高清在线观看| 久久人妻av系列| 国产av在哪里看| 免费观看人在逋| 91麻豆精品激情在线观看国产| 99久久精品国产亚洲精品| 成年女人毛片免费观看观看9| 在线观看免费视频日本深夜| a级毛片a级免费在线| 99在线视频只有这里精品首页| 九色国产91popny在线| 999久久久国产精品视频| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| 色播在线永久视频| 一a级毛片在线观看| 桃红色精品国产亚洲av| 欧美黄色片欧美黄色片| 午夜老司机福利片| 国产免费男女视频| www日本黄色视频网| 两性午夜刺激爽爽歪歪视频在线观看 | 一边摸一边做爽爽视频免费| 欧美黑人巨大hd| 欧美乱码精品一区二区三区| 国产亚洲精品第一综合不卡| xxxwww97欧美| 女人高潮潮喷娇喘18禁视频| 国产视频内射| 成人国产一区最新在线观看| 久久久久久大精品| 91老司机精品| 午夜福利在线在线| a在线观看视频网站| 99国产精品一区二区三区| 欧美黑人精品巨大| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片| 国产在线观看jvid| 99国产综合亚洲精品| 俺也久久电影网| 这个男人来自地球电影免费观看| 欧美丝袜亚洲另类 | 搡老岳熟女国产| 色播亚洲综合网| 窝窝影院91人妻| av在线播放免费不卡| 制服诱惑二区| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看| 美女国产高潮福利片在线看| 国产精品久久久久久精品电影 | 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲第一电影网av| 麻豆成人av在线观看| 在线免费观看的www视频| 亚洲精品国产一区二区精华液| 人人妻人人澡欧美一区二区| 在线看三级毛片| 国产真实乱freesex| 免费在线观看日本一区| 国产一区二区激情短视频| 看免费av毛片| 女性生殖器流出的白浆| 黑人操中国人逼视频| 国产精品日韩av在线免费观看| 成人欧美大片| 亚洲人成77777在线视频| 午夜日韩欧美国产| 视频区欧美日本亚洲| 男男h啪啪无遮挡| 久久久久久大精品| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 欧美日韩亚洲综合一区二区三区_| 人人妻人人看人人澡| 免费在线观看亚洲国产| 老司机靠b影院| 99精品久久久久人妻精品| ponron亚洲| 国产真实乱freesex| ponron亚洲| 国产成人一区二区三区免费视频网站| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆 | 黄色片一级片一级黄色片| 日本a在线网址| 精品日产1卡2卡| 午夜两性在线视频| 国产熟女xx| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 色综合亚洲欧美另类图片| 在线看三级毛片| 国产午夜福利久久久久久| 亚洲精品中文字幕一二三四区| 啦啦啦观看免费观看视频高清| 一级a爱片免费观看的视频| 十分钟在线观看高清视频www| 午夜影院日韩av| 亚洲一区高清亚洲精品| 精品久久久久久,| 国产精品亚洲av一区麻豆| 亚洲欧美日韩无卡精品| 婷婷丁香在线五月| 久热这里只有精品99| 国产精品 欧美亚洲| 久热这里只有精品99| 国产av一区在线观看免费| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 亚洲熟妇中文字幕五十中出| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 又黄又粗又硬又大视频| cao死你这个sao货| 亚洲人成网站在线播放欧美日韩| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产 | 成人特级黄色片久久久久久久| 欧美色视频一区免费| 欧美亚洲日本最大视频资源| 美女 人体艺术 gogo| 午夜免费成人在线视频| 少妇的丰满在线观看| av在线播放免费不卡| 亚洲欧洲精品一区二区精品久久久| 精华霜和精华液先用哪个| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 中文在线观看免费www的网站 | 一级作爱视频免费观看| av天堂在线播放| 久久久久国产一级毛片高清牌| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 男人舔奶头视频| 在线观看免费午夜福利视频| 国产99白浆流出| 一边摸一边抽搐一进一小说| 老司机深夜福利视频在线观看| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 亚洲真实伦在线观看| 一级作爱视频免费观看| 男人舔奶头视频| 人人妻人人澡人人看| 亚洲国产精品999在线| www.精华液| 黄片小视频在线播放| 黄色毛片三级朝国网站| 国产伦人伦偷精品视频| 欧美国产精品va在线观看不卡| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 欧美乱妇无乱码| 男人舔女人的私密视频| 成人三级做爰电影| 亚洲国产看品久久| 日本一本二区三区精品| 视频区欧美日本亚洲| 女人爽到高潮嗷嗷叫在线视频| 免费搜索国产男女视频| 欧美日韩精品网址| 黄片大片在线免费观看| 午夜视频精品福利| 国产单亲对白刺激| 久久天堂一区二区三区四区| 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 国产精品一区二区精品视频观看| 18禁裸乳无遮挡免费网站照片 | 免费看十八禁软件| 午夜福利高清视频| 成人亚洲精品av一区二区| 久久中文看片网| 淫妇啪啪啪对白视频| 91成年电影在线观看| 欧美精品啪啪一区二区三区| 亚洲五月婷婷丁香| 久久国产精品影院| 麻豆国产av国片精品| 亚洲美女黄片视频| 成人18禁在线播放| 日本精品一区二区三区蜜桃| 在线观看舔阴道视频| 亚洲九九香蕉| 曰老女人黄片| 亚洲七黄色美女视频| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 搞女人的毛片| 丝袜美腿诱惑在线| 久久久久久久久中文| www.999成人在线观看| 国产精品一区二区免费欧美| 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| av天堂在线播放| 中文字幕精品亚洲无线码一区 | 国产精品爽爽va在线观看网站 | 日韩成人在线观看一区二区三区| а√天堂www在线а√下载| netflix在线观看网站| 久久精品国产亚洲av高清一级| 午夜两性在线视频| 国产日本99.免费观看| 日韩欧美一区视频在线观看| 怎么达到女性高潮| 性色av乱码一区二区三区2| 熟女电影av网| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区二区三区在线观看| 啦啦啦韩国在线观看视频| 黄频高清免费视频| 精品一区二区三区视频在线观看免费| 好男人在线观看高清免费视频 | 中文在线观看免费www的网站 | x7x7x7水蜜桃| 久久狼人影院| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 国产黄片美女视频| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 久久久久久亚洲精品国产蜜桃av| 免费看日本二区| 日本五十路高清| 亚洲成a人片在线一区二区| 精华霜和精华液先用哪个| 久久伊人香网站| av有码第一页| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 又紧又爽又黄一区二区| 亚洲人成伊人成综合网2020| 免费电影在线观看免费观看| 欧美乱码精品一区二区三区| 高清毛片免费观看视频网站| 亚洲精品国产区一区二| 首页视频小说图片口味搜索| 亚洲熟妇中文字幕五十中出| 亚洲最大成人中文| 久久久国产成人免费| 日韩精品免费视频一区二区三区| 国产片内射在线| 天天添夜夜摸| 久久久久久免费高清国产稀缺| 亚洲成国产人片在线观看| 亚洲男人天堂网一区| 国产熟女xx| 桃红色精品国产亚洲av| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 精品国产乱码久久久久久男人| 欧美成人午夜精品| 国产区一区二久久| 88av欧美| 不卡av一区二区三区| av福利片在线| 国产不卡一卡二| 国产99久久九九免费精品| 51午夜福利影视在线观看| 国产99白浆流出| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出| 成年版毛片免费区| 久久这里只有精品19| 国产主播在线观看一区二区| 热re99久久国产66热| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 美女扒开内裤让男人捅视频| 国产精品九九99| 亚洲专区国产一区二区| 国产视频内射| 欧美午夜高清在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲片人在线观看| 午夜日韩欧美国产| 亚洲成av人片免费观看| 美女午夜性视频免费| 看黄色毛片网站| 午夜免费激情av| 午夜免费成人在线视频| 国产精品一区二区免费欧美| 国产高清有码在线观看视频 | 亚洲第一av免费看| 亚洲精品av麻豆狂野| www.www免费av| 在线视频色国产色| 精品国产乱子伦一区二区三区| 1024手机看黄色片| 国产主播在线观看一区二区| 男男h啪啪无遮挡| 黄片大片在线免费观看| 国产又爽黄色视频| 一级毛片高清免费大全| 十八禁人妻一区二区| 18禁黄网站禁片免费观看直播| 免费一级毛片在线播放高清视频| 在线观看午夜福利视频|