黎梓霖 金惠杰 方佳 劉奕明 林愛(ài)華
中圖分類號(hào) R285.5 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2021)09-1082-07
DOI 10.6039/j.issn.1001-0408.2021.09.10
摘 要 目的:分析芒果苷(MGF)對(duì)胰島素抵抗HepG2細(xì)胞(IR-HepG2細(xì)胞)糖脂代謝的影響,并探討潛在機(jī)制。方法:以人肝癌HepG2細(xì)胞為對(duì)象,以1 mmol/L棕櫚酸+2 mmol/L油酸聯(lián)合培養(yǎng)建立IR-HepG2細(xì)胞模型。以鹽酸二甲雙胍為陽(yáng)性對(duì)照,分別檢測(cè)低、中、高濃度MGF(125、250、500 μmol/L)作用24 h對(duì)IR-HepG2細(xì)胞中校正葡萄糖耗氧量和三酰甘油(TG)、總膽固醇(TC)含量的影響;采用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)技術(shù)檢測(cè)細(xì)胞中腺苷一磷酸活化蛋白激酶(AMPK)通路上游關(guān)鍵因子脂聯(lián)素(APN)、脂聯(lián)素受體2(AdipoR2)、APPL1、AMPK以及下游胰島素信號(hào)通路關(guān)鍵因子胰島素受體底物1(IRS-1)、蛋白激酶B(Akt)、葡萄糖轉(zhuǎn)運(yùn)體4(GLUT4)mRNA的相對(duì)表達(dá)量;采用Western blot法檢測(cè)AMPK蛋白的磷酸化水平。結(jié)果:與對(duì)照組比較,模型組細(xì)胞校正葡萄糖消耗量和APN、AdipoR2、APPL1、AMPK、IRS-1、GLUT4 mRNA的相對(duì)表達(dá)量以及AMPK蛋白磷酸化水平均顯著降低,TG、TC含量均顯著升高(P<0.05或P<0.01);與模型組比較,各藥物組校正葡萄糖消耗量和APN(MGF中、高濃度組除外)、AdipoR2、APPL1、AMPK(MGF中、高濃度組除外)、IRS-1(MGF中、高濃度組除外)、Akt(陽(yáng)性對(duì)照組除外)、GLUT4(MGF高濃度組除外)mRNA的相對(duì)表達(dá)量以及AMPK蛋白磷酸化水平均顯著升高,TG、TC含量均顯著降低(P<0.05或P<0.01)。結(jié)論:芒果苷可能通過(guò)激活通路上游靶點(diǎn)APN,進(jìn)而調(diào)控AMPK信號(hào)通路,從而促進(jìn)IR-HepG2細(xì)胞對(duì)葡萄糖的攝取,降低TG、TC含量,發(fā)揮改善胰島素抵抗及糖脂代謝異常狀態(tài)的作用。
關(guān)鍵詞 芒果苷;胰島素抵抗;人HepG2細(xì)胞;糖脂代謝;腺苷一磷酸活化蛋白激酶信號(hào)通路;脂聯(lián)素
Effects of Mangiferin on Glucose and Lipid Metabolism of Insulin-resistant HepG2 Cells
LI Zilin1,JIN Huijie1,F(xiàn)ANG Jia1,LIU Yiming1,2,LIN Aihua3(1. Phase Ⅰ Clinical Trial Center, Guangdong Provincial Hospital of TCM/the Second Affiliated Hospital of Guangzhou University of TCM, Guangzhou 510120, China; 2. Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of TCM/the Second Affiliated Hospital of Guangzhou University of TCM, Guangzhou 510120, China; 3. Dept. of Pharmacy, Guangdong Provincial Hospital of TCM/Zhuhai Hospital, the Second Affiliated Hospital of Guangzhou University of TCM, Guangdong Zhuhai 519000, China)
ABSTRACT ? OBJECTIVE: To analyze the effects of mangiferin (MGF) on glucose and lipid metabolism in insulin resistance (IR) HepG2 cells, and to explore the potential mechanism. METHODS: Using human hepatoma HepG2 cells as research objects, 1 mmol/L palmitic acid and 2 mmol/L oleic acid were used to establish the IR-HepG2 cell model. Using metformin hydrochloride as positive control, the effects of low-concentration, medium-concentration and high-concentration MGF (125, 250, 500 μmol/L) on the corrected glucose consumption, the contents of triglyceride (TG) and total cholesterol (TC) in IR-HepG2 cells were detected. The mRNA expression of APN, AdipoR2, APPL1, AMPK in the upstream of AMPK signaling pathway and IRS-1, Akt and GLUT4 in the downstream insulin signaling pathway were detected by RT-PCR. The phosphorylation level of AMPK protein was detected by Western blot assay. RESULTS: Compared with control group, corrected glucose consumption, mRNA expression of APN, AdipoR2, APPL1, AMPK, IRS-1 and GLUT4, as well as the phosphorylation level of AMPK protein were decreased significantly in model group, while the contents of TG and TC were increased significantly (P<0.05 or P<0.01). Compared with model group, corrected glucose consumption, mRNA expression of APN (except for MGF medium-concentration and high-concentration groups), AdipoR2, APPL1, AMPK (except for MGF medium-concentration and high-concentration groups), IRS-1(except for MGF medium-concentration and high-concentration groups), Akt(except for positive control group), GLUT4(except for MGF high-concentration group)were increased significantly in administration groups, while the contents of TG and TC were decreased significantly (P<0.05 or P<0.01). CONCLUSIONS: Mangiferin may activate APN, which is the upstream target of pathway, and then regulate AMPK signaling pathway, so as to promote glucose uptake of IR-HepG2 cells, reduce TG and TC contents, and improve IR and abnormal glucose and lipid metabolism.
KEYWORDS ? Mangiferin; Insulin resistance; Human HepG2 cells; Glucose and lipid metabolism; AMPK signaling pathway; APN
2型糖尿?。═2DM)多由胰島素抵抗(IR)和B細(xì)胞功能障礙所致[1],其中IR主要表現(xiàn)為肝臟、肌肉、脂肪等靶組織對(duì)胰島素的敏感性下降以及對(duì)葡萄糖的攝取及利用減少[2]。腺苷一磷酸活化蛋白激酶(AMPK)分布于各組織中,其活化后能增加機(jī)體對(duì)胰島素的敏感性,改善IR和糖脂代謝紊亂,從而減輕T2DM相關(guān)癥狀[3]。有研究指出,脂聯(lián)素(APN)為AMPK信號(hào)通路的上游靶點(diǎn),是該信號(hào)通路中的關(guān)鍵信號(hào)分子,可通過(guò)與脂聯(lián)素受體2(AdipoR2)結(jié)合而激活A(yù)MPK,而APPL1是AdipoR2與AMPK之間的關(guān)鍵銜接蛋白[4-5]。當(dāng)AMPK被激活后,AMPK可進(jìn)一步促進(jìn)下游胰島素信號(hào)通路中胰島素受體底物1(IRS-1)的磷酸化,激活蛋白激酶B(Akt);Akt活化可促使細(xì)胞中的葡萄糖轉(zhuǎn)運(yùn)體4(GLUT4)由細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞膜,從而促進(jìn)葡萄糖的攝取和利用,最終改善IR[6]。
知母為百合科植物知母Anemarrhena asphodeloides Bge.的干燥根莖,其主要活性成分之一的芒果苷(MGF)具有改善IR和糖脂代謝紊亂的作用[7-8],且這種作用與AMPK及其下游胰島素信號(hào)通路Akt和GLUT4的表達(dá)有關(guān)[9-10]。有研究表明,MGF能提升糖尿病IR模型大鼠血清中APN的含量[11],但其是否能通過(guò)激活這一上游靶點(diǎn)進(jìn)而調(diào)控AMPK信號(hào)通路中的各關(guān)鍵因子的表達(dá),尚有待進(jìn)一步探討?;诖?,本研究以HepG2肝臟細(xì)胞IR模型(即IR-HepG2細(xì)胞模型)為對(duì)象,初步探討了MGF對(duì)其糖脂代謝以及AMPK信號(hào)通路的影響,旨在為MGF改善T2DM患者IR的作用機(jī)制研究提供參考。
1 材料
1.1 主要儀器
本研究所用主要儀器包括3111型CO2細(xì)胞培養(yǎng)箱(美國(guó)Thermo Fisher Scientific公司)、Synergy H1型多功能酶標(biāo)儀(美國(guó)BioTek公司)、HR40-ⅡA2型生物安全柜(廣州火元醫(yī)療器械有限公司)、AB135-S型電子天平(瑞士Mettler Toledo公司)、Microfuge 16型臺(tái)式微量離心機(jī)和Allegra X-22R型多功能臺(tái)式冷凍離心機(jī)(美國(guó)Bechman Coulter公司)、7500型熒光定量基因擴(kuò)增儀和Veriti型PCR逆轉(zhuǎn)錄儀(美國(guó)Applied Biosystems公司)、KS260型控制型搖床(德國(guó)KIA公司)、Min-protean Tetra型垂直電泳系統(tǒng)和ChemiDocTM型高靈敏度化學(xué)發(fā)光成像儀(美國(guó)Bio-Rad公司)等。
1.2 主要藥品與試劑
MGF對(duì)照品(批號(hào)MUST-17040103,純度98.21%)購(gòu)自成都曼斯特生物科技有限公司;鹽酸二甲雙胍對(duì)照品(陽(yáng)性對(duì)照,批號(hào)100664-201805,純度98%)購(gòu)自上海源葉生物科技有限公司;無(wú)脂肪酸牛血清白蛋白(BSA,批號(hào)WXBC0994V,純度99%)購(gòu)自北京索萊寶科技有限公司;MTT試劑(批號(hào)QR14912)購(gòu)自美國(guó)MP Biomedicals公司;二甲基亞砜(DMSO,批號(hào)RNBF2368)、棕櫚酸(PA,批號(hào)SLBW9894,純度98.5%)、油酸(OA,批號(hào)SLCC4023,純度99%)均購(gòu)自美國(guó)Sigma公司;DMEM高糖培養(yǎng)基(批號(hào)8119081)、南美胎牛血清(批號(hào)2176398)、青霉素-鏈霉素雙抗(批號(hào)15140122)、胰酶(批號(hào)2120649)均購(gòu)自美國(guó)Gibco公司;葡萄糖氧化酶法檢測(cè)試劑盒(批號(hào)20180801137)購(gòu)自南京建成生物工程研究所;三酰甘油(TG)試劑盒(批號(hào)E1003)、膽固醇(TC)試劑盒(批號(hào)E1005)均購(gòu)自北京普利萊基因技術(shù)有限公司;BCA蛋白濃度測(cè)定試劑盒(批號(hào)P0010)購(gòu)自上海碧云天生物技術(shù)有限公司;彩色蛋白Marker(批號(hào)00784045)、5×十二烷基硫酸鈉-聚丙酰胺凝膠電泳(SDS-PAGE)蛋白上樣緩沖液(批號(hào)VG299802)均購(gòu)自美國(guó)Thermo Fisher Scientific公司;TRIzol試劑(批號(hào)213506)購(gòu)自美國(guó)Invitrogen公司;Fast Start Universal SYBR Green Master熒光定量試劑盒(批號(hào)04913914001)、Transcriptor cDNA Synth. Kit2反轉(zhuǎn)錄試劑盒(批號(hào)04897030001)均購(gòu)自瑞士Roche公司;10×RIPA裂解液(批號(hào)75)、兔β-肌動(dòng)蛋白(β-actin)單克隆抗體(批號(hào)4970)、兔AMPK單克隆抗體(批號(hào)2603)、兔磷酸化AMPK(p-AMPK)單克隆抗體(批號(hào)2535)均購(gòu)自美國(guó)CST公司;辣根過(guò)氧化物酶(HRP)標(biāo)記的山羊抗兔IgG二抗(批號(hào)SA00001-2)購(gòu)自美國(guó)Proteintech公司;ECL發(fā)光液(批號(hào)1939801)購(gòu)自美國(guó)Millipore公司;擴(kuò)增引物由上海生工生物工程股份有限公司設(shè)計(jì)、合成;其余試劑均為分析純,水為超純水。
1.3 細(xì)胞
人源HepG2細(xì)胞株購(gòu)自中國(guó)科學(xué)院上海生命科學(xué)研究院細(xì)胞資源中心。
2 方法
2.1 細(xì)胞培養(yǎng)
HepG2細(xì)胞復(fù)蘇后,接種于含10%胎牛血清、1%青霉素-鏈霉素雙抗的DMEM高糖培養(yǎng)基(以下簡(jiǎn)稱“完全培養(yǎng)基”)中,置于37 ℃、5%CO2培養(yǎng)箱中培養(yǎng)(以下培養(yǎng)條件相同),待細(xì)胞生長(zhǎng)密度達(dá)80%左右時(shí),用含0.25%乙二胺四乙酸(EDTA)的胰酶消化并傳代至新的培養(yǎng)皿中。
2.2 MGF藥液和新鮮培養(yǎng)基的配制
精密稱取MGF對(duì)照品適量,溶于DMSO中,制得濃度為250 mmol/L的MGF母液,分裝。臨用前,將上述母液用完全培養(yǎng)基稀釋至所需濃度。
取PA、OA適量,加水于75 ℃溶解后,趁熱與20%無(wú)脂肪酸BSA[以pH為7.4的磷酸鹽緩沖液(PBS)溶解]混勻并濾過(guò)。臨用前,用完全培養(yǎng)基稀釋成含3%BSA、1 mmol/L PA、2 mmol/L OA的新鮮培養(yǎng)基。
2.3 細(xì)胞分組與IR模型建立
取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞適量,隨機(jī)分為正常組、模型組、陽(yáng)性對(duì)照組(鹽酸二甲雙胍5 mmol/L,劑量設(shè)置參考文獻(xiàn)[12]并結(jié)合本課題組前期研究結(jié)果)和MGF高、中、低劑量組(500、250、125 μmol/L,劑量設(shè)置參考本課題組前期研究結(jié)果),每組設(shè)3個(gè)復(fù)孔。除正常組加入含3%BSA的完全培養(yǎng)基外,其余各組細(xì)胞均參照文獻(xiàn)[13]加入“2.2”項(xiàng)下新鮮培養(yǎng)基培養(yǎng)24 h以誘導(dǎo)建立IR模型。建模后,正常組、模型組和各藥物組分別替換為不含或含相應(yīng)藥物的完全培養(yǎng)基繼續(xù)培養(yǎng)。
2.4 細(xì)胞葡萄糖消耗量檢測(cè)
取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞適量,以3×104個(gè)/孔接種于96孔板中,按“2.3”項(xiàng)下方法分組、造模、給藥,同時(shí)設(shè)置不含細(xì)胞的空白對(duì)照組。各組細(xì)胞培養(yǎng)24 h后,取上清液,參照葡萄糖氧化酶法檢測(cè)試劑盒說(shuō)明書(shū)方法,以多功能酶標(biāo)儀檢測(cè)各孔的葡萄糖含量并計(jì)算葡萄糖消耗量:葡萄糖消耗量=空白對(duì)照組葡萄糖含量-待測(cè)組葡萄糖含量。棄去上清液后,各組細(xì)胞加入0.5 mg/mL的MTT試劑適量,于室溫下反應(yīng)10 min,使用多功能酶標(biāo)儀檢測(cè)各孔的光密度(OD)值,并計(jì)算細(xì)胞活力:細(xì)胞活力=(待測(cè)組細(xì)胞OD值-空白對(duì)照組OD值)/(正常組OD值-空白對(duì)照組OD值)?;谏鲜銎咸烟窍牧亢图?xì)胞活力計(jì)算校正葡萄糖消耗量:校正葡萄糖消耗量=葡萄糖消耗量/細(xì)胞活力。實(shí)驗(yàn)重復(fù)3次。
2.5 細(xì)胞中TG、TC含量檢測(cè)
取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞適量,以1.2×105個(gè)/孔接種于6孔板中,按“2.3”項(xiàng)下方法分組、造模、給藥。各組細(xì)胞培養(yǎng)24 h后,棄去上清液,細(xì)胞用預(yù)冷PBS洗滌2次,加入RIPA裂解液充分混勻,靜置10 min。收集各組細(xì)胞裂解液,于70 ℃加熱10 min,以2 000 r/min離心5 min,取上清液,參照相應(yīng)檢測(cè)試劑盒說(shuō)明書(shū)方法,以多功能酶標(biāo)儀檢測(cè)各組細(xì)胞中TG、TC含量;同時(shí),采用BCA法測(cè)定各孔的蛋白濃度,用于校正TG、TC含量。實(shí)驗(yàn)重復(fù)3次。
2.6 細(xì)胞中AMPK信號(hào)通路各關(guān)鍵因子mRNA表達(dá)檢測(cè)
采用實(shí)時(shí)熒光定量PCR法檢測(cè)AMPK信號(hào)通路上游關(guān)鍵因子APN、AdipoR2、APPL1、AMPK以及下游胰島素信號(hào)通路關(guān)鍵因子IRS-1、Akt、GLUT4的mRNA表達(dá)情況。取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞適量,以1.2×105個(gè)/孔接種于6孔板中,按“2.3”項(xiàng)下方法分組、造模、給藥。各組細(xì)胞培養(yǎng)24 h后,棄去上清液,細(xì)胞經(jīng)TRIzol法提取總RNA并根據(jù)Transcriptor cDNA Synth. Kit2試劑盒說(shuō)明書(shū)方法逆轉(zhuǎn)錄合成cDNA。以cDNA為模板,參照Fast Start Universal SYBR Green Master試劑盒說(shuō)明書(shū)配制PCR擴(kuò)增體系,混勻后,使用熒光定量基因擴(kuò)增儀進(jìn)行PCR擴(kuò)增。反應(yīng)體系(共20 μL)包括:cDNA模板2 μL,2×SYBR Green Ⅰ Master 10 μL,上、下游引物(其引物序列及產(chǎn)物大小見(jiàn)表1)各0.5 μL,ddH2O 7 μL。反應(yīng)條件為:95 ℃預(yù)變性10 min;95 ℃變性10 s,60 ℃退火30 s,共40個(gè)循環(huán)。以β-actin作為內(nèi)參,采用2-ΔΔCt法以QuantStudio 7 RT-PCR System(Version 1.1)軟件計(jì)算各目的基因mRNA的相對(duì)表達(dá)量,結(jié)果均以正常組為標(biāo)準(zhǔn)進(jìn)行歸一化處理。實(shí)驗(yàn)重復(fù)3次。
2.7 細(xì)胞中AMPK蛋白磷酸化水平檢測(cè)
采用Western blot法檢測(cè)。取對(duì)數(shù)生長(zhǎng)期的HepG2細(xì)胞適量,以1.2×105個(gè)/孔接種于6孔板中,按“2.3”項(xiàng)下方法分組、造模、給藥。各組細(xì)胞培養(yǎng)24 h后,棄去上清液,細(xì)胞用預(yù)冷的RIPA裂解液充分裂解,收集裂解液,于4 ℃下以12 000 r/min離心15 min,取上清液并采用BCA法測(cè)定蛋白濃度。根據(jù)蛋白濃度測(cè)定結(jié)果,加入5×SDS PAGE蛋白上樣緩沖液適量,于100 ℃煮沸變性10 min。取變性蛋白,進(jìn)行10%SDS-PAGE分離后,以濕轉(zhuǎn)法轉(zhuǎn)膜,經(jīng)5%BSA室溫封閉1 h;加入p-AMPK、AMPK一抗(稀釋比例均為1 ∶ 1 000)和β-actin一抗(稀釋比例為1 ∶ 2 000),于4 ℃孵育過(guò)夜;用TBST溶液清洗10 min×3次,加入HRP標(biāo)記的IgG二抗(稀釋比例為1 ∶ 1 000),室溫孵育1 h;用TBST溶液清洗10 min×3次,經(jīng)ECL發(fā)光液顯色后,使用高靈敏度化學(xué)發(fā)光成像儀曝光成像。采用Image Lab 5.2.1軟件對(duì)目的條帶進(jìn)行灰度值分析,以p-AMPK與AMPK條帶灰度值的比值(即p-AMPK/AMPK比值)表示后者的磷酸化水平,結(jié)果均以正常組為標(biāo)準(zhǔn)進(jìn)行歸一化處理。實(shí)驗(yàn)重復(fù)3次。
2.8 統(tǒng)計(jì)學(xué)方法
采用SPSS 20.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,采用Graph Pad Prism 7.0軟件作圖。數(shù)據(jù)均以x±s表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD檢驗(yàn)(方差齊)或Dunnetts T3檢驗(yàn)(方差不齊)。P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
3 結(jié)果
3.1 MGF對(duì)IR-HepG2細(xì)胞糖代謝的影響
與正常組比較,模型組細(xì)胞的校正葡萄糖消耗量顯著降低(P<0.01);與模型組比較,各藥物組細(xì)胞的校正葡萄糖消耗量均顯著升高(P<0.01),詳見(jiàn)表2。
3.2 MGF對(duì)IR-HepG2細(xì)胞脂代謝的影響
與正常組比較,模型組細(xì)胞內(nèi)TG、TC含量均顯著升高(P<0.01);與模型組比較,各藥物組細(xì)胞內(nèi)上述指標(biāo)含量均顯著降低(P<0.01),詳見(jiàn)表2。
3.3 MGF對(duì)IR-HepG2細(xì)胞AMPK信號(hào)通路上游關(guān)鍵因子mRNA表達(dá)的影響
與正常組比較,模型組細(xì)胞APN、AdipoR2、APPL1、AMPK mRNA的相對(duì)表達(dá)量均顯著降低(P<0.05或P<0.01);與模型組比較,陽(yáng)性對(duì)照組和MGF低劑量組細(xì)胞APN、AMPK mRNA以及各藥物組AdipoR2、? ? ?APPL1 mRNA的相對(duì)表達(dá)量均顯著升高(P<0.05或P<0.01),詳見(jiàn)表3。
3.4 MGF對(duì)IR-HepG2細(xì)胞AMPK下游胰島素信號(hào)通路關(guān)鍵因子mRNA表達(dá)的影響
與正常組比較,模型組細(xì)胞中IRS-1、GLUT4 mRNA的相對(duì)表達(dá)量均顯著降低(P<0.05或P<0.01);與模型組比較,陽(yáng)性對(duì)照組和MGF低劑量組細(xì)胞中IRS-1 mRNA,MGF各劑量組Akt mRNA,以及陽(yáng)性對(duì)照組和MGF低、中劑量組GLUT4 mRNA的相對(duì)表達(dá)量均顯著升高(P<0.05或P<0.01),詳見(jiàn)表4。
3.5 MGF對(duì)IR-HepG2細(xì)胞AMPK蛋白磷酸化水平的影響
與正常組比較,模型組細(xì)胞AMPK蛋白磷酸化水平顯著降低(P<0.01);與模型組比較,各藥物組細(xì)胞AMPK蛋白磷酸化水平均顯著升高(P<0.05或P<0.01),詳見(jiàn)圖1、表5。
4 討論
T2DM是一種慢性代謝性疾病,被認(rèn)為是全世界第五大死亡原因,其主要表現(xiàn)是患者糖脂代謝紊亂[14]。IR是T2DM發(fā)生的重要因素,其主要特征是胰島素作用的靶組織對(duì)葡萄糖的攝取和利用減少[2]。肝臟作為胰島素作用的主要靶組織,是維持糖脂代謝穩(wěn)定的重要器官[2]。HepG2細(xì)胞為人肝癌細(xì)胞,由其構(gòu)建的IR細(xì)胞模型是學(xué)界公認(rèn)的可用于研究IR發(fā)生機(jī)制和降糖藥物作用機(jī)制的理想模型[15],故本研究參考文獻(xiàn)[13]采用1 mmol/L PA+2 mmol/L OA聯(lián)合培養(yǎng)建立IR細(xì)胞模型。
本課題組前期研究表明,以DMSO作為溶劑,MGF最大溶解濃度為250 mmol/L,DMSO體積分?jǐn)?shù)在0.2%(即500 μmol/L)以下對(duì)細(xì)胞毒性影響小;此外與正常組比較,MGF高、中、低劑量(500、250、125 μmol/L)對(duì)HepG2細(xì)胞的存活率均無(wú)顯著影響,且細(xì)胞存活率均在90%以上,故本研究選擇上述3個(gè)濃度進(jìn)行后續(xù)實(shí)驗(yàn)。結(jié)果顯示,MGF高、中、低劑量均可顯著提高IR-HepG2細(xì)胞的校正葡萄糖消耗量,其中以高劑量作用效果相對(duì)最強(qiáng);同時(shí),其還可顯著降低IR-HepG2細(xì)胞中TG、TC的含量,提示MGF可調(diào)整IR-HepG2細(xì)胞的糖脂代謝異常。值得注意的是,經(jīng)MGF干預(yù)后,各劑量組細(xì)胞TG含量無(wú)明顯的劑量依賴趨勢(shì),且從具體數(shù)據(jù)上看,MGF低劑量下調(diào)TG含量的效果較明顯。有研究指出,APN可降低肝臟組織中TG的含量并上調(diào)胰島素信號(hào)的轉(zhuǎn)導(dǎo),提示TG含量與APN的表達(dá)水平有關(guān)[16]。經(jīng)藥物干預(yù)后,MGF低劑量組細(xì)胞內(nèi)APN mRNA的相對(duì)表達(dá)量更高,這可能是低劑量組細(xì)胞內(nèi)TG含量更低的原因。
AMPK是一種細(xì)胞內(nèi)能量感受器和調(diào)節(jié)因子,已被證明與IR、肝臟脂肪病變、糖尿病腎病及糖尿病心肌病的發(fā)生密切相關(guān)[17-19]。p-AMPK是AMPK的磷酸化形式,p-AMPK/AMPK比值能反映AMPK的活化程度;AMPK磷酸化的增加可有助于AMPK信號(hào)通路的激活,從而有利于抗IR作用的發(fā)揮[4]。有研究表明,MGF對(duì)糖脂代謝紊亂的調(diào)節(jié)作用與AMPK信號(hào)通路有關(guān),但MGF不是該通路的直接激活劑,提示該化合物介導(dǎo)的AMPK激活可能與其上游關(guān)鍵因子有關(guān)[18-21]。APN是AMPK信號(hào)通路的上游靶點(diǎn),其水平升高對(duì)T2DM、IR具有明顯的改善作用[16,22]。研究表明,APN缺乏會(huì)導(dǎo)致小鼠腦組織IR、認(rèn)知功能減退和老年癡呆癥樣病變[23];另有研究表明,總APN水平與T2DM心血管風(fēng)險(xiǎn)有密切關(guān)聯(lián)[24]??梢?jiàn),APN可以改善IR、增加機(jī)體對(duì)胰島素的敏感性。因此,研究MGF是否通過(guò)APN調(diào)節(jié)AMPK信號(hào)通路以改善糖脂代謝紊亂有重要意義。有研究指出,AdipoR2與IR相關(guān)的肝功能異常有關(guān)[25];此外,初診T2DM患者血清中APPL1水平異常升高,提示AdipoR2和APPL1均可能參與了T2DM的發(fā)生發(fā)展[26]。APPL1作為AdipoR2與AMPK之間的關(guān)鍵銜接蛋白,其表達(dá)量與APN介導(dǎo)AMPK磷酸化呈正相關(guān)[27]?;罨腁MPK可激活下游胰島素信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)糖脂代謝,最終改善IR[7]。IRS-1主要存在于胰島素敏感組織中,是介導(dǎo)胰島素及其功能的關(guān)鍵信號(hào)蛋白[28]。有研究表明,IRS-1與T2DM患者IR之間存在相關(guān)性,該因子異常表達(dá)可導(dǎo)致IR的發(fā)生,而IR又是T2DM的重要病理機(jī)制[29-30]。Akt是葡萄糖代謝中的關(guān)鍵酶,其可被胰島素激活,介導(dǎo)胰島素刺激的多種生物學(xué)效應(yīng)[31]。GLUT4作為骨骼肌和脂肪細(xì)胞中的主要轉(zhuǎn)運(yùn)蛋白,是Akt下游調(diào)控葡萄糖攝取的重要因子,可在胰島素的刺激下將葡萄糖轉(zhuǎn)運(yùn)至胰島素敏感組織中以促進(jìn)胰島素的利用,從而維持血糖的穩(wěn)定和細(xì)胞正常的生理功能[32]?;诖耍狙芯繉?duì)上述AMPK信號(hào)通路上、下游關(guān)鍵因子mRNA的表達(dá)進(jìn)行了檢測(cè)。結(jié)果顯示,采用1 mmol/L PA聯(lián)合2 mmol/L OA誘導(dǎo)HepG2細(xì)胞,可導(dǎo)致IR的發(fā)生,并顯著下調(diào)AMPK信號(hào)通路中關(guān)鍵因子APN、AdipoR2、APPL1、IRS-1、GLUT4 mRNA的表達(dá),以及AMPK蛋白的磷酸化水平,而不會(huì)顯著影響Akt mRNA的表達(dá)。經(jīng)MGF干預(yù)24 h后,各藥物組細(xì)胞中上述關(guān)鍵因子的表達(dá)均不同程度地上調(diào),其中APN、APPL1、AMPK、IRS-1、Akt、GLUT4 mRNA的相對(duì)表達(dá)量以及p-AMPK/AMPK比值均以低或低、中劑量組最優(yōu);而MGF各劑量組細(xì)胞中AdipoR2 mRNA的相對(duì)表達(dá)量并無(wú)明顯的量效關(guān)系,且均與陽(yáng)性對(duì)照相當(dāng)。有研究指出,AMPK為“細(xì)胞能量感受器”,細(xì)胞的能量狀況決定著AMPK的活化程度:APN會(huì)促進(jìn)細(xì)胞腺苷三磷酸(ATP)的消耗,使細(xì)胞內(nèi)ATP的含量降低、腺苷一磷酸的含量升高,可使AMPK通路被活化,以參與細(xì)胞能量代謝的調(diào)節(jié)[33]。相比于MGF高劑量組,MGF中、低劑量組細(xì)胞的校正葡萄糖消耗量相對(duì)較小,即能量攝入相對(duì)小,此時(shí)可能起到反饋調(diào)節(jié)作用,使得對(duì)應(yīng)組細(xì)胞中APN的表達(dá)水平相對(duì)較高,提示此時(shí)AMPK通路被活化的可能性較高,從而增加了細(xì)胞內(nèi)AMPK及其信號(hào)通路關(guān)鍵因子mRNA的表達(dá)。
綜上所述,MGF可能通過(guò)激活通路上游靶點(diǎn)APN,進(jìn)而調(diào)控AMPK信號(hào)通路,從而促進(jìn)IR-HepG2細(xì)胞對(duì)葡萄糖的攝取,降低細(xì)胞內(nèi)TG、TC含量,發(fā)揮改善細(xì)胞IR及糖脂代謝異常狀態(tài)的作用。
參考文獻(xiàn)
[ 1 ] ZHENG Y,LEY S H,HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol,2018,14(2):88-98.
[ 2 ] DAS P,BISWAS S,MUKHERJEE S,et al. Association of oxidative stress and obesity with insulin resistance in type 2 diabetes mellitus[J]. Mymensingh Med J,2016,25(1):148-152.
[ 3 ] DESJARDINS E M,STEINBERG G R. Emerging role of AMPK in brown and beige adipose tissue (BAT):implications for obesity,insulin resistance,and type 2 diabetes[J]. Curr Diab Rep,2018,18(10):80.
[ 4 ] YAN J,WANG C,JIN Y,et al. Catalpol ameliorates hepa- tic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/Akt pathway[J]. Pharmacol Res,2018,130:466-480.
[ 5 ] JI R,XU X,XIANG X,et al. Regulation of adiponectin on lipid metabolism in large yellow croaker (Larimichthys crocea)[J]. Biochim Biophys Acta Mol Cell Biol? Lipids,2020,1865(5):158711.
[ 6 ] ARIAS E B,CARTEE G D. In vitro simulation of calorie restriction-induced decline in glucose and insulin leads to increased insulin-stimulated glucose transport in rat skeletal muscle[J]. Am J Physiol Endocrinol Metab,2007,293(6):E1782-E1788.
[ 7 ] LIM S M,JEONG J J,CHOI H S,et al. Mangiferin corrects the imbalance of Th17/Treg cells in mice with? ? ? TNBS-induced colitis[J]. Int Immunopharmacol,2016,34:220-228.
[ 8 ] DU S,LIU H,LEI T,et al. Mangiferin:an effective therapeutic agent against several disorders:review[J]. Mol Med Rep,2018,18(6):4775-4786.
[ 9 ] GIR?N M D,SEVILLANO N,SALTO R,et al. Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes:role of mangiferin[J]. Clin Nutr,2009,28(5):565-574.
[10] SEKAR V,MANI S,MALARVIZHI R,et al. Antidiabetic effect of mangiferin in combination with oral hypoglycemic agents metformin and gliclazide[J]. Phytomedicine,2019,59:152901.
[11] SALEH S,EL-MARAGHY N,REDA E,et al. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin:role of adiponectin and TNF-α[J]. An Acad Bras Cienc,2014,86(4):1935-1948.
[12] ZHU X,YAN H,XIA M,et al. Metformin attenuates triglyceride accumulation in HepG2 cells through decrea- sing stearyl-coenzyme A desaturase 1 expression[J]. Lipids Health Dis,2018,17(1):114.
[13] 金惠杰,邱昆成,李嘉華,等.藥對(duì)知母-黃柏對(duì)胰島素抵抗的改善作用[J].中國(guó)藥理學(xué)通報(bào),2019,35(7):1020- 1024.
[14] ZHENG T,SHU G,YANG Z,et al. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats[J]. J Ethnopharmacol,2012,139(3):814-821.
[15] LI L,LI G,WEI H,et al. The endoplasmic reticulum stress response is associated with insulin resistance-me-? diated drug resistance in HepG2 cells[J]. Neoplasma,2015,62(2):180-190.
[16] YADAV A,KATARIA M A,SAINI V,et al. Role of leptin and adiponectin in insulin resistance[J]. Clin Chim Acta,2013,18:80-84.
[17] DASKALOPOULOS E P,DUFEYS C,BERTRAND L,et al. AMPK in cardiac fibrosis and repair:actions beyond metabolic regulation[J]. J Mol Cell Cardiol,2016,91:188-200.
[18] CHELLAPPAN D K,YAP W S,BT AHMAD SUHAIMI N A,et al. Current therapies and targets for type 2 diabetes mellitus[J]. Panminerva Med,2018,60(3):117-131.
[19] DZIUBAK A,W?JCICKA G,WOJTAK A,et al. Metabo- lic effects of metformin in the failing heart[J]. Int J Mol Sci,2018,19(10):2869.
[20] ZHANG Y,LIU X,HAN L,et al. Regulation of lipid and glucose homeostasis by mango tree leaf extract is media- ted by AMPK and PI3K/AKT signaling pathways[J]. Food Chem,2013,141(3):2896-2905.
[21] LI J,LIU M,YU H,et al. Mangiferin improves hepatic li- pid metabolism mainly through its metabolite-norathyriol by modulating SIRT-1/AMPK/SREBP-1c signaling[J]. Front Pharmacol,2018,9:201.
[22] KRAUSE M P,MILNE K J,HAWKE T J. Adiponectin- consideration for its role in skeletal muscle health[J]. Int J Mol Sci,2019,20(7):1528.
[23] NG RC,CHENG OY,JIAN M,et al. Chronic adiponectin deficiency leads to Alzheimers disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice[J]. Mol Neurodegener,2016,2016,11(1):71.
[24] LIAN K,GUO X,HUANG Q,et al. Reduction levels and the effects of high-molecular-weight adiponectin via AMPK/eNOS in Chinese type 2 diabetes[J]. Exp Clin Endocrinol Diabetes,2016,124(9):541-547.
[25] L?PEZ-BERMEJO A,BOTAS-CERVERO P,ORTEGA- DELGADO F,et al. Association of ADIPOR2 with liver function tests in type 2 diabetic subjects[J]. Obesity (Silver Spring),2008,16(10):2308-2313.
[26] WANG Y,ZHANG M,YAN L,et al. Serum APPL1 level is elevated in newly diagnosed cases of type 2 diabetes mellitus[J]. Nan Fang Yi Ke Da Xue Xue Bao,2012,32(9):1373-1376.
[27] YANAI H,YOSHIDA H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progressio,2019,20(5):1190.
[28] BOUCHER J,KLEINRIDDERS A,KAHN C R. Insulin receptor signaling in normal and insulin-resistant states[J]. Cold Spring Harb Perspect Biol,2014,6(1):a009191.
[29] TIAN S,JIA W,LU M,et al. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression[J]. J Biol Chem,2019,294(52):20164-20176.
[30] REHMAN K,AKASH M S H,LIAQAT A,et al. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus[J]. Crit Rev Eukaryot Gene Expr,2017,27(3):229-236.
[31] CAO Y,SUN W. Fuzhu jiangtang granules combined with metformin reduces insulin-resistance in skeletal muscle of diabetic rats via PI3K/Akt signaling[J]. Pharm Biol,2019,57(1):660-668.
[32] KONG D,SONG G,WANG C,et al. Overexpression of mitofusin 2 improves translocation of glucose transporter 4 in skeletal muscle of highfat dietfed rats through AMPactivated protein kinase signaling[J]. Mol Med Rep,2013,8(1):205-210.
[33] 孫維琦,王路紅,李環(huán). AMPK細(xì)胞能量感受器研究進(jìn)展[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,18(2):213- 216.
(收稿日期:2020-11-05 修回日期:2021-02-25)
(編輯:張?jiān)拢?/p>