張燕杰
摘要:學(xué)習(xí)數(shù)學(xué)的關(guān)鍵之處,就是有一個(gè)清晰嚴(yán)謹(jǐn)?shù)闹R脈絡(luò),這是理清數(shù)量關(guān)系,進(jìn)行因果推導(dǎo)的前提所在,而思維導(dǎo)圖又叫心智導(dǎo)圖,是一種圖形思考工具,通過線條、箭頭等將各級主題關(guān)系進(jìn)行層次表現(xiàn),不僅可以強(qiáng)化學(xué)生數(shù)學(xué)邏輯推理能力,還對課前知識導(dǎo)入、公式推導(dǎo)、解題思路分析以及課后知識點(diǎn)鞏固等具有良好輔助效果。為此,本文以思維導(dǎo)圖為載體,分析了其在高中數(shù)學(xué)教學(xué)中的作用,探究了運(yùn)用策略。旨在激活數(shù)學(xué)思維,實(shí)現(xiàn)高效教學(xué)。
關(guān)鍵詞:高中數(shù)學(xué);思維導(dǎo)圖;運(yùn)用策略
中圖分類號:G633.6? ? ? ? ? ?文獻(xiàn)標(biāo)識碼:A文章編號:1992-7711(2020)18-040-2
思維導(dǎo)圖是以圖文并重將教學(xué)內(nèi)容進(jìn)行直觀展示,利用記憶、閱讀、思維的規(guī)律,提高人腦的擴(kuò)散思維,協(xié)助學(xué)生構(gòu)建知識網(wǎng)絡(luò)。在高中數(shù)學(xué)教學(xué)中,不僅會提高學(xué)生對重難點(diǎn)知識的掌握,還要培養(yǎng)解題方法、預(yù)習(xí)能力,而思維導(dǎo)圖的運(yùn)用,既可以提高解題質(zhì)量和學(xué)習(xí)效率,又可以培養(yǎng)數(shù)學(xué)素養(yǎng),在化繁為簡、層次展示中,鍛煉數(shù)學(xué)思維能力。為此,本文以思維導(dǎo)圖為教學(xué)載體,不僅解讀了其運(yùn)用的作用,還從課前導(dǎo)入、例題詳解、課后鞏固等多方面進(jìn)行了教學(xué)分析探索。
一、思維導(dǎo)圖在高中數(shù)學(xué)中的作用
高中數(shù)學(xué)具有邏輯性、廣泛性的特點(diǎn),在高中數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:培養(yǎng)數(shù)學(xué)思維,提高數(shù)學(xué)思想,促使在多元解、知識遷移和運(yùn)用中,培養(yǎng)數(shù)學(xué)素養(yǎng)。而思維導(dǎo)圖結(jié)構(gòu)化特征在高中數(shù)學(xué)教學(xué)中的運(yùn)用,可以將數(shù)學(xué)知識點(diǎn)各個(gè)階段的聯(lián)系進(jìn)行直觀展示,即可以激活思維,又可以促使學(xué)生形成一個(gè)系統(tǒng)的學(xué)習(xí)模式,在構(gòu)建知識體系的過程中展開預(yù)習(xí)、解題、鞏固??梢哉f它既是一種教學(xué)手段,同時(shí)也是一種學(xué)習(xí)方法,在知識形象展示中,使抽象的數(shù)學(xué)理論變得更加具體,從學(xué)生視角來看,它的運(yùn)用,可以為其提供預(yù)習(xí)、學(xué)習(xí)思路,也可以在進(jìn)行數(shù)學(xué)問題解題的時(shí)候,條理清晰的探索已知條件、未知條件,進(jìn)行因果推導(dǎo),科學(xué)計(jì)算;從教材來看,它的使用,可以呈現(xiàn)知識結(jié)構(gòu),展示概念原理之間的各種關(guān)系;從教育教學(xué)來看,它在課堂教學(xué)中的實(shí)踐應(yīng)用,可以促進(jìn)學(xué)生的知識獲得,真正促使其化被動為主動,為教學(xué)計(jì)劃提供依據(jù)??梢娖溥\(yùn)用的作用所在。
二、高中數(shù)學(xué)思維導(dǎo)圖運(yùn)用策略
1.借助思維導(dǎo)圖做好課前導(dǎo)入
課前導(dǎo)入是課堂教學(xué)的起始階段,關(guān)系到學(xué)生一整節(jié)課的學(xué)習(xí)狀態(tài)、學(xué)習(xí)興趣、學(xué)習(xí)質(zhì)量,那么,作為課堂教學(xué)關(guān)鍵環(huán)節(jié),可以借助思維導(dǎo)圖展開知識導(dǎo)入,讓學(xué)生提前對所學(xué)知識有一個(gè)清楚的輪廓,從而借助導(dǎo)圖展開自主預(yù)習(xí)。這樣既可以培養(yǎng)良好的學(xué)習(xí)習(xí)慣,又可以轉(zhuǎn)變學(xué)習(xí)方法,提高自主探索學(xué)習(xí)能動性。例如,在教學(xué)《集合》數(shù)學(xué)內(nèi)容時(shí),主要是引導(dǎo)中理解元素與集合的隸屬關(guān)系,理解集合表示法,體會集合之間包含與相等的含義,能夠在具體的情境中了解全集與空集的含義,這一數(shù)學(xué)內(nèi)容包含了概念以及理論、推導(dǎo)等學(xué)習(xí),是近現(xiàn)代數(shù)學(xué)學(xué)習(xí)的重要基礎(chǔ)所在。為此,在教學(xué)的時(shí)候,可以為學(xué)生設(shè)計(jì)思維導(dǎo)圖刺激大腦,讓學(xué)生對接下來所學(xué)知識點(diǎn)以及學(xué)習(xí)的重難點(diǎn)進(jìn)行充分了解,如
通過思維導(dǎo)圖導(dǎo)入教學(xué)的設(shè)置,讓學(xué)生以小組的形式根據(jù)導(dǎo)圖引導(dǎo)進(jìn)行自主預(yù)習(xí)學(xué)習(xí),在導(dǎo)入學(xué)習(xí)期間,為提高預(yù)習(xí)質(zhì)量,提高導(dǎo)入教學(xué)質(zhì)量,可以讓學(xué)生在自主預(yù)習(xí)完成后,說一說自己的預(yù)習(xí)結(jié)果,根據(jù)導(dǎo)圖引導(dǎo),說一說自己所掌握的各個(gè)知識點(diǎn),在了解學(xué)情的基礎(chǔ)上科學(xué)安排內(nèi)容,教師重點(diǎn)講解學(xué)生學(xué)習(xí)疑點(diǎn)。這樣既可以提高課堂教學(xué)質(zhì)量,又可以使其有一個(gè)明確的學(xué)習(xí)計(jì)劃和學(xué)習(xí)目標(biāo)。
2.利用思維導(dǎo)圖開展例題詳解
在高中數(shù)學(xué)教學(xué)中,例題詳解是課堂教學(xué)的重要組成部分,要想提高學(xué)生數(shù)學(xué)問題解題質(zhì)量,就要讓其對例題的解題思路有一個(gè)充分的了解,在獨(dú)立思考、層次推進(jìn)中,由已知推導(dǎo)未知,展開因果推理。那么,在例題詳解的時(shí)候,可以充分利用思維導(dǎo)圖作為解題輔助,在解題引導(dǎo)中,優(yōu)化思路,激活思維,讓學(xué)生可以清楚地分析例題條件,制定解題計(jì)劃。例如,在講解這一數(shù)學(xué)例題的時(shí)候,如:
(1)f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A、B、C的對邊分別為a、b、c,若f()=0,a=1,求解△ABC面積的最大值。
對于這一列題講解而言,為提高學(xué)生解題探索主動性,促使其準(zhǔn)確探尋解題思路,在教學(xué)的時(shí)候,可以利用思維導(dǎo)圖的方法,結(jié)合題意可以得知所考察的是三角函數(shù)相關(guān)的內(nèi)容,那么,可以以三角函數(shù)為中心,以此題為依據(jù),探尋考點(diǎn),將正弦函數(shù)的單調(diào)性、兩角和與差的正弦函數(shù)、余弦定理、函數(shù)圖形與性質(zhì)等內(nèi)容作為二級標(biāo)記,然后由三角函數(shù)恒等變化簡析式、余弦定理等作為三級解題引導(dǎo),讓學(xué)生推導(dǎo)f(x)函數(shù),解析單調(diào)區(qū)間,以f(〖SX(〗A〖〗2〖SX)〗)=0,推導(dǎo)得出sinA、cosA。通過思維導(dǎo)圖在例題教學(xué)中的講解使用,促使學(xué)生能夠在導(dǎo)圖引導(dǎo)中抽絲剝繭,尋找已知關(guān)聯(lián)性,由已知條件展開未知推導(dǎo),在解題思路明晰中,提高解題質(zhì)量,提高高中數(shù)學(xué)例題教學(xué)質(zhì)量。
3.運(yùn)用思維導(dǎo)圖實(shí)施一題多解
在高中數(shù)學(xué)新課程標(biāo)注中提到:要引導(dǎo)學(xué)生從多視角、多角度進(jìn)行問題探索,在一題多解訓(xùn)練中,激活思維,培養(yǎng)數(shù)學(xué)邏輯推理和數(shù)據(jù)分析的能力。為此,在數(shù)學(xué)教學(xué)中,為提高學(xué)生的數(shù)學(xué)思維能力,培養(yǎng)數(shù)學(xué)素養(yǎng),可以運(yùn)用思維導(dǎo)圖實(shí)施一題多解,在多角度分析、多視角觀察中,提高解題能力。例如,在解決三角函數(shù)問題的時(shí)候,如:
已知tanα=,求sinα,cosα的值
在解決的時(shí)候,首先可以對題意進(jìn)行分析,結(jié)合題意所涉及的sinα、cosα、tanα,引導(dǎo)學(xué)生考慮它們之間的關(guān)系,然后利用思維導(dǎo)圖的方法,以同角三角函數(shù)關(guān)系式tanα=〖SX(〗3〖〗4〖SX)〗=〖SX(〗sinα〖〗cosα〖SX)〗,且sinα2α+cos2α=1聯(lián)立進(jìn)行推導(dǎo)解析;以tanα=〖SX(〗3〖〗4〖SX)〗為依據(jù),分析α在第一、三象限,運(yùn)用比例性質(zhì)展開問題解析;以sinα、cosα之間的關(guān)系進(jìn)行考慮,結(jié)合三角函數(shù)輔助角公式進(jìn)行問題解決;以二倍角公式為著手點(diǎn)進(jìn)行解決分析。通過思維導(dǎo)圖輔助,引導(dǎo)學(xué)生進(jìn)行一題多解,多視角、多角度分析問題,在思維導(dǎo)圖探索學(xué)習(xí)中,提高數(shù)學(xué)學(xué)習(xí)質(zhì)量。
4.使用思維導(dǎo)圖加強(qiáng)生生互動
教育教學(xué)需要教師、學(xué)生之間的互動,不僅要做到師生互動,還要做到生生互動。促使其在良好教學(xué)氛圍的塑造中,提高自主學(xué)習(xí)能動性,那么,可以利用思維導(dǎo)圖進(jìn)行教學(xué)探索,在導(dǎo)圖引導(dǎo)中強(qiáng)化生生互動,展開自主學(xué)習(xí)探索。例如,在教學(xué)《平面向量》數(shù)學(xué)內(nèi)容,可以利用思維導(dǎo)圖,以平面向量為核心,以向量的概念、線性運(yùn)算、平面向量基本定理、數(shù)量積、共線與垂直、向量的應(yīng)用為一級指引,按照導(dǎo)圖層次關(guān)系,讓學(xué)生以小組合作的形式展開學(xué)習(xí)探索,讓學(xué)生結(jié)合自己所學(xué)內(nèi)容自己制作思維導(dǎo)圖進(jìn)行學(xué)習(xí)內(nèi)容展現(xiàn),在這一過程中,為提高強(qiáng)化生生互動學(xué)習(xí)質(zhì)量,在學(xué)習(xí)探索的時(shí)候,教師可以依據(jù)思維導(dǎo)圖進(jìn)行問題設(shè)置,如。第一,向量表示法是什么?第二,線性運(yùn)算包括什么?其運(yùn)算律是什么?第三,數(shù)量積的夾角公式?然后讓學(xué)生小組展開學(xué)習(xí)探索進(jìn)行系統(tǒng)知識規(guī)劃,在問題解析、交流中構(gòu)建良好師生關(guān)系,塑造良好教學(xué)氛圍。
5.借用思維導(dǎo)圖促進(jìn)課后鞏固
課后鞏固作為教育教學(xué)的結(jié)束階段,關(guān)系到學(xué)生對所學(xué)知識點(diǎn)的掌握情況以及教師的教學(xué)質(zhì)量。為此,在復(fù)習(xí)鞏固的時(shí)候,為培養(yǎng)良好的數(shù)學(xué)復(fù)習(xí)學(xué)習(xí)方法,可以運(yùn)用思維導(dǎo)圖進(jìn)行學(xué)習(xí)引導(dǎo)。例如,在教學(xué)《圓與方程》數(shù)學(xué)內(nèi)容時(shí),可以為其設(shè)計(jì)以下思維導(dǎo)圖,如:
通過思維導(dǎo)圖的設(shè)置,引導(dǎo)學(xué)生對此次所學(xué)內(nèi)容展開系統(tǒng)復(fù)習(xí),制定精準(zhǔn)的學(xué)習(xí)計(jì)劃,在明晰知識重難點(diǎn)的同時(shí),提高復(fù)習(xí)學(xué)習(xí)效率。
三、結(jié)語在高中數(shù)學(xué)教學(xué)中運(yùn)用思維導(dǎo)圖,不僅可以激活數(shù)學(xué)思維,還可以提高解題質(zhì)量,培養(yǎng)良好學(xué)習(xí)習(xí)慣。為此,教師一定要重視思維導(dǎo)圖在數(shù)學(xué)教學(xué)中的運(yùn)用,通過課前引導(dǎo)、例題講解、一題多解、復(fù)習(xí)鞏固等教學(xué)環(huán)節(jié)的應(yīng)用,培養(yǎng)數(shù)學(xué)素養(yǎng),打造高效課堂。
[參考文獻(xiàn)]
[1]陳田璋.思維導(dǎo)圖在高中數(shù)學(xué)課堂教學(xué)中的應(yīng)用[J].高中數(shù)學(xué)教與學(xué),2020(4):29-30.
[2]胡碧順.“模塊化”思維導(dǎo)圖在高中數(shù)學(xué)教學(xué)中的應(yīng)用[J].教育科學(xué)論壇,2020(8):20-23.
[3]范嗣波.思維導(dǎo)圖在高中數(shù)學(xué)教學(xué)中的應(yīng)用剖析[J].數(shù)學(xué)教學(xué)通訊,2020(3):40-41.
(作者單位:浙江省寧波姜山中學(xué),浙江 寧波 315191)