陳輝,金熙,張校曼,高基民
·醫(yī)藥生物技術(shù)·
一種經(jīng)microRNA敲低PD-1的新型慢病毒載體在CAR-T細(xì)胞中的應(yīng)用
陳輝1,金熙1,張校曼1,高基民1,2
1 溫州醫(yī)科大學(xué) 檢驗醫(yī)學(xué)院 生命科學(xué)學(xué)院,浙江 溫州 325035 2 溫州醫(yī)科大學(xué) 浙江啟新生物技術(shù)有限公司,浙江 溫州 325035
本研究將microRNA插入EF1α啟動子的內(nèi)含子中,構(gòu)建攜帶沉默PD-1基因的miRNA的新型慢病毒載體,并將其應(yīng)用于CAR-T細(xì)胞。通過流式細(xì)胞術(shù)檢測慢病毒載體轉(zhuǎn)導(dǎo)效率和PD-1沉默效率;Western blotting檢測PD-1蛋白表達(dá)差異;熒光定量PCR檢測microRNA相對表達(dá)情況;熒光素酶生物發(fā)光法和流式細(xì)胞術(shù)檢測CAR-T細(xì)胞的能力。結(jié)果顯示與U6轉(zhuǎn)錄microRNA的載體相比較,將microRNA插入到EF1-α內(nèi)含子中的病毒載體轉(zhuǎn)導(dǎo)效率更顯著,對PD-1的敲低效率均達(dá)90%以上,且Western blotting結(jié)果驗證了PD-1的敲低效果。另外通過熒光定量PCR,可顯示出轉(zhuǎn)導(dǎo)該新型慢病毒載體的Jurkat細(xì)胞內(nèi)microRNA的相對表達(dá)量。熒光素酶生物發(fā)光法證實了CAR-T細(xì)胞針對靶細(xì)胞的特異殺傷性,流式細(xì)胞術(shù)結(jié)果表明沉默PD-1的CAR-T細(xì)胞相較于正常CAR-T細(xì)胞顯示出更強(qiáng)的特異性殺傷能力。本研究成功構(gòu)建了經(jīng)microRNA敲低PD-1的新型慢病毒載體并驗證了其轉(zhuǎn)導(dǎo)效率的優(yōu)越性,以及基于此載體表達(dá)的microRNA可高效地沉默PD-1;且應(yīng)用此載體的CAR-T細(xì)胞能發(fā)揮更強(qiáng)的殺傷活性,從而為后續(xù)該CAR-T細(xì)胞治療表達(dá)PD-L1的腫瘤奠定基礎(chǔ)。
程序性死亡受體1,microRNA,新型慢病毒載體,嵌合抗原受體T細(xì)胞
CAR (Chimeric antigen receptor,嵌合抗原受體) T細(xì)胞療法是利用病人自身的免疫細(xì)胞來清除癌細(xì)胞,CAR是改造后的受體,賦予T細(xì)胞非HLA (Human leukocyte antigen,人白細(xì)胞抗原) 依賴的方式識別腫瘤抗原的能力,這使得經(jīng)過CAR改造的T細(xì)胞相較于天然T細(xì)胞受體 (TCR)能夠識別更廣泛的目標(biāo)[1]。CAR由結(jié)合靶抗原的免疫球蛋白單鏈可變片段 (Single-chain variable fragment,scFv)、跨膜結(jié)構(gòu)域和細(xì)胞內(nèi)T細(xì)胞信號傳導(dǎo)結(jié)構(gòu)域組成。目前,CAR-T細(xì)胞療法在癌癥免疫治療中顯示出顯著的功效,特別是在血液系統(tǒng)疾病的治療中[2-3]。
程序性死亡受體-1 (PD-1) 是一種免疫抑制性受體,屬于CD28家族成員的Ⅰ型跨膜蛋白[4],在激活的T細(xì)胞、B細(xì)胞、單核細(xì)胞和樹突狀細(xì)胞表面廣泛表達(dá)[5]。PD-1與其配體PD-L1 (細(xì)胞程序性死亡-配體1,Programmed cell death 1 ligand 1) 結(jié)合可抑制T 細(xì)胞的活化、增殖和細(xì)胞因子的分泌,誘導(dǎo)T細(xì)胞的凋亡,從而負(fù)調(diào)控免疫應(yīng)答[6]。腫瘤細(xì)胞通過高表達(dá)PD-L1分子,使表達(dá)PD-1的腫瘤抗原特異性T 細(xì)胞凋亡,導(dǎo)致腫瘤細(xì)胞逃避免疫系統(tǒng)的監(jiān)視和殺傷[7]。
慢病毒載體已廣泛用于RNA分子遞送或蛋白表達(dá)[8-11]。目前研究發(fā)現(xiàn),基于慢病毒載體的小分子RNA轉(zhuǎn)移至宿主細(xì)胞會通過各種機(jī)制導(dǎo)致慢病毒滴度降低[12-13],可能是由于病毒顆粒生產(chǎn)過程中mRNA(信使RNA)被降解導(dǎo)致包裝失敗,或者是因病毒轉(zhuǎn)導(dǎo)宿主細(xì)胞后的基因表達(dá)降低。因此,在許多研究中都對慢病毒載體進(jìn)行了修飾和優(yōu)化,以增強(qiáng)基因表達(dá)或小分子RNA的傳遞[14-19]。
293T細(xì)胞株 (人腎上皮細(xì)胞系)購自ATCC,用含有10%胎牛血清的DMEM培養(yǎng)基培養(yǎng);過表達(dá)人PD-L1和熒光素酶的Raji細(xì)胞株由本實驗室自行構(gòu)建并保種,Jurkat細(xì)胞株 (人急性T細(xì)胞白血病細(xì)胞株)購自ATCC,以上兩種細(xì)胞株用含有10%胎牛血清的RPMI 1640培養(yǎng)基培養(yǎng)。T細(xì)胞取自健康人外周血,用含5%人AB血清、1 ng/mL IL-2、10 μg/mL IL-7和10 μg/mL IL-15的X-Vivo培養(yǎng)基培養(yǎng)。DMEM、RPMI 1640和胎牛血清購自Gibco公司;X-Vivo購自Lonza公司;人AB血清購自Sigma公司;重組人IL2、IL7和IL15購自PRPROTECH公司。
plenti-EF1α-GFP(Green fluorescent protein)、plenti-EF1α-anti-CD19 CAR表達(dá)質(zhì)粒由本實驗室保存;限制性內(nèi)切酶購自New England BioLabs;無縫克隆試劑盒購自南京諾唯贊生物科技有限公司;質(zhì)粒抽提試劑盒購自QIAGEN公司;聚乙酰亞胺 (Polyetherimide,PEI)購自Polysciences公司;生物素標(biāo)記的人CD19蛋白購自ACRO Biosystems公司;PE標(biāo)記的鏈霉親和素、PE標(biāo)記的抗人CD3抗體、Brilliant Violet 421標(biāo)記的抗人PD-L1抗體、PB標(biāo)記的抗人CD62L抗體、Alexa Fluor?488標(biāo)記的抗人CD45RO抗體、APC標(biāo)記的抗人CD45RA抗體和APC標(biāo)記的抗人PD-1抗體均購自BioLegend公司。
PCR儀、電泳裝置、凝膠成像系統(tǒng)購自Bio-Rad;FACS Aria II流式細(xì)胞儀購自BD公司;DynaMagTM-5磁力架、CO2恒溫細(xì)胞培養(yǎng)箱、酶標(biāo)儀等購自Thermo Fisher公司;超速離心機(jī)購自Beckman Coulter公司;熒光顯微鏡、臺式低速離心機(jī)、超凈工作臺等購自Eppendorf公司。
1.3.1 慢病毒表達(dá)載體構(gòu)建
三條miRNA分別命名為miRNA-30#backbone (miRNA-30原始序列)、miRNA-30#PD-1#1 (靶向PD-1 3′UTR)、miRNA-30#PD-1#61 (靶向PD-1蛋白編碼區(qū)),均由蘇州金唯智生物科技有限公司合成,3條miRNA均使用同一對引物進(jìn)行擴(kuò)增,F(xiàn):5′-TGCGGGCCAAGATCTTCTTCAGGTTAACCCA AC-3′和R:5′-CCAGTGTGCAGATCTTCCTAAAG TAGCCCCTTG-3′,獲得目的片段Q1、Q2、Q3,以Ⅱ為酶切位點,將Q1、Q2、Q3以無縫連接插入plenti-EF1α-GFP質(zhì)粒EF1α啟動子的內(nèi)含子中;以Ⅱ為酶切位點,將Q2、Q3以無縫連接插入plenti-EF1α-anti-CD19 CAR質(zhì)粒EF1α啟動子的內(nèi)含子中。
1.3.2 慢病毒包裝及其轉(zhuǎn)導(dǎo)效率測定
將上述目的質(zhì)粒分別與包裝質(zhì)粒pLP1、pLP2、pMD2G共轉(zhuǎn)染293T細(xì)胞得到慢病毒顆粒,設(shè)置一定比例轉(zhuǎn)導(dǎo)Jurkat細(xì)胞,并于48 h后通過流式細(xì)胞儀檢測轉(zhuǎn)導(dǎo)效率。
1.3.3 CAR-T細(xì)胞的制備及擴(kuò)增
采集健康人靜脈血,經(jīng)Ficoll分離液密度梯度離心提取外周血單個核細(xì)胞,利用抗CD3/CD28抗體包被的磁珠篩選T細(xì)胞,并經(jīng)磁珠活化12–24 h。將上述慢病毒轉(zhuǎn)導(dǎo)至活化的T細(xì)胞,待T細(xì)胞擴(kuò)增至一定數(shù)量時取部分細(xì)胞,經(jīng)生物素標(biāo)記的CD19蛋白和PE-SA先后染色,通過流式細(xì)胞術(shù)檢測CAR表達(dá)率。
1.3.4 蛋白質(zhì)印跡分析
細(xì)胞裂解液通過SDS-PAGE,然后轉(zhuǎn)移至PVDF膜 (Bio-Rad)。抗PD-1抗體 (CST:86163S),抗GAPDH (Beyotime) 抗體分別被用于蛋白印跡一抗和二抗。
1.3.5 實時定量PCR
使用TRIzol試劑從Jurkat細(xì)胞中提取總RNA。以U6為內(nèi)參基因,通過特異性引物將miRNA和U6逆轉(zhuǎn)錄為cDNA。逆轉(zhuǎn)錄引物分別是Q-PCR miRNA#1 REV、Q-PCR miRNA#61 REV,實時熒光定量PCR引物如表1所示。相對定量法通過2–ΔΔCt法計算。
表1 熒光定量PCR引物
1.3.6 流式細(xì)胞儀
以下抗體用于流式細(xì)胞儀實驗:生物素化人CD19 (ACRO Biosystems),APC偶聯(lián)抗PD-1 (BioLegend),Brilliant Violet 421偶聯(lián)抗PD-L1 (BioLegend),PE偶聯(lián)抗人CD3 (BioLegend),APC-SA (BioLegend),PE-SA (BioLegend),APC偶聯(lián)抗CD45RA (BioLegend),PB偶聯(lián)抗CD62L (BioLegend),F(xiàn)ITC偶聯(lián)抗CD45RO (BioLegend)。使用BD AriII流式細(xì)胞儀收集細(xì)胞數(shù)據(jù),并使用FlowJo軟件進(jìn)行分析。
1.3.7 熒光素酶生物發(fā)光法檢測CAR-T細(xì)胞的殺傷效能
96孔板中每孔鋪10 000個PD-L1-Luc-GFP Raji細(xì)胞,然后以不同的效︰靶比添加CAR-T細(xì)胞,使每孔的終體積為200 μL。另外設(shè)置兩組PD-L1-Luc-GFP Raji細(xì)胞孔,一個用RMPI-1640培養(yǎng)基重懸,另一個用ddH2O重懸以裂解細(xì)胞,將其用作最大背景值 (MAX) 和最小背景值 (MIN) (每組重復(fù)3孔)。加入熒光素酶底物后,用酶標(biāo)儀檢測自身熒光值V。靶細(xì)胞的裂解率可通過以下公式計算:裂解率(%)=(MAX?V)/ (MAX?MIN)×100%。
1.3.8 統(tǒng)計學(xué)分析
我們設(shè)計了慢病毒質(zhì)粒plenti-EF1α (miRNA- 30-backbone)-GFP、plenti-EF1α (miRNA#1)-GFP、plenti-EF1α (miRNA#61)-GFP,并以由U6啟動子轉(zhuǎn)錄miRNA的慢病毒質(zhì)粒plenti-EF1α-GFP- U6-miRNA#61作為對照 (圖1A)。我們基于miRNA-30骨架 (miRNA-30-backbone) 設(shè)計了兩種miRNA (分別針對PD-1基因3′UTR的miRNA-30#PD-1#1和CDS區(qū)的miRNA-30#PD- 1#61),其中miRNA序列經(jīng)Ⅱ酶切位點插入到啟動子EF1α的內(nèi)含子中 (表2)。將上述目的質(zhì)粒經(jīng)第3代慢病毒包裝系統(tǒng)得到相應(yīng)慢病毒顆粒并轉(zhuǎn)導(dǎo)至Jurkat細(xì)胞,通過流式細(xì)胞術(shù)檢測Jurkat細(xì)胞中的報告基因GFP表達(dá)情況,以比較在相同條件下不同慢病毒載體上目的基因的表達(dá)效率。如圖1B所示,經(jīng)慢病毒LV-EF1α-GFP (陽性對照)、LV-EF1α (miRNA-backbone)-GFP、LV-EF1α (miRNA#1) 和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞的GFP表達(dá)率顯著高于經(jīng)慢病毒LV-EF1α-GFP-U6-miRNA#61轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞。該結(jié)果表明,相對于傳統(tǒng)攜帶miRNA的慢病毒載體,將miRNA插至EF1α內(nèi)含子中的慢病毒載體的轉(zhuǎn)基因表達(dá)效率更高。
我們通過植物血凝素 (PHA) 活化刺激Jurkat細(xì)胞,使其高表達(dá)PD-1,再通過轉(zhuǎn)導(dǎo)上述不同慢病毒以評估不同新型慢病毒載體中miRNA介導(dǎo)的PD-1敲除效率。圖2A表明,成功轉(zhuǎn)導(dǎo)病毒的GFP+細(xì)胞群中,LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞表面幾乎未檢測到PD-1。如圖2B所示,與不靶向其他基因的miRNA骨架相比,miRNA#1和miRNA#61介導(dǎo)的PD-1沉默效率均超過了90%,具有顯著的統(tǒng)計學(xué)差異。
圖1 攜帶miRNA的新型慢病毒載體的構(gòu)建及其目的基因表達(dá)效率的驗證
表2 miRNA序列
接下來,我們通過熒光定量PCR檢測了轉(zhuǎn)導(dǎo)新型慢病毒載體后的Jurkat細(xì)胞中miRNA的相對表達(dá)量以驗證miRNA是否由慢病毒載體遞送。以LV-EF1α-GFP轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞作為對照,LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞中,miRNA#1和miRNA#61分別顯示出較高的表達(dá)水平 (圖2C)。另外,通過Western blotting驗證了LV-EF1α (miRNA#1)-GFP和LV-EF1α (miRNA#61)-GFP轉(zhuǎn)導(dǎo)的Jurkat細(xì)胞中PD-1的表達(dá)明顯減少 (圖2D)。
圖2 miRNAs介導(dǎo)的PD-1基因沉默的驗證
我們構(gòu)建了第2代CAR慢病毒載體,其中包含識別CD19的嵌合抗原受體、CD8跨膜區(qū)、人CD28的細(xì)胞內(nèi)信號傳導(dǎo)域和CD3ζ T細(xì)胞信號傳導(dǎo)域,其中miRNA#1和miRNA#61分別插入EF1α的內(nèi)含子中 (圖3A)。將基于此載體的慢病毒顆粒轉(zhuǎn)導(dǎo)至人原代T細(xì)胞以構(gòu)建CAR-T細(xì)胞。如圖3B所示,3種T細(xì)胞表面的CAR陽性率分別為88.6%、80.0%和73.8%,顯示成功構(gòu)建anti-CD19 CAR-T細(xì)胞。此外,我們將3種不同的CAR-T細(xì)胞分別與高表達(dá)CD19的Raji細(xì)胞以效靶比為1︰1、 5︰1和10︰1共培養(yǎng)4 h,結(jié)果顯示Raji細(xì)胞被 3種CAR-T特異殺傷 (圖3C)。
圖3 經(jīng)miRNA敲低PD-1的新型CAR慢病毒載體構(gòu)建
使用CD3/CD28抗體包被的磁珠刺激CAR-T細(xì)胞48 h后,如圖4A所示,流式細(xì)胞術(shù)檢測結(jié)果顯示,在攜帶miRNA#1或miRNA#61的CAR-T細(xì)胞中PD-1表達(dá)率明顯下降,表明miRNA成功地在CAR-T細(xì)胞中介導(dǎo)了PD-1的沉默。
為檢測上述經(jīng)miRNA敲低PD-1的CAR-T細(xì)胞的殺傷活性差異,將CAR-T細(xì)胞與PD-L1+并轉(zhuǎn)有熒光素酶基因和GFP報告基因的Raji細(xì)胞以效靶比為1︰1共培養(yǎng)72 h。如圖4B所示,與anti-CD19 CAR-T細(xì)胞殺傷效率相比,經(jīng)miRNA敲低PD-1的兩種CAR-T細(xì)胞均顯示出殺傷的優(yōu)越性,其靶細(xì)胞裂解率明顯提高。
在本研究中,我們以pri-miRNA-30骨架為基礎(chǔ)設(shè)計了靶向PD-1的miRNA,從而介導(dǎo)CAR-T細(xì)胞PD-1蛋白的敲低?;诼《据d體,我們將miRNA插入人延伸因子1α (EF1α) 啟動子的內(nèi)含子中[14,20],miRNA會隨著目的基因的轉(zhuǎn)錄而同時轉(zhuǎn)錄表達(dá),而不是加入額外的U6等啟動子單獨(dú)轉(zhuǎn)錄miRNA[21]。Cooper等的研究表明慢病毒包裝過程中EF1α啟動子中的內(nèi)含子不會被剪接丟失[14]。基于以上發(fā)現(xiàn),將miRNA插入內(nèi)含子的方式是可行的。將應(yīng)用此方法的慢病毒載體轉(zhuǎn)導(dǎo)宿主細(xì)胞,而目的基因由啟動子EF1α驅(qū)動。后續(xù)的結(jié)果顯示,與攜帶U6啟動子轉(zhuǎn)錄的miRNA的慢病毒轉(zhuǎn)導(dǎo)的宿主細(xì)胞 (Jurkat) 相比,將miRNA插入EF1α內(nèi)含子的慢病毒載體傳遞的基因表達(dá)明顯更高。這種現(xiàn)象可能是由于此載體可以避免目的基因的mRNA被RNase Ⅲ[22]識別和切割,因為EF1α啟動轉(zhuǎn)錄后mRNA會進(jìn)行剪接從而其內(nèi)含子和插入其中的miRNA會在剪接過程中被去除。因此,目的基因的mRNA和miRNA將分別由一個啟動子EF1α驅(qū)動,這為同時表達(dá)miRNA和CAR結(jié)構(gòu)的CAR-T細(xì)胞療法提供了更高效的方法。
圖4 PD-1沉默的anti-CD19 CAR-T細(xì)胞顯示出更強(qiáng)的抗腫瘤活性
本研究證實了miRNA介導(dǎo)的PD-1敲低效率保持在較高水平,且不亞于Cas9的基因敲除[23-24]。更重要的是,經(jīng)miRNA敲低PD-1的CAR慢病毒載體可直接轉(zhuǎn)導(dǎo)T細(xì)胞而用于CAR-T免疫療法,而Cas9基因編輯方法相對繁瑣[25],且其在加工過程中可能影響到T細(xì)胞的免疫活性或者產(chǎn)生脫靶效應(yīng),從而造成不良影響。另外,Rafiq等構(gòu)建了一種分泌抗PD-1 scFv的CAR-T細(xì)胞,它可以通過旁分泌和自分泌兩種方式阻斷免疫檢查點的抑制以增強(qiáng)抗腫瘤功效[26]。盡管miRNA沉默PD-1僅限于CAR-T細(xì)胞本身,但其PD-1的敲低效率超過90%,而抗PD-1 scFv阻斷T細(xì)胞的效率在某種程度上較低,導(dǎo)致在很大程度上引起CAR-T細(xì)胞衰竭。
本研究結(jié)果顯示,隨著T細(xì)胞被CD3/CD28抗體活化從而其表面高表PD-1蛋白,與PD-L1陽性的靶細(xì)胞共孵育后,Raji細(xì)胞表面PD-L1與CAR-T細(xì)胞表面PD-1的結(jié)合所發(fā)揮的負(fù)調(diào)控作用,可抑制CAR-T細(xì)胞的活化、增殖,并誘導(dǎo)其凋亡,而anti-CD19 CAR-T (miRNA-30#1或miRNA-30#61) 細(xì)胞中PD-1的高效敲低可避免該負(fù)調(diào)控所引起的抑制作用,從而介導(dǎo)了CAR-T細(xì)胞發(fā)揮更強(qiáng)的殺傷能力。另外,我們可以設(shè)計靶向其他免疫檢查點的miRNA,將其插入該種新型慢病毒載體,如CTLA-4 (cytotoxic T-lymphocyte-associated protein 4)[27]、LAG-3 (Lymphocyte-activation gene 3)[28]、TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3)[29]等,從而達(dá)到沉默CAR-T細(xì)胞表面多種免疫檢查點以進(jìn)一步增強(qiáng)其抗腫瘤活性,進(jìn)而為CAR-T細(xì)胞療法提供了一種可靠策略,使CAR-T細(xì)胞免受免疫檢查點的抑制并改善其生物學(xué)效應(yīng)。
[1] Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol, 2016, 13(6): 370–383.
[2] Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013, 5(177): 177ra138.
[3] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 2014, 371(16): 1507–1517.
[4] Han YY, Liu DD, Li LH. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10(3): 727–742.
[5] Payandeh Z, Khalili S, Somi MH, et al. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol, 2020, 235(7/8): 5461–5475.
[6] Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945–954.
[7] Dong HD, Strome SE, Salomao DR, et al.Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8(8): 793–800.
[8] Merlin S, Follenzi A. Transcriptional targeting and MicroRNA regulation of lentiviral vectors. Mol Ther Methods Clin Dev, 2019, 12: 223–232.
[9] ?kerblom M, Sachdeva R, Quintino L, et al. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun, 2013, 4: 1770.
[10] Sachdeva R, J?nsson ME, Nelander J, et al. Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proc Natl Acad Sci USA, 2010, 107(25): 11602–11607.
[11] Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNAby lentiviral vectors. Nat Methods, 2009, 6(1): 63–66.
[12] Liu YP, Vink MA, Westerink JT, et al. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA, 2010, 16(7): 1328–1339.
[13] Poluri A, Sutton RE. Titers of HIV-based vectors encoding shRNAs are reduced by a dicer-dependent mechanism. Mol Ther, 2008, 16(2): 378–386.
[14] Cooper AR, Lill GR, Gschweng EH, et al. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucl Acids Res, 2015, 43(1): 682–690.
[15] Fowler DK, Williams C, Gerritsen AT, et al. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer’s guide to potent multi-target RNAi. Nucleic Acids Res, 2016, 44(5): e48.
[16] Herrera-Carrillo E, Liu YP, Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods, 2017, 28(4): 177–190.
[17] Hu T, Fu Q, Chen P, et al. Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int J Mol Sci, 2009, 10(5): 2158–2168.
[18] Poling BC, Tsai K, Kang D, et al. A lentiviral vector bearing a reverse intron demonstrates superior expression of both proteins and microRNAs. RNA Biol, 2017, 14(11): 1570–1579.
[19] Sun DQ, Melegari M, Sridhar S, et al. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 2006, 41(1): 59–63.
[20] Amendola M, Passerini L, Pucci F, et al. Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther, 2009, 17(6): 1039–1052.
[21] Nie LH, Thakur MD, Wang YM, et al. Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi. Genom Proteom Bioinformat, 2010, 8(3): 170–179.
[22] Filippov V, Solovyev V, Filippova M, et al. A novel type of RNase III family proteins in eukaryotes. Gene, 2000, 245(1): 213–221.
[23] Guo XL, Jiang H, Shi BZ, et al. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol, 2018, 9: 1118.
[24] Hu WH, Zi ZG, Jin YL, et al. CRISPR/Cas9- mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother, 2019, 68(3): 365–377.
[25] Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol, 2016, 34(9): 933–941.
[26] Rafiq S, Yeku OO, Jackson HJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy. Nat Biotechnol, 2018, 36(9): 847–856.
[27] Syn NL, Teng MWL, Mok TSK, et al.and acquired resistance to immune checkpoint targeting. Lancet Oncol, 2017, 18(12): e731–e741.
[28] Que Y, Fang ZX, Guan YX, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med, 2019, 16(2): 331–340.
[29] Tang RH, Rangachari M, Kuchroo VK. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol, 2019, 42: 101302.
Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells
Hui Chen1, Xi Jin1, Xiaoman Zhang1, and Jimin Gao1,2
1,,325035,,2,,325035,,
By inserting microRNAs into the intron of EF1α promoter, we constructed a novel lentiviral vector knocking down PD-1 gene via microRNA and applied it to CAR-T cells. Lentiviral transduction efficiency and PD-1-silencing efficiency were detected by flow cytometry. PD-1 expression was detected by Western blotting. Relative expression of microRNA was measured by Q-PCR. Cytotoxicity of CAR-T cells based on this vector was tested by luciferase bioluminescence and flow cytometry. Compared with lentiviral vector with microRNA transcribed by U6 promotor, the transduction efficiency of lentiviral vector with microRNA which was inserted into the intron of EF1α promoter was more significant, and the knockdown rate of PD-1 was more than 90%, which was validated by flow cytometry and Western blotting. And the relative expression level of microRNA in Jurkat cells transduced with this novel lentiviral vector was shown by Q-PCR. Compared with normal CAR-T cells, CAR-T cells based on this vector showed stronger cytotoxicity against PD-L1 positive Raji cells. We successfully constructed a novel lentiviral vector that knocked down PD-1 via microRNA and verified the superiority of its transduction efficiency and knockdown efficiency of PD-1. CAR-T cells based on this vector can exert a more powerfulcytotoxicity, thus providing theoretical support for the subsequent treatment of PD-L1 positive tumors.
programmed cell death protein 1, microRNA, novel lentiviral vector, CAR-T cells
10.13345/j.cjb.200193
April 9, 2020;
May 21, 2020
Supported by: National Health Commission Science Foundation-Major Medical and Health Science and Technology Program of Zhejiang Province (No. WKJ-ZJ-1928), Wenzhou Municipal Research Program (Nos. ZS2017014, 2018ZY001).
Jimin Gao. Tel: +86-577-86699341; E-mail: jimingao64@163.com
國家衛(wèi)生健康委員會科學(xué)研究基金-浙江省醫(yī)藥衛(wèi)生重大科技計劃 (No. WKJ-ZJ-1928),溫州市重大科技專項 (Nos. ZS2017014,ZS2018ZY001) 資助。
陳輝, 金熙, 張校曼, 等. 一種經(jīng)microRNA敲低PD-1的新型慢病毒載體在CAR-T細(xì)胞中的應(yīng)用. 生物工程學(xué)報, 2020, 36(7): 1395–1404.
Chen H, Jin X, Zhang XM, et al. Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells. Chin J Biotech, 2020, 36(7): 1395–1404.
(本文責(zé)編 陳宏宇)