• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同方向內(nèi)含子對重組CHO細胞中神經(jīng)生長因子表達的影響

    2019-07-10 08:38:38董衛(wèi)華李翠萍楊赟王天云王芳
    生物工程學(xué)報 2019年6期
    關(guān)鍵詞:嵌合體內(nèi)含子新鄉(xiāng)

    董衛(wèi)華,李翠萍,楊赟,王天云,王芳

    ?

    不同方向內(nèi)含子對重組CHO細胞中神經(jīng)生長因子表達的影響

    董衛(wèi)華1,2,李翠萍1,楊赟1,王天云1,2,王芳1

    1 新鄉(xiāng)醫(yī)學(xué)院 基礎(chǔ)醫(yī)學(xué)院 生物化學(xué)與分子生物學(xué)教研室,河南 新鄉(xiāng) 453003 2 河南省分子診斷與醫(yī)學(xué)檢驗技術(shù)協(xié)同創(chuàng)新中心,河南 新鄉(xiāng) 453003

    為了研究不同方向的嵌合體內(nèi)含子對重組神經(jīng)生長因子 (Nerve growth factor,NGF) 基因表達的影響,以人β-珠蛋白第一內(nèi)含子5?端剪接序列和人免疫球蛋白重鏈可變區(qū)內(nèi)含子3?端剪接序列組合而成的嵌合體內(nèi)含子作為研究對象,在NGF基因5?端插入不同方向的嵌合體內(nèi)含子,構(gòu)建含不同方向內(nèi)含子的NGF基因表達載體。轉(zhuǎn)染至CHO細胞后,G418篩選穩(wěn)定轉(zhuǎn)染的細胞,熒光定量PCR、ELISA和Western blotting檢測不同載體NGF基因的表達情況。結(jié)果顯示內(nèi)含子可以大幅度提高NGF基因的表達,且正向內(nèi)含子對NGF基因表達的增強作用無論是在mRNA水平還是在蛋白水平都要高于反向內(nèi)含子。所以內(nèi)含子能夠提高外源NGF基因的表達,且內(nèi)含子調(diào)控轉(zhuǎn)基因表達具有方向性。

    CHO細胞,基因表達,內(nèi)含子,神經(jīng)生長因子

    The efficient expression of a transgene is a critical issue in the field of genetic engineering. However, transgene silencing and low level of expression due to the position effect is a widespread issue in transgenic animals and plants[1-3]. Construction of efficient expression vectors is an effective strategy for improving transgenic expression levels. Previous studies on this topic have focused on issues such as promoter selection, suitable enhancers, gene dosage, and optimization of vector-host combinations[4-8]. Introns are nucleotide sequences that are removed from the initial transcript during the post-transcriptional processing. The fact that introns could enhance gene expression was first reported by Callis in a study on transgenic maize[9]. Since then, many more introns have been confirmed to affect transgenic expression[10-13]. Different introns have different effects on gene expression, with some introns even reducing the gene expression levels[9]. The source of the introns, type of host cell, and the intron insertion site are some key factors that need to be considered if we aim to use introns for improving gene expression levels. Chimeric introns have exact splicing sites and have been confirmed to significantly promote the expression of the chloramphenicol acetyltransferase (CAT) gene in mice[14]. They have also been shown to increase the expression of GFP in 293T, COS and Chinese hamster ovary (CHO) cells[15]. Therefore, we chose to use chimeric introns in this study. The chimeric introns in this study consisted of the 5?-donor site from the first intron of the human β-globin gene and the branch and 3?-acceptor site from the intron of an immunoglobulin gene heavy chain variable region.

    Nerve growth factor (NGF) is a member of the neurotrophic factor family. As a common humoral regulation factor used in the clinical field, NGF is widely distributed in the central and peripheral nervous systems. It maintains neuron growth, survival, and differentiation, and affects synaptic plasticity by promoting the development of the nervous system. Under pathological conditions, the purpose of protecting neurons can be achieved by inducing the expression of the nerve growth factor gene, which, in turn, inhibits neuronal death, removes free radicals, and promotes the recovery of neuronal function[16-17].

    The mammalian cell expression system can provide post-translational machining process functions such as the direction of correct protein folding, and complex N-type glycosylation, and accurate O-type glycosylation. The expression products are closest to the natural protein molecules found in higher organisms in terms of the molecular structure, physical and chemical properties, and biological functions.

    The most widely used mammalian cell expression systems are CHO cells, African green monkey kidney fibroblast COS cells, baby hamster kidney (BHK) cells, mouse thymoma NSO cells, and mouse myeloma SP2/0 cells[18-19]. Among these, CHO cells are the most commonly used expression systems[20-21]. Authors including Xu and Wang have been using CHO cells as a recombinant NGF gene expression system[22-23]. However, to our knowledge, no study has reported that chimeric introns can promote NGF gene expression in CHO cells.

    In this study, a chimeric intron and NGF gene were cloned, and NGF expression vectors with different directions of chimeric introns were constructed. These vectors were then transfected into CHO cells and their effects on NGF gene expression were observed.

    1 Materials and Methods

    1.1 Reagents and cells

    Restriction enzymes, includingⅠanddⅢ, were purchased from TaKaRa Company (Dalian, China). The Genome extraction kit, PCR mix, DNA gel extraction kit, and T4 DNA ligase were all purchased from TaKaRa Co. (Dalian, China). Agarose and G418 were purchased from Sigma-Aldrich Co. (St. Louis, Missouri, USA). Primer synthesis and sequencing of the chimeric intron and NGF gene were carried out by Invitrogen (Beijing, China). pCAT-3 vector was purchased from Promega (Madison, WI, USA). CHO cells used in this study were purchased from the Institute of Biochemistry and Cell Biology (Shanghai, China). DMEM and serum were purchased from Gibco, Thermo Fisher Scientific, Inc. (Waltham, MA, USA). Suo-hua transfection reagent was purchased from Xiamen Sunma Bioengineering Co. Ltd. (Xiamen, China). TRIzol reagents were purchased from Invitrogen (Beijing, China).

    1.2 DNA cloning

    Primers (Table 1) were designed based on the gene sequence of the nerve growth factor () (GenBank No. AB489186.1).Ⅰandd Ⅲ restriction sites were added at the ends of the primers, in order to subclone thegene. Human whole blood genome was extracted using a genome extraction kit, following the manufacturer’s instructions. Thegene was amplified using human genomic DNA as the PCR template. PCR results were visualized by 1% agarose gel electrophoresis. Target bands were recovered, ligated to T-vector, and sequenced.

    Chimeric introns were amplified using pCAT-3 control as the PCR template. The PCR products were tested by 1% agarose gel electrophoresis. The target bands were recovered, ligated to the T-vector, and then sequenced.

    1.3 Vector construction

    Plasmid pCATG (constructed and preserved by our lab, pCAT-3 inserted G418 selection marker) was digested withⅠ andd Ⅲ. Thegene was connected to a large fragment of pCATG, and the new vector was named pNFG. The pNFG vector was digested withd Ⅲ, and the resultant fragments were recovered. The recovered pNFG fragments as well as the forward and reverse introns obtained from PCR amplification were treated with alkaline phosphatase. The forward and reverse introns were added to 5?-upstream ofgene respectively. Vectors pNFGZ, containing the forward intron, and pNFGF, containing the reverse intron, were constructed (Fig. 1).

    表1 本研究用到的引物

    圖1 本研究使用的質(zhì)粒

    1.4 Cell culture and transfection

    CHO cells were cultured in DMEM containing 15% fetal bovine serum. When the culture attained the log phase, they were transferred to 24-well plates with 1×105cells per well. When the cell density reached 80%, three vectors, pNFG, pNFGZ and pNFGF, were transfected into CHO cells using Suo-hua transfection reagents. The manufacturer’s instructions were followed in all instances. After 24 h, G418 (800 μg/mL) was added to the DMEM, in order to screen stable transfected cells, until all control cells died. The cells were then cultured using 300 μg/mL G418 for 1 week. Single clones were selected and transferred to 96-well plates, followed by continuous culturing with 300 μg/mL G418 DMEM for 1–2 weeks. Single clones that grew well in 96-well plates were transferred to culture bottles, where they were further cultured for 1 week in DMEM with 300 μg/mL G418.

    1.5 Quantitative PCR

    CHO cells that were stably transfected for 1 week were washed twice with PBS, digested by 1% trypsin, and collected by centrifugation at 4 000 r/min for 5 min. Total RNA was extracted using Trizol, and the RNA content was measured by the UV method. The cDNA reverse transcription mixture comprised RNA (1 μg), buffer 2 μL, enzyme mix (0.5 μL), oligo dT (0.5 μL), and random 6-mers (0.5 μL), with ddH2O added to reach the reaction volume of 10 μL. The reaction temperature was 37 °C for 15 min, followed by 85 °C for 5 s.

    The primer sequences used for quantitative PCR amplification of thegene and internal control β-actin are shown in Table 1. The PCR reaction mixture comprised SYBR 5 μL, P10.2 μL, P20.2 μL, cDNA 0.2 μL and ddH2O 4.45 μL. The reaction conditions were: 95 °C for 5 s, and 60 °C for 30 s, repeated for 40 cycles. The reverse transcription reagents and fluorescence quantitative PCR reagents were purchased from TaKaRa Co.

    1.6 ELISA

    Stably transfected CHO cells were washed twice with PBS and cultured in 3 mL of serum-free DMEM for 24 h. The expression of NGF protein per 106 cells in the supernatant was determined by ELISA (Shanghai Yi-qiao Biological Technology Co. Ltd., Shanghai, China). The number of stably transfected cells was determined simultaneously by cell counting.

    1.7 Western blotting

    The protein content was determined by the bicinchoninic acid (BCA) method. A 1-μg sample of protein was used for sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were transferred to PVDF membranes after separation. The membrane was incubated overnight at 4°C in a blocking buffer containing skimmed milk, and then incubated with the NGF antibody solution (1:500, Wuhan Boster Biological Technology Co. Ltd, Wuhan, China) at room temperature for 2 h. Finally, the membranes were incubated in horseradish peroxidase-labeled goat anti-rabbit IgG antibody solution (1:3 000) at room temperature for 1 h. The protein signals were detected using ECL luminescence reagents. The results of the Western blotting were visualized using the Tanon-5200 chemiluminescence imaging system (Shanghai, China).

    1.8 Bioinformatic analysis

    Specific transcription-factor-binding sites of forward and reverse chimeric introns were identified using Genomatix Online software MatInspector (http://www.genomatix.de/index.html).

    1.9 Statistical analysis

    2 Results

    2.1 Identification of recombinant plasmids

    Thegene was amplified by PCR, using pNFGZ, pNFGF and pNFG as templates. The presence of 770 bp bands established that thegene was cloned successfully into pNFG, pNFGZ and pNFGF vectors (Fig. 2A). pNFGZ and pNFGF were digested byd Ⅲ. The presence of 200 bp bands established that the introns had been cloned into pNFGZ and pNFGF (Fig. 2B). Sequencing further confirmed that all the vectors were constructed successfully.

    2.2 mRNA level of the NGF gene

    The results of fluorescence quantitative PCR are shown in Fig. 3. pNFG vector was able to correctly express the mRNA ofgene. The chimeric introns were able to enhance the mRNA level of thegene. The forward and reverse introns successfully promoted the transcription ofgene. The mRNA level in the pNFGF vector containing the reverse intron was 115-times higher than that in the pNFG vector without introns. Meanwhile, the mRNA level of pNFGZ containing the forward intron increased to 363-times that of the pNFG vector and 248-times that of the pNFGF vector containing the reverse intron. The difference in both cases was highly significant (<0.01).

    2.3 NGF protein expression

    Serum-free culture medium was collected after the stable transfected cells were cultured for 24 h. The expression levels of NGF protein were then detected by the ELISA (Fig. 4). The results demonstrated that the pNFG vector can correctly express the NGF protein. The NGF expression level was 2.9 ng/mL/106cells. Vectors containing the chimeric introns were able to appropriately increase the NGF protein level. This implies that both forward and reverse introns can enhance the expression ofgene to NGF protein. The NGF protein level of pNFGF vector containing the reverse intron increased to 1.75-times that of the pNFG vector without introns, while the protein level of pNFGZ was 1.52-times that of pNFGF.

    圖3 熒光定量PCR檢測NGF mRNA的相對表達量

    Western blotting results also showed that the activity of NGF protein in pNFGZ and pNFGF vectors containing introns was higher than that of pNFG, while pNFGZ had a higher protein activity than pNFGF (Fig. 5).

    圖4 ELISA檢測NGF蛋白的表達量

    2.4 Analysis of transcription-factor-binding sites

    Transcription-factor-binding sites of the forward and reverse intron sequences were analyzed using the MatInspector software. The results showed that there were 27 transcription factors that could combine with the forward intron sequence. These included the Zinc finger BED domain-containing protein, heat shock factors, and GATA binding factors. In addition, 22 transcription factors could combine with the reverse intron sequence, including the C2H2zinc finger transcription factors, two-handed zinc finger homeodomain transcription factors, and Hepatic Nuclear Factor 1. The forward intron sequence could combine with a greater number of transcription factors, thereby, being more efficient in improving the gene transcription. The reverse intron sequence presented a lower number of transcription-factor-binding sites, consistent with its lower ability to enhance gene expression.

    3 Discussion

    Designing efficient expression vectors is an important way of improving gene expression systems. cHS4 (chicken β-globin 5? hypersensitive site) and ubiquitous chromatin opening element (UCOE) are examples of cis-elements that are typically used to improve transgenic expression[18,22]. In addition, introns are effective elements to enhance transgene expression. Cooper[9]reported that lack of introns can lead to a decline in gene expression. Hermening et al., Hasannia et al. and Kim et al.[10-12]reported that introns can improve the expression of foreign genes. Different types of introns enhance the expression of recombinant proteins to different degrees, and the maximum change reported to date has been 20-fold.Possible ways in which introns enhance gene expression are: 1) introns may contain enhancers or other acting elements, which could bind to proteins to affect the initiation and extension of transcription; 2) splicing of introns may increase the stability of mRNA in nucleus, leading to greater accumulation of mature mRNA in the cytoplasm; and 3) introns may contain sequences that can improve gene expression by changing the nuclear components, location, etc.

    In this study, recombinant nerve growth factor (NGF) gene expression vectors were constructed, and chimeric introns comprising the 5?-end splice sequence of the first intron of human β-globin and splice sequences of the 3?-end of the human immunoglobulin heavy chain variable region intron were inserted into the 5?-upstream region of thegene. Chimeric introns in different directions could potentially enhance the expression of thegene differently. The forward intron not only enhanced the NGF mRNA expression level, but was also able to increase the amount of NGF protein produced. However, the effect on the protein expression level was not as significant as that on the mRNA expression level. This difference may be explained by the fact that there are more transcription factor binding sites in the forward intron sequence, which could greatly improve the level ofgene transcription, and the translation process could be affected by mRNA degradation. The reverse intron could also promote the transcription and translation process of thegene, thereby increasing the quantity of both NGF mRNAs and proteins. Our results are similar to those reported by Hermening et al. and Kim et al.[10-12], i.e. introns can improve the expression of transgenes, but different introns exhibit different degrees of improvement. This may be related to the choice of intron types, the source of introns, and the position of the insertion. We determined that the direction of the chimeric introns could affect gene expression. A possible reason is that introns inserted in different positions have different sequences, which may be combined with different transcription factors, thereby presenting different abilities of gene expression regulation.

    4 Conclusion

    Chimeric introns can enhance the expression of exogenous genes. Different direction introns have different capacities of gene expression regulation. In our study, the forward introns could greatly promote the transcription of a foreign gene. They could also significantly improve the process of translation of a foreign gene. Reverse introns could also improve the expression of foreign genes, but not as effectively as the forward intron.

    [1] Mock U, Thiele R, Uhde A, et al. Efficient lentiviral transduction and transgene expression in primary human B cells. Hum Gene Ther Methods, 2012, 23(6): 408–415.

    [2] Fath S, Bauer AP, Liss M, et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS ONE, 2011, 6(3): e17596.

    [3] Williams S, Mustoe T, Mulcahy T, et al. CpG-island fragments from thegenomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol, 2005, 5: 17.

    [4] Mariati, Ng YK, Chao SH, et al. Evaluating regulatory elements of human cytomegalovirus major immediate early gene for enhancing transgene expression levels in CHO K1 and HEK293 cells. J Biotechnol, 2010, 147(3/4): 160–163.

    [5] Iwai R, Kumagai Y, Fujiwara M, et al. Combination of cytomegalovirus enhancer with human cellular promoters for gene-induced chondrogenesis of human bone marrow mesenchymal stem cells. J Biosci Bioeng, 2010, 110(5): 593–596.

    [6] Mays LE, Wilson JM. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther, 2011, 19(1): 16–27.

    [7] Wang TY, Zhang JH, Jing CQ, et al. Positional effects of the matrix attachment region on transgene expression in stably transfected CHO cells. Cell Biol Int, 2010, 34(2): 141–145.

    [8] Wang F, Wang TY, Tang YY, et al. Different matrix attachment regions flanking a transgene effectively enhance gene expression in stably transfected Chinese hamster ovary cells. Gene, 2012, 500(1): 59–62.

    [9] Luan W. Introns and their role in gene expression. Yunnan Agr Sci & Technol, 2008, (S2): 182–186 (in Chinese).欒薇. 內(nèi)含子及其在基因表達中的作用.云南農(nóng)業(yè)科技, 2008, (S2): 182–186.

    [10] Cooper AR, Lill GR, Gschweng EH, et al. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucleic Acids Res, 2015, 43(1): 682–690.

    [11] Hermening S, Kügler S, B?hr M, et al. Increased protein expression from adenoviral shuttle plasmids and vectors by insertion of a small chimeric intron sequence. J Virol Methods, 2004, 122(1): 73–77.

    [12] Hasannia S, Lotfi AS, Mahboudi F, et al. Elevated expression of human alpha-1 antitrypsin mediated by yeast intron in. Biotechnol Lett, 2006, 28(19): 1545–1550.

    [13] Kim SY, Lee JH, Shin HS, et al. The human elongation factor 1 alpha (EF-1α) first intron highly enhances expression of foreign genes from the murine cytomegalovirus promoter. J Biotechnol, 2002, 93(2): 183–187.

    [14] Choi T, Huang M, Gorman C, et al. A generic intron increases gene expression in transgenic mice. Mol Cell Biol, 1991, 11(6): 3070–3074.

    [15] Gong YP, Tao J, Wang H, et al. Effect of chimeric intron on the Expression of Anti-bFGF antibody genes in 293T cells. China Biotechnol, 2010, 30(3): 9–14 (in Chinese).龔義平,陶俊,王宏,等.嵌合內(nèi)含子對抗bFGF抗體基因在293T細胞中表達的影響. 中國生物工程雜志, 2010, 30(3): 9–14.

    [16] Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol, 2014, 7(1): 174–183.

    [17] Li CJ, Ma YH, Yi KL, et al. The interactions between nerve growth factor and gonadotrophins in bovine oviduct. Animal Reprod Sci, 2014, 149(3/4): 117–123.

    [18] Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, et al. Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc Natl Acad Sci USA, 2002, 99(10): 6883–6888.

    [19] Fath S, Bauer AP, Liss M, et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS ONE, 2011, 6(3): e17596.

    [20] Lin Y, Li ZX, Wang TY, et al. MAR characteristic motifs mediate episomal vector in CHO cells. Gene, 2015, 559(2): 137–143.

    [21] Wang F, Zhang JH, Wang TY, et al. Regulating effects of insertion direction of matrix attachment regions on transgenic expression in stably transformed Chinese hamster ovary cells. Genet Mol Res, 2015, 14(2): 7031–7038.

    [22] Xu L, Li YH, Shi XC, et al. Expression, purification, and characterization of recombinant mouse nerve growth factor in Chinese hamster ovary cells. Protein Expr Purif, 2014, 104: 41–49.

    [23] Wang XY, Zhang JH, Sun QL, et al. Characteristic element of matrix attachment region mediates vector attachment and enhances nerve growth factor expression in Chinese hamster ovary cells. Genet Mol Res, 2015, 14(3): 9191–9199.

    Increasing transgenic expression in recombinant Chinese hamster ovary cells using introns in different directions

    Weihua Dong1,2, Cuiping Li1, Yun Yang1, Tianyun Wang1,2, and Fang Wang1

    1 Department of Biochemistry and Molecular Biology, Basic Medical School, Xinxiang Medical University, Xinxiang 453003, Henan, China 2 Molecular Diagnostic and Medical Test Technology Collaborative Innovation Center of Henan Province, Xinxiang 453003, Henan, China

    The aim of this study is to investigate the effect of the chimeric intron in different directions on the expression of the nerve growth factor (NGF) in recombinant Chinese hamster ovary (CHO) cells. The chimeric intron that contained the splice sequence of the first intron of the human β-globin and the human immunoglobulin heavy chain variable region intron was used. NGF gene was cloned into the expression vectors containing the chimeric intron in the forward or reverse direction, followed by transfecting into CHO cells, and screened under G418 to produce the stable transfected CHO cells. Fluorescence quantitative PCR, ELISA, and Western blotting were performed to detect the recombinant NGF gene expression in CHO cells. The results showed that the chimeric introns could significantly enhance the expression of NGF in recombinant CHO cells. Moreover, the enhancing effect on NGF expression level by the intron in the forward direction showed stronger than that of the reverse direction both at mRNA and protein level. In conclusion, the chimeric intron could increase NGF expression in stably transfected CHO cells and the effect is associated with the direction of the intron insertion.

    Chinese hamster ovary cells, gene expression, intron, nerve growth factor

    December 11, 2018;

    February 11, 2019

    Science and Technology Research Projects of Henan Province (No. 182102311184), National Natural Science Foundation of China (No. 81673337).

    Tianyun Wang. Tel: +86-373-3029488; E-mail: wtianyuncn@126.com

    河南省科技攻關(guān)項目 (No. 182102311184),國家自然科學(xué)基金 (No. 81673337) 資助。

    10.13345/j.cjb.180516

    董衛(wèi)華, 李翠萍, 楊赟, 等. 不同方向內(nèi)含子對重組CHO細胞中神經(jīng)生長因子表達的影響. 生物工程學(xué)報, 2019, 35(6): 1071–1078.

    Dong WH, Li CP, Yang Y, et al. Increasing transgenic expression in recombinant Chinese hamster ovary cells using introns in different directions. Chin J Biotech, 2019, 35(6): 1071–1078.

    (本文責編 郝麗芳)

    猜你喜歡
    嵌合體內(nèi)含子新鄉(xiāng)
    新鄉(xiāng)作品精選
    聲屏世界(2023年15期)2023-10-31 13:41:58
    新鄉(xiāng)醫(yī)學(xué)院
    紛紜旋轉(zhuǎn)之間:新興技術(shù)回應(yīng)型立法的輿論引導(dǎo)——以胚胎嵌合體為例
    出征新鄉(xiāng),武漢石化拼了
    線粒體核糖體蛋白基因中內(nèi)含子序列間匹配特性分析
    嵌合體胚胎移植產(chǎn)生的可能后果及處理對策
    更 正
    內(nèi)含子的特異性識別與選擇性剪切*
    陸地棉GhDHN1基因結(jié)構(gòu)及內(nèi)含子生物信息學(xué)分析
    中國棉花(2018年6期)2018-07-06 10:34:42
    聰明的“二師兄”會出現(xiàn)嗎
    黄色配什么色好看| 多毛熟女@视频| 久久青草综合色| 国产黄色视频一区二区在线观看| 亚洲av在线观看美女高潮| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 哪个播放器可以免费观看大片| 一级a做视频免费观看| 国产精品久久久久成人av| 飞空精品影院首页| 免费在线观看完整版高清| 22中文网久久字幕| av又黄又爽大尺度在线免费看| 好男人视频免费观看在线| 亚洲国产欧美日韩在线播放| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 观看美女的网站| 久久人人爽人人片av| 日韩视频在线欧美| 99视频精品全部免费 在线| 日韩不卡一区二区三区视频在线| 美女内射精品一级片tv| 日本91视频免费播放| 久久久久久久久久久免费av| 99热国产这里只有精品6| 欧美精品av麻豆av| 欧美3d第一页| 亚洲成av片中文字幕在线观看 | 亚洲人成77777在线视频| 大香蕉久久成人网| 亚洲欧美日韩卡通动漫| 久久精品国产a三级三级三级| 日韩,欧美,国产一区二区三区| 久久99蜜桃精品久久| 国产片内射在线| 女性被躁到高潮视频| 国产高清三级在线| 交换朋友夫妻互换小说| 免费av中文字幕在线| 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| 精品国产露脸久久av麻豆| 久久久久精品久久久久真实原创| 咕卡用的链子| 青春草国产在线视频| 国产高清三级在线| 亚洲av电影在线进入| 成人毛片a级毛片在线播放| 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看| 高清视频免费观看一区二区| 久久99蜜桃精品久久| 人人澡人人妻人| 在线观看www视频免费| 宅男免费午夜| 日韩中字成人| 午夜91福利影院| 久久人人97超碰香蕉20202| www.av在线官网国产| 婷婷色综合大香蕉| 精品国产国语对白av| 99久久人妻综合| 成人亚洲精品一区在线观看| 五月玫瑰六月丁香| 亚洲五月色婷婷综合| 久久久欧美国产精品| 这个男人来自地球电影免费观看 | 日日撸夜夜添| 一本大道久久a久久精品| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 综合色丁香网| 成年av动漫网址| 国产成人精品在线电影| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 国产在线一区二区三区精| 久久国产精品大桥未久av| 日韩伦理黄色片| 国精品久久久久久国模美| 午夜精品国产一区二区电影| 亚洲中文av在线| 日韩不卡一区二区三区视频在线| xxxhd国产人妻xxx| 日日爽夜夜爽网站| 久久韩国三级中文字幕| 夜夜骑夜夜射夜夜干| 最近2019中文字幕mv第一页| 国产一级毛片在线| 亚洲欧美色中文字幕在线| 不卡视频在线观看欧美| 在线天堂最新版资源| 欧美日韩视频精品一区| 亚洲av.av天堂| 久久ye,这里只有精品| 美女福利国产在线| 亚洲人与动物交配视频| 欧美成人午夜免费资源| 蜜桃在线观看..| av.在线天堂| 99热国产这里只有精品6| 国产精品女同一区二区软件| 亚洲精品成人av观看孕妇| 亚洲精品久久成人aⅴ小说| 成人免费观看视频高清| 国产一区二区在线观看av| 一级毛片我不卡| 丝袜喷水一区| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 久久久久久久大尺度免费视频| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件| 精品少妇内射三级| 国产淫语在线视频| 这个男人来自地球电影免费观看 | 十分钟在线观看高清视频www| 婷婷色综合www| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 97在线视频观看| 曰老女人黄片| 国产探花极品一区二区| 久久久久久伊人网av| 免费日韩欧美在线观看| 亚洲,欧美精品.| 一区在线观看完整版| av卡一久久| av在线老鸭窝| 久久99精品国语久久久| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃 | 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 九草在线视频观看| 国产亚洲欧美精品永久| 婷婷色av中文字幕| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频 | 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 女性被躁到高潮视频| 国产精品人妻久久久久久| 日本色播在线视频| 我要看黄色一级片免费的| 日韩精品免费视频一区二区三区 | 国内精品宾馆在线| 一区二区日韩欧美中文字幕 | 人妻人人澡人人爽人人| 久热这里只有精品99| av播播在线观看一区| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 国产福利在线免费观看视频| 啦啦啦视频在线资源免费观看| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 国产精品一区二区在线不卡| 97在线人人人人妻| 欧美日韩成人在线一区二区| 国产在视频线精品| 午夜福利,免费看| 精品一区二区三区四区五区乱码 | 日韩熟女老妇一区二区性免费视频| 亚洲一级一片aⅴ在线观看| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 午夜久久久在线观看| 免费看av在线观看网站| 男女免费视频国产| 人人澡人人妻人| 十八禁高潮呻吟视频| 中文天堂在线官网| 高清不卡的av网站| 久久毛片免费看一区二区三区| 免费在线观看黄色视频的| av不卡在线播放| 久久av网站| 国产一区二区在线观看av| 亚洲欧美中文字幕日韩二区| 国产精品.久久久| 亚洲av福利一区| 国产69精品久久久久777片| 国产精品一区二区在线观看99| 高清av免费在线| 欧美3d第一页| 成人毛片a级毛片在线播放| 看免费av毛片| 午夜视频国产福利| 少妇人妻久久综合中文| 亚洲成人一二三区av| 精品国产露脸久久av麻豆| 中文字幕最新亚洲高清| 国产色爽女视频免费观看| 18在线观看网站| av国产久精品久网站免费入址| 久久婷婷青草| 日韩伦理黄色片| 亚洲国产色片| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂| 久久婷婷青草| 日本wwww免费看| 国产黄色视频一区二区在线观看| 插逼视频在线观看| 天美传媒精品一区二区| 午夜影院在线不卡| 国产熟女午夜一区二区三区| 少妇人妻精品综合一区二区| 香蕉丝袜av| 国国产精品蜜臀av免费| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 亚洲精品乱久久久久久| 国产激情久久老熟女| 亚洲综合精品二区| 久久精品国产亚洲av天美| 九草在线视频观看| 日本午夜av视频| 免费观看性生交大片5| 欧美日韩亚洲高清精品| 亚洲精品美女久久av网站| 看非洲黑人一级黄片| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本欧美视频一区| 国产免费福利视频在线观看| 国产国拍精品亚洲av在线观看| 9热在线视频观看99| 精品人妻在线不人妻| 18在线观看网站| 精品久久久精品久久久| 亚洲,欧美,日韩| 国产成人精品婷婷| 丁香六月天网| 亚洲国产av影院在线观看| 在线免费观看不下载黄p国产| 色网站视频免费| 久久综合国产亚洲精品| 考比视频在线观看| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 亚洲精品自拍成人| 在现免费观看毛片| 99精国产麻豆久久婷婷| 美女福利国产在线| 久久久久国产网址| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃 | av线在线观看网站| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 欧美精品人与动牲交sv欧美| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 夫妻午夜视频| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 女人被躁到高潮嗷嗷叫费观| 男人操女人黄网站| 三级国产精品片| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| 大码成人一级视频| 国产高清三级在线| 日韩大片免费观看网站| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 视频在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 国产成人精品无人区| 久久精品国产综合久久久 | 一本久久精品| 欧美最新免费一区二区三区| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 夫妻午夜视频| 久热这里只有精品99| 日韩三级伦理在线观看| 少妇精品久久久久久久| 十分钟在线观看高清视频www| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 男女国产视频网站| 精品人妻在线不人妻| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 日本vs欧美在线观看视频| 欧美 日韩 精品 国产| 只有这里有精品99| 一边摸一边做爽爽视频免费| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 国产有黄有色有爽视频| 最近手机中文字幕大全| 熟女电影av网| 美女内射精品一级片tv| 老司机影院毛片| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 国产视频首页在线观看| 97超碰精品成人国产| 免费久久久久久久精品成人欧美视频 | 亚洲少妇的诱惑av| 草草在线视频免费看| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 国产日韩欧美视频二区| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 免费女性裸体啪啪无遮挡网站| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 亚洲,一卡二卡三卡| 亚洲在久久综合| 国产日韩一区二区三区精品不卡| 97超碰精品成人国产| 丰满乱子伦码专区| 国产成人午夜福利电影在线观看| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 一区二区日韩欧美中文字幕 | av在线app专区| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 日本vs欧美在线观看视频| 自线自在国产av| 国产一区二区在线观看日韩| 日韩制服丝袜自拍偷拍| 搡女人真爽免费视频火全软件| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码 | 午夜av观看不卡| 建设人人有责人人尽责人人享有的| 91午夜精品亚洲一区二区三区| 97人妻天天添夜夜摸| 国产成人精品无人区| 国产精品嫩草影院av在线观看| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 肉色欧美久久久久久久蜜桃| 成年人午夜在线观看视频| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 国产精品国产三级专区第一集| 亚洲精品第二区| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 这个男人来自地球电影免费观看 | 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 午夜激情av网站| 日韩一本色道免费dvd| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 久久久久精品性色| 日韩av不卡免费在线播放| 九色亚洲精品在线播放| 日本与韩国留学比较| 国产无遮挡羞羞视频在线观看| 国产精品一国产av| 高清毛片免费看| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 美女主播在线视频| 黄色视频在线播放观看不卡| 看免费成人av毛片| 欧美日韩精品成人综合77777| 国产免费一区二区三区四区乱码| 国产精品人妻久久久久久| 亚洲av男天堂| 欧美亚洲日本最大视频资源| 国产永久视频网站| 丰满少妇做爰视频| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 乱人伦中国视频| 欧美精品一区二区免费开放| 五月天丁香电影| 亚洲成色77777| 欧美性感艳星| 久久婷婷青草| 成人国产av品久久久| 免费看光身美女| xxxhd国产人妻xxx| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 亚洲欧美一区二区三区黑人 | 免费人成在线观看视频色| 精品久久国产蜜桃| 国产毛片在线视频| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 国内精品宾馆在线| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 我的女老师完整版在线观看| 青春草视频在线免费观看| 黑人猛操日本美女一级片| 女人久久www免费人成看片| 美女福利国产在线| 制服丝袜香蕉在线| 少妇熟女欧美另类| 一区二区三区精品91| 久久久久久久大尺度免费视频| 精品一区二区三区四区五区乱码 | 亚洲av成人精品一二三区| 国产亚洲精品第一综合不卡 | 99re6热这里在线精品视频| 亚洲 欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲高清免费不卡视频| 亚洲一区二区三区欧美精品| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 久久久久久人人人人人| 亚洲第一区二区三区不卡| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 伦理电影免费视频| 精品一品国产午夜福利视频| 爱豆传媒免费全集在线观看| 99久久人妻综合| 日本av免费视频播放| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 黑人高潮一二区| 麻豆乱淫一区二区| 天天操日日干夜夜撸| 91精品国产国语对白视频| 亚洲成av片中文字幕在线观看 | 狠狠婷婷综合久久久久久88av| 久久久久久久精品精品| 在线观看免费视频网站a站| 成人国产av品久久久| 成人免费观看视频高清| av天堂久久9| 久久婷婷青草| 大片电影免费在线观看免费| 久久久久久久国产电影| 欧美精品一区二区免费开放| 黄色视频在线播放观看不卡| 久久人妻熟女aⅴ| 丰满少妇做爰视频| 免费大片黄手机在线观看| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 这个男人来自地球电影免费观看 | 国产一区二区在线观看av| 如何舔出高潮| av播播在线观看一区| a 毛片基地| 日本-黄色视频高清免费观看| 午夜91福利影院| 黑丝袜美女国产一区| 久久韩国三级中文字幕| 精品少妇黑人巨大在线播放| av天堂久久9| 久热这里只有精品99| 成人国语在线视频| av在线app专区| 成人国产麻豆网| 男人舔女人的私密视频| 99香蕉大伊视频| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲精品日本国产第一区| 日本免费在线观看一区| av电影中文网址| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 一级爰片在线观看| 日韩中文字幕视频在线看片| 国产精品麻豆人妻色哟哟久久| 日本vs欧美在线观看视频| 国产69精品久久久久777片| 视频在线观看一区二区三区| 曰老女人黄片| 久久99一区二区三区| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看| av在线播放精品| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲精华国产精华液的使用体验| 久久午夜综合久久蜜桃| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 国国产精品蜜臀av免费| 考比视频在线观看| 丰满迷人的少妇在线观看| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 欧美激情极品国产一区二区三区 | 夫妻性生交免费视频一级片| 久久午夜福利片| 国产av精品麻豆| av女优亚洲男人天堂| 日韩人妻精品一区2区三区| 免费日韩欧美在线观看| 国产永久视频网站| 亚洲人与动物交配视频| 婷婷色麻豆天堂久久| 亚洲人与动物交配视频| 超色免费av| 超碰97精品在线观看| 99香蕉大伊视频| 亚洲av在线观看美女高潮| 免费不卡的大黄色大毛片视频在线观看| tube8黄色片| 黑人高潮一二区| 男人添女人高潮全过程视频| 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 综合色丁香网| 少妇高潮的动态图| 午夜91福利影院| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| av福利片在线| av黄色大香蕉| 国产一区二区三区av在线| 丝瓜视频免费看黄片| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 色5月婷婷丁香| xxxhd国产人妻xxx| 免费高清在线观看日韩| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 激情视频va一区二区三区| 26uuu在线亚洲综合色| av在线app专区| 日韩av免费高清视频| 热99久久久久精品小说推荐| 亚洲内射少妇av| 国产毛片在线视频| 国产高清国产精品国产三级| 99国产精品免费福利视频| 18禁在线无遮挡免费观看视频| 久久精品人人爽人人爽视色| 欧美人与性动交α欧美软件 | 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 五月天丁香电影| 1024视频免费在线观看| 免费看av在线观看网站| 日韩不卡一区二区三区视频在线| 91成人精品电影| 国产成人精品婷婷| 宅男免费午夜| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| 亚洲人与动物交配视频| 亚洲熟女精品中文字幕| 97在线人人人人妻| 一级a做视频免费观看| 在线精品无人区一区二区三| 18禁在线无遮挡免费观看视频| 国产熟女欧美一区二区| 国产精品一区www在线观看| 亚洲美女黄色视频免费看| 久久久久久人人人人人| 十分钟在线观看高清视频www| 在线观看免费日韩欧美大片| www日本在线高清视频| 亚洲精品视频女| 中文字幕制服av| av又黄又爽大尺度在线免费看| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品| 亚洲欧美一区二区三区黑人 | 熟妇人妻不卡中文字幕| 中文精品一卡2卡3卡4更新| 尾随美女入室| 亚洲婷婷狠狠爱综合网| 亚洲国产精品一区二区三区在线| 三级国产精品片| 亚洲国产av新网站| 亚洲丝袜综合中文字幕|