• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      2020年美國數(shù)學(xué)競賽(AMC12A)的試題與解答

      2020-07-14 01:34:58華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院
      關(guān)鍵詞:骰子整數(shù)四邊形

      華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院

      1.Carlos took 70%of a whole pie.Maria took one third of the remainder.What portion of the original pie was left?

      (A)10% (B)15% (C)20% (D)30% (E)35%

      譯文卡洛斯取走了一整塊派的70%,瑪利亞取走了剩余的三分之一.問這塊派還剩下多少?

      解(1-70%)×(1-)=20%,故(C)正確.

      2.The acronymAMCis shown in the rectangular grid below with grid lines spaced 1 unit apart.In units,what is the sum of the lengths of the line segments that form the acronymAMC?

      譯文下圖是矩形格子中的首字母縮寫AMC,其中小正方形格子的邊長為1.則字母AMC的線段長度之和是多少?

      解觀察圖形可知,直線段長度和為13,而小正方形對角線長度為共4條,故總和為(C)正確.

      3.A driver travels for 2 hours at 60 miles per hour,during which her car gets 30 miles per gallon of gasoline.She is paid$0.50 per mile,and her only expense is gasoline at$2.00 per gallon.What is her net rate of pay,in dollars per hour,after this expense?

      (A)20 (B)22 (C)24 (D)25 (E)26

      譯文一位司機(jī)以60英里/小時的速度駕車2小時,她的車每跑30英里需要消耗1 加侖汽油.她能獲得0.50美元/英里的報酬,唯一的花費就是2美元/加侖的汽油.問她每小時除去消耗之后的凈收益是多少美元?

      解1個小時她能跑60英里,獲得60×0.50=30美元,汽油費為60÷30×2=4美元,故凈收益為26美元,(E)正確.

      4.How many 4-digit positive integers(that is,integers between 1000 and 9999,inclusive)having only even digits are divisible by 5?

      (A)80 (B)100 (C)125 (D)200 (E)500

      譯文有多少個四位的正整數(shù)(也就是在1000和9999之間的整數(shù))能被5整除且所有數(shù)字均為偶數(shù)?

      解依題意,符合條件的四位數(shù)的個位數(shù)只能是0,十位數(shù)和百位數(shù)可以是0,2,4,6,8,千位數(shù)只能是2,4,6,8,共有1×5×5×4=100種選擇,故(B)正確.

      5.The 25 integers from-10 to 14,inclusive,can be arranged to form a 5-by-5 square in which the sum of the numbers in each row,the sum of the numbers in each column,the sum of the numbers along each of the main diagonals are all the same.What is the value of this common sum?

      (A)2 (B)5 (C)10 (D)25 (E)50

      譯文將25個整數(shù)分別是從-10到14,放入5×5的格子中,使得格子里的每行、每列和兩條對角線的數(shù)字和均相等.問這個數(shù)字和是多少?

      解這是一個5階幻方問題,25個數(shù)字之和是(-10)+(-9)+···+13+14=50,分別放入5行,故每行的數(shù)字和是10,(C)正確.

      6.In the place figure shown below,3 of the unit squares have been shaded.What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry?

      (A)4 (B)5 (C)6 (D)7 (E)8

      譯文如下圖所示,3個單元格被涂成陰影部分.問至少還需要把多少個單元格涂成陰影才能使整個圖有兩條對稱軸?

      解由于這是一個4×5的矩形,兩條對稱軸只可能是長和寬兩條邊的中垂線,從而至少有7個單元格需要填涂,如右圖所示.故(D)正確.

      7.Seven cubes,whose volumes are 1,8,27,64,125,216,and 343 cubic units,are stacked vertically to form a tower in which the volumes of the cubes decrease from bottom to top.Except for the bottom cube,the bottom face of each cube lies completely on top of the cube below it.What is the total surface area of the tower(including the bottom)in square units?

      (A)644 (B)658 (C)664 (D)720 (E)749

      譯文七個立方體,體積分別是1,8,27,64,125,216,343個立方單位,依次按照體積大小由底到頂垂直地堆積成一座塔.除了最底部的立方體,每個立方體的底面都完全被下面的立方體的頂面覆蓋.問這座塔的表面積(包括底面)是多少個平方單位?

      解這七個數(shù)都是立方數(shù),則這七個立方體的棱長分別是1,2,3,4,5,6,7,從而塔的側(cè)面積為4×(12+22+...+72)=560,而上、下底面積之和為2×72=98,共658,故(B)正確.

      8.What is the median of the following list of 4040 numbers?

      1,2,3,...,2020,12,22,32,...,20202

      (A)1974.5 (B)1975.5 (C)1976.5 (D)1977.5 (E)1978.5

      譯文下列4040個數(shù):1,2,3,...,2020,12,22,32,...,2020的中位數(shù)是多少?

      解由于442=1936,452=2025,從而以上數(shù)列按遞增排列的話,就成為:1,12,...,4,22,...,1936,442,...,1976,1977,...,2020,452,462,...,20202此時,1976成為第2020個數(shù),所求中位數(shù)為故(C)正確.

      9.How many solutions does the equation tan(2x)=have on the interval[0,2π]?

      (A)1 (B)2 (C)3 (D)4 (E)5

      譯文方程在區(qū)間[0,2π]上有多少個解?

      解y=tan 2x是一個周期為、值域為R的函數(shù),在一個周期內(nèi)嚴(yán)格單調(diào)遞增,是一個周期為4π、值域為[-1,1]的函數(shù),在區(qū)間[0,2π]上嚴(yán)格單調(diào)遞減.如圖示,在區(qū)間內(nèi),這是y=tan 2x完整的周期,兩條曲線均有一個交點;在區(qū)間上,這是y=tan 2x的半周期,兩條曲線剛好也有一個交點.故共有5個交點,(E)正確.

      10.There is a unique integernsuch that log2(log16n)=log4(log4n).What is the sum of the digits ofn?

      (A)4 (B)7 (C)8 (D)11 (E)13

      譯文存在唯一的整數(shù)n使得log2(log16n)=log4(log4n)成立,則n的各個數(shù)位上的數(shù)字之和是多少?

      解log4(log4n)= log2(log16n)= log22(log16n)2,可得log4n=(log16n)2,使用換底公式有從而故(E)正確.

      11.A frog sitting at the point(1,2)begins a sequence of jumps,where each jump is parallel to one of the coordinate axes and has length 1,and the direction of each jump(up,down,left,right)is chosen independently at random.The sequence ends when the frog reaches a side of the square with vertices(0,0),(0,4),(4,0),and(4,4).What is the probability that the sequence of jumps ends on a vertical side of the square?

      譯文一只青蛙坐在點(1,2)上,開始一系列的跳躍,每次跳躍都平行于坐標(biāo)軸且長度為1,方向(上、下、左、右)是隨機(jī)的且獨立,當(dāng)青蛙到達(dá)由點(0,0),(0,4),(4,0),(4,4)構(gòu)成的正方形的一條邊的時候,跳躍終止.問跳躍終止于正方形豎直的兩條邊上的概率是多少?

      解如圖示,青蛙在點F1處,它可以向四個方向跳躍,概率均為,向左跳躍,立刻達(dá)成目標(biāo);向上、向右、向下分別跳躍到點A1,C,A3處,再通過其它跳躍達(dá)成目標(biāo).根據(jù)對稱性,青蛙由點A1,A2,A3,A4出發(fā)達(dá)成目標(biāo)的概率是一樣的,設(shè)為a;青蛙由點B1,B2出發(fā)達(dá)成目標(biāo)的概率是一樣的,設(shè)為b;青蛙由點F1,F2出發(fā)達(dá)成目標(biāo)的概率是一樣的,設(shè)為x;青蛙由點C出發(fā)達(dá)成目標(biāo)的概率設(shè)為c.

      因此,P(青蛙由F1出發(fā)達(dá)成目標(biāo))=P(青蛙向左)+P(青蛙向上)×P(青蛙由A1出發(fā)達(dá)成目標(biāo))+P(青蛙向右)×P(青蛙由C出發(fā)達(dá)成目標(biāo))+P(青蛙向下)×P(青蛙由A3出發(fā)達(dá)成目標(biāo)),即有

      12.Linelin the coordinate plane has equation 3x-5y+40=0.This line is rotated 45°counterclockwise about the point(20,20)to obtain linek.What is thex-coordinate of thex-intercept of linek?

      (A)10 (B)15 (C)20 (D)25 (E)30

      譯文坐標(biāo)平面上的直線l的方程為3x-5y+40=0,其繞點(20,20)作逆時針旋轉(zhuǎn)45°后得到直線k.則直線k與x軸交點的橫坐標(biāo)是多少?

      解如圖示,直線k與l的斜率分別為tan ∠1和tan ∠2,依題意有于是tan ∠1 =從而得到直線k的方程為y-20=4(x-20),當(dāng)y=0時,求得x=15.故(B)正確.

      13.There are integera,bandc,each greater than 1,such thatfor allN>1.What isb?

      (A)2 (B)3 (C)4 (D)5 (E)6

      譯文設(shè)a,b,c均是大于1的整數(shù),且式子對于N>1均成立.問b是多少?

      14.Regular octagonABCDEFGHhas arean.Letmbe the area of quadrilateralACEG.What is

      譯文設(shè)正八邊形ABCDEFGH的面積為n,四邊形ACEG的面積為m.則是多少?

      解如圖,取正八邊形的中心點O,連OA,OB.令OA=a,則AC=于是從而得故(B)正確.

      15.In the complex plane,letAbe the set of solutions toz3-8=0 and letBbe the set of solutions toz3-8z2-8z+64=0.What is the greatest distance between a point ofAand a point ofB?

      譯文在復(fù)平面上,設(shè)A是方程z3-8=0的解集,B是方程z3-8z2-8z+64=0的解集.問A中一點到B中一點的最遠(yuǎn)距離是多少?

      解解方程z3-8 =(z-2)(z2+2z+4)= 0,得解方程z3-8z2-8z+64=(z-8)(z2-8)=0,得容易看出A到B的最遠(yuǎn)距離為故(D)正確.

      16.A point is chosen at random within the square in the coordinate plane whose vertices are(0,0),(2020,0),(2020,2020),and(0,2020).The probability that the point lies withindunits of a lattice point is.(A point(x,y)is a lattice point ifxandyare both integers.)What isdto the nearest tenth?

      (A)0.3 (B)0.4 (C)0.5 (D)0.6 (E)0.7

      譯文坐標(biāo)平面上有一個 以(0,0),(2020,0),(2020,2020)和(0,2020)為頂點的正方形.在正方形內(nèi)隨機(jī)選擇一個點,該點位于格點的d個單位內(nèi)的概率是(點(x,y)稱為格點,若x和y均為整數(shù).)則d精確到十分位是多少?

      解如圖示,以格點為圓心,d為半徑作一些圓,則正方形內(nèi)的圓內(nèi)部分就是符合條件的點集.因此,該點落在此區(qū)域的概率為即求得故(B)正確.

      17.The vertices of a quadrilateral lie on the graph ofy=lnx,and thex-coordinates of these vertices are consecutive positive integers.The area of the quadrilateral is lnWhat is thex-coordinate of the leftmost vertex?

      (A)6 (B)7 (C)10 (D)12 (E)13

      譯文一個四邊形的頂點均在y=lnx的圖像上,且它們的橫坐標(biāo)是連續(xù)正整數(shù).該四邊形的面積為ln則最左邊頂點的橫坐標(biāo)是多少?

      解如圖示,ABCD是y=lnx上的四邊形,過A作x軸的平行線,過C作x軸的垂線,交于點P,連結(jié)PB,PD,設(shè)點A坐標(biāo)為(x,lnx),則有B(x+1,ln(x+1)),C(x+2,ln(x+2)),D(x+3,ln(x+3)),P(x+2,lnx),于是

      18.QuadrilateralABCDsatisfies ∠ABC=∠ACD=90°,AC=20 andCD=30.Diagonalsandintersects at pointEandAE=5.What is the area of QuadrilateralABCD?

      (A)330 (B)340 (C)350 (D)360 (E)370

      譯文四邊形ABCD滿足∠ABC=∠ACD=90°,AC=20,CD=30.對角線和交于點E,且AE=5.求四邊形ABCD的面積是多少?

      解如圖示,以AC為直徑作一個圓,交BD與點F,依題意可得設(shè)BE=x,依據(jù)相交弦定理AE·EC=BE·EF,則得再由切割線定理DC2=DF·DB,得解得或(舍去).而可得SΔABC=60,故SABCD=360,(D)正確.

      19.There exists a unique strictly increasing sequence of nonnegative integersa1<a2<···<aksuch that2a1+2a2+···+2ak.What isk?

      (A)117 (B)136 (C)137 (D)273 (E)306

      譯文存在唯一嚴(yán)格遞增的非負(fù)整數(shù)列a1<a2<···<ak使得+2a2+···+2ak,則k是多少?

      解令217=x,則-x15+x14-x13+···+x2-x+1,而x16-x15=2272-2255=2271+2270+···+2255,同理x14-x13=2238-2221=2237+2236+···+2221,···,x2-x=234-217=233+232+···+217.

      從而

      共8×17+1=137項,故(C)正確.

      20.LetTbe the triangle in the coordinate plane with vertices(0,0),(4,0),and(0,3).Consider the following five isometries(rigid transformations)of the plane:rotation of 90°,180°,and 270°counterclockwise around the origin,reflection across thex-axis,and reflection across they-axis.How many of the 125 sequences of three of these transformations(not necessarily distinct)will returnTto its original position?(For example,a 180°rotation,followed by a reflection across thex-axis,followed by a reflection across they-axis will returnTto its original position,but a 90°rotation,followed by a reflection across thex-axis,followed by another reflection across thex-axis will not returnTto its original position.)

      (A)12 (B)15 (C)17 (D)20 (E)25

      譯文設(shè)T是坐標(biāo)平面上以(0,0),(4,0)和(0,3)為頂點的三角形.考慮以下五種平面上的等距變換(剛體變換):繞原點作90°,180°和270°的逆時針旋轉(zhuǎn),關(guān)于x軸或y軸的反射.任選三種變換(不必不同)可以組成125種組合,有多少種組合將使得T變回起始位置?(例如,一個關(guān)于y軸的反射,接著一個關(guān)于x軸的反射,再接著一個180°的旋轉(zhuǎn),將會使得T變回起始位置;但一個關(guān)于x軸的反射,接著另一個關(guān)于x軸的反射,再接著一個90°的旋轉(zhuǎn),將不會使得T變回起始位置.)

      解分兩種情況:(1)全部由旋轉(zhuǎn)組成:只要三次旋轉(zhuǎn)的角度和為360°或720°即可滿足要求,因此有90°+90°+180°,90°+180°+90°,180°+90°+90°,270°+270°+180°,270°+180°+270°,180°+270°+270°共6種組合;

      (2)由旋轉(zhuǎn)和反射組合而成:有y軸+x軸+180°,y軸+180°+x軸,180°+x軸+y軸,180°+y軸+x軸,x軸+180°+y軸,x軸+y軸+180°,也是6種組合.故(A)正確.

      21.How many positive integersnare there such thatnis a multiple of 5,and the least common multiple of 5! andnequals 5 times the greatest common divisor of 10! Andn?

      (A)12 (B)24 (C)36 (D)48 (E)72

      譯文有多少個正整數(shù)n,使得n是一個5的倍數(shù),且n與5!的最小公倍數(shù)是n與10!的最大公因數(shù)的5倍?

      解由題意,[n,5!]=5×(n,10!),而5!=23×3×5,10!=28×34×52×7,可知n不含除2,3,5,7以外的素因子,可設(shè)n=2a×3b×5c×7d,其中a,b,c,d ∈N,且c≥1.

      根據(jù)[2a×3b×5c×7d,23×3×5]= 5×(2a×3b×5c×7d,28×34×52×7),以及最大公因數(shù)和最小公倍數(shù)的取法,可得3≤a≤8,1≤b≤4,c=3,0≤d≤1.故n有6×4×1×2=48種取法,(D)正確.

      22.Let(an)and(bn)be the sequence of real numbers such What is

      譯文設(shè)(an)和(bn)是使(2+i)n=an+bni 對所有的整數(shù)n≥0均成立的實數(shù)列,其中則是多少?

      解由(2+i)n=an+bni,可得(2-i)n=an-bni,兩式相加減得

      從而

      于是

      故(B)正確.

      23.Jason rolls three fair standard six-sided dice.Then he looks at the rolls and chooses a subset of the dice(possibly empty,possibly all three dice)to reroll.After rerolling,he wins if and only if the sum of the numbers faces up on the three dice is exactly 7.Jason always plays to optimize his chances of winning.What is the probability that he chooses to reroll exactly two of the dice?

      譯文詹森擲3顆標(biāo)準(zhǔn)、均勻的骰子,他看了結(jié)果之后會選擇若干(可能是0,也可能是3)顆重擲.當(dāng)3顆骰子正面朝上的數(shù)字和為7點的時候,他就贏了.詹森總是按照朝著他贏的最優(yōu)策略去擲.問他剛好選擇2顆骰子重擲的概率是多少?

      解擲1顆骰子得1,2,3,4,5,6點的概率均為擲2顆骰子得3點只有兩種情況:12和21,概率為,···;擲3顆骰子得7點有15種情況:115,151,511,124,142,214,241,412,421,133,313,331,223,232,322,概率為經(jīng)過計算,所有結(jié)果如下表所示:

      分類/概率/結(jié)果1 2 3 4 5 6 7擲1顆1 6 1 6 1 6 1 6 1 6 1 6擲2顆1 36 2 36 3 36 4 36 5 36擲3顆1 216 3 216 3 216 10 216 15 216

      因此,詹森要選擇2顆骰子重擲,則上次擲的結(jié)果中,任意兩顆骰子的數(shù)字和不能小于7點,否則他將選擇重擲1顆骰子;且不能3顆骰子都是4點或者以上,要不然他將選擇that(2+i)n=an+bni for all integersn≥0,where i=重擲3顆骰子.根據(jù)以上分析,滿足條件的情況有:(1)擲出1點、6點、6點,3種情況;(2)擲出2點、5點、5點,3種情況;(3)擲出2點、5點、6點,6種情況;(4)擲出2點、6點、6點,3種情況;(5)擲出3點、4點、4點,3種情況;(6)擲出3點、4點、5點,6種情況;(7)擲出3點、4點、6點,6種情況;(8)擲出3點、5點、5點,3種情況;(9)擲出3點、5點、6點,6種情況;(10)擲出3點、6點、6點,3種情況.

      24.Suppose that ΔABCis an equilateral triangle of side lengths,with the property that there is a unique pointPinside the triangle such thatWhat iss?

      譯文設(shè)ΔABC是一個邊長為s的正三角形,內(nèi)部有一點P,使得問s是多少?

      解如圖,將ΔAPC繞點A逆時針旋轉(zhuǎn)60°,得到ΔADB,連結(jié)DP,則AD=AP=1,DB=PC=2,∠DAP=60°,因而ΔADP是一個正三角形,可得DP=1,進(jìn)而DP2+BP2=DB2,所以ΔDPB是一個直角三角形,∠DPB=90°,因此∠APB=150°.根據(jù)余弦定理,s2=AB2=AP2+PB2-即得故(B)正確.

      (A)245 (B)593 (C)929 (D)1331 (E)1332

      譯文數(shù)滿足性質(zhì):符合方程?x」·{x}=a·x2的所有實數(shù)x之和為420,其中p,q是互素的正整數(shù),?x」表示小于等于x的最大整數(shù),{x}=x-?x」表示x的小數(shù)部分.則p+q是多少?

      解設(shè)?x」=n,{x}=r,則x=n+r,0≤r<1,代入方程?x」·{x}=a·x2,整理得ar2+(2a-1)nr+an2=0,解得可知再由解得0≤n<

      若c是整數(shù),則

      解得c=29,從而若c不是整數(shù),則

      c無解.故(C)正確.

      猜你喜歡
      骰子整數(shù)四邊形
      圓錐曲線內(nèi)接四邊形的一個性質(zhì)
      一類整數(shù)遞推數(shù)列的周期性
      四邊形逆襲記
      4.4 多邊形和特殊四邊形
      聚焦不等式(組)的“整數(shù)解”
      骰子不見了
      巧猜骰子
      測測你的空間智力
      知識窗(2014年2期)2014-02-28 02:48:12
      答案
      點子的排列方向
      呈贡县| 青岛市| 建水县| 林甸县| 纳雍县| 徐汇区| 安阳县| 凉城县| 新闻| 平阴县| 白河县| 老河口市| 东海县| 思茅市| 揭西县| 扬中市| 广德县| 鄂托克旗| 临泉县| 睢宁县| 靖远县| 磐安县| 任丘市| 陵川县| 台北市| 松滋市| 沂水县| 南郑县| 信宜市| 招远市| 阿拉善左旗| 游戏| 曲水县| 河池市| 搜索| 西乡县| 恩施市| 唐山市| 兰坪| 梧州市| 阿瓦提县|