• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    數(shù)形結(jié)合相得益彰

    2020-05-25 11:43:36劉長柏
    中學生數(shù)理化·高一版 2020年4期
    關鍵詞:直角坐標代數(shù)評析

    ■劉長柏

    平面向量的線性運算與坐標運算,既體現(xiàn)了形的直觀性,又體現(xiàn)了數(shù)的嚴謹性,兩者有機結(jié)合,使得數(shù)形結(jié)合得到有機地體現(xiàn)。下面探討平面向量中數(shù)形結(jié)合的幾種題型,供大家學習與參考。

    一、線性運算以形示數(shù),直觀顯現(xiàn)

    例1在平行四邊形A B C D中,A B=4,,若,則的值是____。

    解:因為A B C D是平行四邊形,利用向量的加法可得,所 以。答案為18。

    評析:本題從形的角度研究向量的運算,巧妙地利用了向量的加法和數(shù)量積運算。

    二、坐標運算以形助數(shù),化難為易

    例2如圖1,已知直角梯形A B C D中,A D∥B C,∠A D C=90°,A D=2,B C=1,P是腰D C上的動點,則的最小值為____。

    圖1

    解:以D為坐標原點,DA為x軸,D C為y軸,建立直角坐標系x D y,則A(2,0)。

    設C(0,m),m>0,則B(1,m)。_設點,則(1,m-t),所以所以

    評析:本題是一個有關形的問題,通過代數(shù)變換,即用數(shù)的方法,說明了形的道理。從向量的定義可以看出,向量既有代數(shù)特征又有幾何特征,因此借助向量,可以將某些代數(shù)問題轉(zhuǎn)化為幾何問題,又可以將幾何問題轉(zhuǎn)化為代數(shù)問題,向量起到了數(shù)形結(jié)合的橋梁作用。

    三、數(shù)形對照,相互滲透

    例3如圖2,在等腰直角三角形A O B中

    圖2

    解:(方法1)因為

    (方法2)建立如圖2所示的直角坐標系x O y,則,所以

    評析:方法1是利用向量的數(shù)量積運算求解的。方法2通過建立直角坐標系,巧妙地將向量問題坐標化,使向量運算完全代數(shù)化,體現(xiàn)了數(shù)學建模思想的應用。

    猜你喜歡
    直角坐標代數(shù)評析
    恰巧而妙 情切致美——張名河詞作評析
    從平面直角坐標系到解析幾何
    深入學習“平面直角坐標系”
    評析復數(shù)創(chuàng)新題
    深刻理解平面直角坐標系
    兩個有趣的無窮長代數(shù)不等式鏈
    Hopf代數(shù)的二重Ore擴張
    什么是代數(shù)幾何
    科學(2020年1期)2020-08-24 08:08:06
    認識“平面直角坐標系”
    食品安全公共管理制度的缺失與完善評析
    消費導刊(2017年24期)2018-01-31 01:28:30
    福泉市| 济阳县| 大姚县| 库伦旗| 南和县| 封丘县| 萨迦县| 韩城市| 松江区| 巴里| 太仓市| 藁城市| 衡南县| 玉溪市| 莱芜市| 宕昌县| 车险| 巍山| 应用必备| 樟树市| 抚松县| 黑河市| 论坛| 榆社县| 泰和县| 多伦县| 威宁| 沐川县| 金华市| 赞皇县| 大荔县| 贵定县| 应用必备| 敦化市| 察隅县| 前郭尔| 宁乡县| 商南县| 绥中县| 枞阳县| 台山市|