章小山
(河南省南陽醫(yī)學(xué)高等??茖W(xué)校第一附屬醫(yī)院,南陽 473000 )
急性肺損傷(Acute lung injury,ALI)是由感染、創(chuàng)傷、休克等原因引起的以呼吸窘迫和低氧血癥為特征的臨床綜合征[1]?,F(xiàn)代研究表明,免疫系統(tǒng)紊亂引起的血-氣屏障破壞和肺水腫是導(dǎo)致呼吸窘迫的主要原因[2]。同時(shí),炎癥反應(yīng)在ALI發(fā)生和急劇惡化的過程中發(fā)揮著重要作用[3-5]。因此,有效調(diào)控免疫系統(tǒng)紊亂、抑制炎癥反應(yīng)是治療ALI的關(guān)鍵。常山酮(Halofuginone,HF,圖1)是中藥常山的主要活性成分[6]?,F(xiàn)代研究表明,HF具有較強(qiáng)的免疫調(diào)節(jié)功能,能夠減輕多種疾病的炎癥反應(yīng),抑制細(xì)胞凋亡[7-9]。但HF是否能夠調(diào)控脂多糖(Lipopolysa-ccharide,LPS)誘導(dǎo)的ALI免疫系統(tǒng)紊亂還未見報(bào)道。因此,本文將通過復(fù)制大鼠ALI模型,探討HF對(duì)大鼠ALI的作用及作用機(jī)制。
1.1試劑與儀器 LPS購自美國Sigma公司,HF購自中國上海晶都生物科技公司。流式細(xì)胞儀購自美國ThermoFisher公司。白介素-1 beta(Interleukin-1β,IL-1β)、IL-6和IL-18 ELISA試劑盒購自美國Millipore公司。CD14、Toll樣受體4(Toll-like receptor 4,TLR4)和核轉(zhuǎn)錄因子-κB p65(Nuclear factor of kappa B p56,NF-κB p65)一抗均購自美國Sigma公司,二抗購自美國Proteintech公司。
1.2方法
1.2.1復(fù)制大鼠ALI模型 參照文獻(xiàn)[10]報(bào)道的方法復(fù)制大鼠ALI模型。雄性Wistar大鼠購自北京實(shí)驗(yàn)動(dòng)物中心。將大鼠適應(yīng)性飼養(yǎng)3 d后將其隨機(jī)分為正常對(duì)照組、LPS組、LPS+HF (1 mg/kg BW)組、LPS+HF (5 mg/kg BW)組和LPS+HF (10 mg/kg BW)組。實(shí)驗(yàn)前12 h禁食不禁水。除正常對(duì)照組外,其余各組大鼠腹腔注射LPS 10 mg/kg,正常對(duì)照組則腹腔注射等量的生理鹽水。隨后各受試物組大鼠即刻腹腔注射給予不同濃度的HF,連續(xù)7 d,對(duì)照組和LPS組給予等量溶媒。7 d后處死大鼠,取肺進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.2蘇木精-伊紅(Hematoxylin and eosin,HE)染色 制作大鼠肺冰凍切片。用PBS清洗3次后,將冰凍切片放入蘇木精溶液中染色5 min,于1%鹽酸乙醇液中褪色。用自來水沖洗后,用乙醇進(jìn)行梯度脫水。隨后滴加0.5%伊紅復(fù)染,無水乙醇脫水。最后用二甲苯透明,封片,于顯微鏡下觀察記錄。
1.2.3TUNEL檢測(cè)凋亡小體 制作大鼠肺組織冰凍切片。用4%多聚甲醛室溫固定組織切片 30 min,滴加0.5% TritonX-100透膜15 min。用2%H2O2室溫封閉10 min后,加入TUNEL溶液37℃孵育 1 h,最后滴加DAB染色液復(fù)染10 min,于顯微鏡下每片隨機(jī)選取5個(gè)視野進(jìn)行統(tǒng)計(jì)分析。
1.2.4ELISA 用組織勻漿機(jī)將大鼠肺組織勻漿后,以4 000 r/min離心10 min,取上清液,根據(jù)ELISA試劑盒說明書檢測(cè)上清液中IL-1β、IL-18和IL-6的含量。
1.2.5流式細(xì)胞術(shù) 給予受試物7 d后,用10%多聚甲醛麻醉大鼠,心臟取血,并加入肝素抗凝。將獲得的血液用Ficoll溶液進(jìn)行梯度離心獲得單核細(xì)胞,加入CD14抗體室溫孵育30 min,用染色緩沖液終止染色,并離心重懸細(xì)胞,將細(xì)胞密度調(diào)整至1×107個(gè)/ml,用流式細(xì)胞儀進(jìn)行分選。
1.2.6Western blot 將所獲得的肺組織剪碎至1 mm3,用組織裂解液提取各組大鼠組織總蛋白。BCA試劑盒檢測(cè)蛋白濃度后,將各組蛋白濃度調(diào)平。用SDS-PAGE分離組織蛋白并轉(zhuǎn)移蛋白至PVDF膜。5%脫脂奶粉室溫封閉PVDF膜2 h,加入適當(dāng)濃度的一抗(CD14,1∶1 100;TLR4,1∶1 000;NF-κB p65,1∶800)4℃封閉過夜。次日棄去一抗,用TBST清洗3次后,加入對(duì)應(yīng)二抗室溫孵育1 h,滴加ECL顯色液進(jìn)行曝光顯影。
2.1HF對(duì)ALI大鼠肺病理損傷的影響 為了探究HF對(duì)LPS誘導(dǎo)的ALI大鼠肺損傷的作用,我們用HE染色法檢測(cè)了肺組織病理變化情況。如圖1B所示,與正常對(duì)照組比較,LPS組肺泡腔內(nèi)可見大量炎性細(xì)胞滲出,病灶內(nèi)肺泡萎陷,肺纖維化程度加重;與LPS組比較,LPS+HF (1 mg/kg SW)組、LPS+HF (5 mg/kg SW)組和LPS+HF (10 mg/kg SW)組肺泡腔內(nèi)炎性細(xì)胞減少,肺泡壁變薄,肺纖維化程度減輕,并呈現(xiàn)出量效關(guān)系。
2.2HF對(duì)ALI大鼠肺細(xì)胞凋亡的影響 為了探究HF對(duì)ALI大鼠肺細(xì)胞凋亡的影響,我們用TUNEL法檢測(cè)了凋亡小體的形成情況。實(shí)驗(yàn)結(jié)果表明,LPS可誘導(dǎo)肺組織凋亡小體的形成(P<0.05,圖2);HF能顯著抑制LPS誘導(dǎo)的凋亡小體形成,并隨劑量的增大,作用逐漸增強(qiáng)(P<0.05,圖2)。
2.3HF對(duì)ALI大鼠炎癥反應(yīng)的影響 ELISA實(shí)驗(yàn)結(jié)果表明,與正常對(duì)照組比較,LPS組肺組織炎癥因子IL-1β、IL-6和IL-18的含量明顯增多(P<0.05,圖3);與LPS組比較,各受試物組大鼠肺組織IL-1β、IL-6和IL-18的含量明顯減少(P<0.05,圖3),并呈現(xiàn)出量效關(guān)系。
圖1 HF對(duì)ALI大鼠肺病理損傷的影響Fig.1 Influence of HF on pulmonary injury in ALI ratsNote: A.The chemical structure of HF;B.Rats were injected with LPS and followed with HF for 7 days.The pathological lesion was measured by HE staining.
圖2 HF對(duì)ALI大鼠肺細(xì)胞凋亡的影響Fig.2 Influence of HF on apoptosis in lungNote: The apoptosis was calculated by TUNEL assay,*.P<0.05 vs healthy control,#.P<0.05 vs LPS.
圖3 HF對(duì)ALI大鼠炎癥反應(yīng)的影響Fig.3 Influence of HF on inflammation in ALI ratsNote: The levels of IL-1β,IL-6 and IL-18 in lung tissue were measured by ELISA kits.*.P<0.05 vs Healthy control;#.P<0.05 vs LPS.
圖4 HF對(duì)ALI大鼠外周血CD14表達(dá)的影響Fig.4 The influence of HF on CD14+ cells in bloodNote: A.The CD14+ cells were selected by fluorescence-activated cell sorting;B.Quantification of Fig.4A.*.P<0.05 vs Healthy control,#.P<0.05 vs LPS.
2.4HF對(duì)ALI大鼠外周血CD14表達(dá)的影響 CD14是LPS共受體,能與LPS結(jié)合誘導(dǎo)炎癥反應(yīng)[11]。實(shí)驗(yàn)結(jié)果表明,LPS能顯著誘導(dǎo)CD14在ALI大鼠外周血單核細(xì)胞中的表達(dá)(P<0.05,圖4);HF可明顯減少ALI大鼠外周血中CD14+細(xì)胞數(shù)(P<0.05,圖4),并呈現(xiàn)量效關(guān)系。
圖5 HF對(duì)CD14/NF-κB信號(hào)通路的影響Fig.5 Influence of HF on CD14/NF-κB signa-ling pathwayNote: A.The protein levels of CD14,TLR4 and NF-κB p56 were measured by western blot;B.Quantification of Fig.5A.*.P<0.05 vs Healthy control,#.P<0.05 vs LPS,GAPDH was used as loading control.
2.5HF對(duì)CD14/NF-κB信號(hào)通路的影響 為了探討HF調(diào)控ALI免疫系統(tǒng)紊亂的作用機(jī)制,我們檢測(cè)了CD14/NF-κB信號(hào)通路蛋白的表達(dá)情況。實(shí)驗(yàn)結(jié)果表明,與正常對(duì)照組比較,LPS組CD14、TLR4和NF-κB p65的表達(dá)水平明顯升高(P<0.05,圖5);與LPS組比較,LPS+HF (1 mg/kg BW)組TLR4和NF-κB p65的表達(dá)水平明顯降低(P<0.05,圖5);LPS+HF (5 mg/kg BW)組和LPS+HF(10 mg/kg BW)組CD14、TLR4和NF-κB p65的表達(dá)水平也均明顯降低(P<0.05,圖5),且具有量效關(guān)系。
常山是草本植物常山的干燥根,中醫(yī)常用其治療痰飲停聚、胸膈痞塞和瘧疾[12]。HF是常山的主要活性成分之一,現(xiàn)代研究發(fā)現(xiàn)HF具有抗炎、免疫調(diào)節(jié)、抗癌等藥理學(xué)活性[8,13,14]。HF可通過調(diào)控Th17和Treg細(xì)胞之間的平衡緩解自身免疫性關(guān)節(jié)炎的發(fā)展,表明其具有較強(qiáng)的免疫調(diào)節(jié)功能[8]。大量研究表明,HF可通過抑制TGF-β的表達(dá)和膠原蛋白的合成抑制肺纖維化[15-17]。Calik等[18]發(fā)現(xiàn),HF可明顯改善輻射誘導(dǎo)的ALI,減輕肺組織炎性細(xì)胞的浸潤(rùn)及肺纖維化。本文研究表明,HF可明顯改善LPS誘導(dǎo)的ALI,可減輕炎性細(xì)胞浸潤(rùn)及肺纖維化程度、改善肺泡結(jié)構(gòu)。同時(shí),HF還可明顯減弱LPS誘導(dǎo)凋亡小體形成的作用,表明其可通過減輕肺纖維化、抑制細(xì)胞凋亡發(fā)揮肺保護(hù)作用。
炎癥反應(yīng)是ALI的主要病理表現(xiàn),也是導(dǎo)致ALI惡化的主要原因[3]。ALI可由多種原因誘發(fā),如內(nèi)毒素、酸中毒、補(bǔ)體激活等[1]。LPS是內(nèi)毒素的主要組成部分,是導(dǎo)致肺損傷最常見的原因之一[19]。LPS可導(dǎo)致肺組織炎性細(xì)胞浸潤(rùn),誘導(dǎo)大量促炎癥因子的釋放而誘發(fā)肺組織的炎癥反應(yīng),從而導(dǎo)致細(xì)胞凋亡[20,21]。IL-1β、IL-18和IL-6等是ALI炎性過程的主要特征因子,其參與了ALI炎癥反應(yīng)的整個(gè)過程[7,22]。其中,IL-1β可促進(jìn)IL-6、IL-18的生成[23]。IL-6可誘導(dǎo)黏附分子和其他炎癥因子的表達(dá),還能促進(jìn)巨噬細(xì)胞的分化和浸潤(rùn)[24]。研究表明,IL-1β、IL-18和IL-6在ALI中表達(dá)明顯增多[25-27]。HF具有較強(qiáng)的抗炎活性,可抑制TNF-α、IL-1β和IL-6等炎癥因子的表達(dá)[7,22]。Sun等[9]研究發(fā)現(xiàn),HF可通過調(diào)控IL-1β、IL-6、IL-10和TNF-α等前炎癥因子的表達(dá)影響病毒性心肌炎的發(fā)展。本文研究發(fā)現(xiàn),HF可明顯抑制LPS誘導(dǎo)的ALI炎癥因子IL-1β、IL-6和IL-18的表達(dá),并隨濃度升高,作用逐漸增強(qiáng),表明其能夠?qū)笰LI炎癥反應(yīng),從而抑制肺細(xì)胞的凋亡。
CD14是位于巨噬細(xì)胞和單核細(xì)胞上的LPS共受體,LPS誘導(dǎo)炎癥反應(yīng)依賴于與CD14的結(jié)合[11]。本文研究發(fā)現(xiàn),HF能明顯抑制LPS誘導(dǎo)的CD14表達(dá),并具有量效關(guān)系,表明其可能是通過減弱LPS與CD14結(jié)合抑制下游炎癥反應(yīng)相關(guān)通路的激活。CD14分為可溶性CD14和膜結(jié)合CD14兩種類型[28]。研究表明,CD14與LPS結(jié)合后可將LPS傳遞給TLR4使其活化,活化的TLR4又激活TLR/MyD88從而誘導(dǎo)NF-κB p65激活,使其轉(zhuǎn)移至細(xì)胞核,并與DNA結(jié)合,從而促進(jìn)IL-1β、IL-18和IL-6等炎癥因子的表達(dá),誘導(dǎo)炎癥反應(yīng)發(fā)生[5,29-31]。已有研究表明,LPS誘導(dǎo)ALI與調(diào)控其下游CD14/NF-κB信號(hào)通路有關(guān)[32,33],但HF調(diào)控LPS誘導(dǎo)的ALI免疫系統(tǒng)紊亂是否與CD14/NF-κB信號(hào)通路有關(guān)還未見報(bào)道。LPS明顯上調(diào)了ALI大鼠肺組織CD14和TLR4的表達(dá)水平,并促進(jìn)肺細(xì)胞核蛋白NF-κB p65的表達(dá),其中,NF-κB p65是NF-κB的一個(gè)重要亞型,其轉(zhuǎn)移入核是調(diào)控NF-κB活化的關(guān)鍵[34]。結(jié)合實(shí)驗(yàn)結(jié)果表明LPS可激活CD14/NF-κB信號(hào)通路。同時(shí),HF可顯著降低CD14、TLR4和NF-κB p65的蛋白表達(dá)水平,表明其可抑制LPS誘導(dǎo)的CD14/NF-κB通路的激活,并且HF可能通過調(diào)控CD14/NF-κB信號(hào)通路抑制ALI大鼠的炎癥反應(yīng)及肺細(xì)胞的凋亡。
綜上所述,HF可通過抑制炎癥因子IL-1β、IL-18和IL-6的釋放明顯改善LPS誘導(dǎo)的ALI大鼠肺組織的病變,抑制肺纖維化及細(xì)胞凋亡,并且其機(jī)制與抑制CD14/NF-κB信號(hào)通路激活有關(guān)。本文可能為ALI的治療提供了一種新的潛力藥物,但HF對(duì)ALI其他病理環(huán)節(jié)的作用還有待進(jìn)一步探討。
參考文獻(xiàn):
[1] Ather JL,Alcorn JF,Brown AL,etal.Distinct functions of airway epithelial nuclear factor-kappaB activity regulate nitrogen dioxide-induced acute lung injury[J].Am J Respir Cell Mol Biol,2010,43(4):443-451.
[2] Matthay MA,Ware LB,Zimmerman GA.The acute respiratory distress syndrome[J].J Clin Invest,2012,122(8):2731-2740.
[3] Lin WC,Chen CW,Huang YW,etal.Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis[J].Sci Rep,2015,22(5):12463.
[4] Thangavel J,Samanta S,Rajasingh S,etal.Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury[J].J Cell Sci,2015,128(16):3094-3105.
[5] Tianzhu Z,Shumin W.Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-κB pathways[J].Inflammation,2015,38(4):1529-1536.
[6] Chen GQ,Gong RH,Yang DJ,etal.Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer[J].Cell Death Dis,2017,8(5):e2789.
[7] Liu J,Xiao HT,Wang HS,etal.Halofuginone reduces the inflammatory responses of DSS-induced colitis through metabolic reprogramming[J].Mol Biosyst,2016,12(7):2296-2303.
[8] Park MK,Park JS,Park EM,etal.Halofuginone ameliorates autoimmune arthritis in mice by regulating the balance between Th17 and Treg cells and inhibiting osteoclastogenesis[J].Arthritis Rheumatol,2014,66(5):1195-1207.
[9] Sun XH,Fu J,Sun DQ.Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1[J].Biochem Biophys Res Commun,2016,473(2):558-564.
[10] Wang YY,Qiu XG,Ren HL.Inhibition of acute lung injury by rubriflordilactone in LPS-induced rat model through suppression of inflammatory factor expression[J].Int J Clin Exp Pathol,2015,8(12):15954-15959.
[11] Fenton MJ,Golenbock DT.LPS-binding proteins and receptors[J].J Leukoc Biol,1998,64(1):25-32.
[12] Huo S,Yu H,Li C,etal.Effect of halofuginone on the inhibition of proliferation and invasion of hepatocellular carcinoma HepG2 cell line[J].Int J Clin Exp Pathol,2015,8(12):15863-15830.
[13] Chen GQ,Tang CF,Shi XK,etal.Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism[J].Oncotarget,2015,6(27):24148-24162.
[14] Carlson TJ,Pellerin A,Djuretic IM,etal.Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation[J].J Immunol,2014,192(5):2167-2176.
[15] Nagler A,Firman N,Feferman R,etal.Reduction in pulmonary fibrosis in vivo by halofuginone[J].Am J RespirCrit Care Med,1996,154(4):1082-1086.
[16] Yavas G,Calik M,Calik G,etal.The effect of Halofuginone in the amelioration of radiation induced-lung fibrosis[J].Medical Hypotheses,2013,80(4):357-359.
[17] Pines M,Nagler A.Halofuginone:a novel antifibrotictherapy[J].Gen Pharmacol,1998,30(4):445-450.
[18] Calik M,Yavas G,Calik SG,etal.Amelioration of radiation-induced lung injury by halofuginone:An experimental study in Wistar-Albino rats[J].Hum Exp Toxicol,2017,36(6):638-647.
[19] Dong IK,Kim SR,Kim HJ,etal.PI3K-γ Inhibition ameliorates acute lung injury through regulation of IκBα/NF-κB pathway and innate immune responses[J].J Clin Immunol,2012,32(2):340-351.
[20] Rossol M,Heine H,Meusch U,etal.LPS-induced cytokine production in human monocytes and macrophages[J].Crit Rev Immunol,2011,31(5):379-446.
[21] 倪敬琴,歐陽秋芳,黃子揚(yáng),等.TLR4受體在LPS誘導(dǎo)的ApoE-/-小鼠急性肺損傷中的意義[J].中國免疫學(xué)雜志,2013,29(9):930-934.
Ni JQ,Ouyang QF,Huang ZY,etal.TLR4 receptor in LPS induced ApoE-/-the significance of acute lung injury in mice[J].Chin J Immunol,2013,29(9):930-934.
[22] Liang J,Zhang B,Shen RW,etal.Preventive effect of halofuginone on concanavalin A-induced liver fibrosis[J].PloS One,2013,8(12):e82232.
[23] Ito Y,Kaneko N,Iwasaki T,etal.IL-1 as a target in inflammation[J].Endocr Metab Immune Disord Drug Targets,2015,15(3):206-211.
[24] Tanaka T,Narazaki M,Kishimoto T.IL-6 in inflammation,immunity,and disease[J].Cold Spring Harb Perspect Biol,2014,6(10):a016295.
[25] Chen X,Wan Y,Zhou T,etal.Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model[J].Immunotherapy,2013,5(1):39-47.
[26] Bai GZ,Yu HT,Ni YF,etal.Shikonin attenuates lipopolysaccharide-induced acute lung injury in mice[J].J Surg Res,2013,182(2):303-311.
[27] Zhang T,Yang S,Du J.The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome[J].Inflammation,2014,37(6):1976-1983.
[28] Pugin J,Schürer-Maly CC,Leturcq D,etal.Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14[J].Proc Natl Acad Sci U S A,1993,90(7):2744-2748.
[29] Liu H,Chen K,Feng W,etal.TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells[J].PLoS One,2013,8(11):e80327.
[30] Tasaka S,Ishizaka A,Yamada W,etal.Effect of CD14 blockade on endotoxin-induced acute lung injury in mice[J].Am J Respir Cell Mol Biol,2003,29(2):252-258.
[31] Ma L,Wu XY,Zhang LH,etal.Propofol exerts anti-inflammatory effects in rats withlipopolysaccharide-induced acute lung injury by inhibition of CD14 and TLR4expression[J].Braz J Med Biol Res,2013,46(3):299-305.
[32] Jeyaseelan S,Hong WC,Young SK,etal.Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury[J].Infect Immun,2005,73(3):1754-1763.
[33] Phan HH,Cho K,Sainz-Lyon KS,etal.CD14-dependent modulation of NF-kappaB alternative splicing in the lung after burn injury[J].Gene,2006,371(1):121-129.
[34] Maguire O,O′Loughlin K,Minderman H.Simultaneous assessment of NF-κB/p65 phosphorylation and nuclear localization using imaging flow cytometry[J].J Immunol Methods,2015,423:3-11.