• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      淺談如何運用數(shù)形結(jié)合解決問題

      2018-01-31 16:45:47鄭巧燕
      考試周刊 2017年39期
      關(guān)鍵詞:脈絡(luò)數(shù)形結(jié)合本質(zhì)

      鄭巧燕

      摘 要:在解決問題的教學(xué)過程中,讓學(xué)生學(xué)會把一些比較復(fù)雜的純文字解決問題,根據(jù)題意,把它們用“形”表達出來。可以使各種數(shù)量之間的關(guān)系變得直觀明了,可以化抽象為形象、具體,可以在問題與學(xué)生思維之間搭起一座溝通的橋梁,便于學(xué)生的觀察與思考,自主探索獲得解決問題的思路與途徑。對培養(yǎng)學(xué)生思維的主動性、靈活性和創(chuàng)新性有著十分重要的意義。

      關(guān)鍵詞:數(shù)形結(jié)合;解決問題;脈絡(luò);本質(zhì);思路

      我國著名的數(shù)學(xué)家華羅庚有一句名言:“數(shù)缺形時少直觀?!薄读x務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》也指出:“借助幾何直觀可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象,有助于探索解決問題的思路,預(yù)測結(jié)果?!痹诮鉀Q問題的教學(xué)過程中,讓學(xué)生學(xué)會把一些比較復(fù)雜的純文字解決問題,根據(jù)題意,把它們用“形”表達出來??梢允垢鞣N數(shù)量之間的關(guān)系變得直觀明了,可以化抽象為形象、具體,可以在問題與學(xué)生思維之間搭起一座溝通的橋梁,便于學(xué)生的觀察與思考,自主探索獲得解決問題的思路與途徑。對培養(yǎng)學(xué)生思維的主動性、靈活性和創(chuàng)新性有著十分重要的意義。

      一、 以“形”觀題,理清問題解決的脈絡(luò)

      低年級學(xué)生由于年齡小,生活經(jīng)驗有限,他們的思維以具體形象為主。因此,他們對數(shù)學(xué)問題的感知程度常常比較低,對稍復(fù)雜的問題往往認識模糊、思路不清。在教學(xué)中,教師可以引導(dǎo)學(xué)生將數(shù)學(xué)題以自己喜歡的形式畫下來,或用圖形擺出來,這樣抽象的數(shù)學(xué)語言就變得直觀形象,簡便易懂。

      例如:教學(xué)“三個小朋友一共剪了28只蝴蝶。小夏和小希共剪了20只,小希和小藝共剪了17只。他們分別剪了多少只?”時,看著這么復(fù)雜的關(guān)系,絕大多數(shù)學(xué)生嚇倒了,根本無法理清思路,選擇放棄對問題的思考。此時,如果教師能適時地引導(dǎo)學(xué)生,能不能用算式、圖形幫忙把題目變一變。于是,有的學(xué)生想到可以寫成算式:小夏+小希+小藝=28,小夏+小希=20,小希+小藝=17。有的學(xué)生進一步想到可以用不同的圖形來表示這3個小朋友,這樣,這道題就可以表示為:○+△+□=42,○+△=20,△+□=17。通過畫圖,把它們的關(guān)系變得清楚、簡單,借助圖,學(xué)生很快地找到解決問題的辦法。

      因此,用“形”來描述數(shù)學(xué)問題可以讓問題變得生動形象,可以使學(xué)生直觀地感悟到解決問題的思路,培養(yǎng)了學(xué)生思維的主動性。

      二、 以“形”析題,深入問題解決的本質(zhì)

      “形”不僅能夠幫助學(xué)生正確地分析數(shù)量關(guān)系,準(zhǔn)確地找出數(shù)量間的對應(yīng)關(guān)系,發(fā)現(xiàn)知識間緊密的聯(lián)系與區(qū)別。還能夠?qū)⒃S多抽象的數(shù)學(xué)問題形象化、簡單化,能夠引導(dǎo)學(xué)生發(fā)現(xiàn)一些細微的差別,從而深入問題的本質(zhì)。

      例如:在教學(xué)分數(shù)的意義時,經(jīng)常會遇到如“把2千克糖平均裝成5袋,每袋是總質(zhì)量的幾分之幾,每袋重多少千克?”這樣的問題,不少學(xué)生無法理解。有的學(xué)生認為每袋是總質(zhì)量的15,每袋的質(zhì)量就應(yīng)該也是15。有的認為每袋的質(zhì)量是25,每袋的質(zhì)量就應(yīng)該是總質(zhì)量的25。怎樣才能讓學(xué)生真正深刻地理解量與率的不同之處呢。這時,教師讓學(xué)生畫圖。

      接著,教師讓學(xué)生觀察、思考、討論、交流。匯報時,學(xué)生說,求每袋是總質(zhì)量的幾分之幾,是把2千克看作單位“1”平均分成5份,每袋是總質(zhì)量的15;求每袋重多少千克?是把2千克平均分成5份,每袋有25千克。教師再把2千克改為10千克,50千克,100千克……最后教師讓學(xué)生思考如果有n千克,答案又如何?看著圖,學(xué)生能很清楚地發(fā)現(xiàn),隨著糖的總質(zhì)量的不斷地變化,每袋糖的質(zhì)量也在發(fā)生變化,而因為是把糖平均分成5份,所以每份占總質(zhì)量的分率卻始終不變。再把圖變?yōu)楸硎久娣e,長度等等。讓學(xué)生借助圖形,充分感受量的變化與率的不變。最后思考怎樣能夠讓每袋糖占總質(zhì)量的14,16,讓學(xué)生再次畫圖。

      兩次畫圖,讓學(xué)生對量與率進行了充分的比較與分析。學(xué)生不僅找到了正確的答案,更可貴的是真正理解每份占總數(shù)的幾分之幾只與分的份數(shù)有關(guān),與總數(shù)的數(shù)量無關(guān)?!靶巍薄寣W(xué)生的思維走向深刻。

      三、 以“形”開題,拓寬問題解決的思路

      一千個學(xué)生就會有一千種思維方式。在問題解決過程中,“形”有時能幫助學(xué)生從不同的角度對同一問題進行思考,從而獲得多樣的解決問題的策略。

      例如:教學(xué)“把一個長10米,寬8米的長方形的長和寬各增加5米,它們的面積增加了多少平方米?”教師為了讓學(xué)生有自主學(xué)習(xí)的時間和空間,讓學(xué)生自己畫出圖再獨立思考。通過畫圖,學(xué)生打開了思維的大門。有的說,長增加5米,就是15米,寬增加了5米就是13米,現(xiàn)在長方形的長15米,寬13米,把現(xiàn)在的面積減去原來的面積就是增加的面積。有的說,我發(fā)現(xiàn)增加的面積是由3部分組成的,一個長8米寬5米的長方形,一個長10米寬5米的長方形和一個邊長5米的正方形,只要把它們的面積加起來就可以了。有的說,增加的面積是由1個長15米,寬5米的長方形和1個長8米寬5米的長方形組成。在學(xué)生之間的相互學(xué)習(xí)中,教師再引導(dǎo)學(xué)生觀察增加的這2個長方形,思考是否可以把它們拼一拼。學(xué)生驚訝地發(fā)現(xiàn)原來增加的面積等于原來長方形長與寬的和乘5。

      通過“形”,讓學(xué)生的觀察有了不同的角度,讓學(xué)生的思考有了自己的影子。他們以“形”打開了思維的大門,采用各種方法,尋找解決問題的策略,體驗解決問題策略的多樣性。培養(yǎng)了學(xué)生思維的靈活性和創(chuàng)新性。

      總之,靈活運用數(shù)形結(jié)合,能夠讓問題解決中復(fù)雜的數(shù)量關(guān)系變成簡單;能夠讓容易混淆的問題變成清楚;能夠讓單一的策略變成多樣。最重要的是,學(xué)生在這樣的學(xué)習(xí)過程中,思維借助“形”這座友誼的橋梁,得到了很好的培養(yǎng)與發(fā)展。endprint

      猜你喜歡
      脈絡(luò)數(shù)形結(jié)合本質(zhì)
      福州吟誦調(diào)留存脈絡(luò)梳理
      樂府新聲(2021年1期)2021-05-21 08:08:58
      延安時期的黨建“脈絡(luò)”
      回歸本質(zhì)
      童年的本質(zhì)
      組織場域研究脈絡(luò)梳理與未來展望
      對求極限本質(zhì)的探討
      數(shù)形結(jié)合在解題中的應(yīng)用
      考試周刊(2016年86期)2016-11-11 07:55:59
      淺析數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用
      用聯(lián)系發(fā)展的觀點看解析幾何
      妙用數(shù)形結(jié)合思想優(yōu)化中職數(shù)學(xué)解題思維探討
      成才之路(2016年25期)2016-10-08 10:21:28
      英德市| 九龙坡区| 雅安市| 栾川县| 定陶县| 宁明县| 南昌市| 灌阳县| 鄄城县| 临清市| 乌鲁木齐县| 自治县| 盐亭县| 涿州市| 洛宁县| 县级市| 乐昌市| 江川县| 宾川县| 蒙城县| 赣榆县| 藁城市| 莆田市| 宁津县| 康定县| 同江市| 兖州市| 玉林市| 阜新市| 安仁县| 建阳市| 荆门市| 襄城县| 和平区| 会泽县| 双柏县| 含山县| 来安县| 宜兴市| 秀山| 象山县|