• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models

    2018-01-31 03:32:14WANGTondMIAOJiPengNnsenZhuInterntionlReserhCenterInstituteofAtmospheriPhysisChineseAdemyofSienesBeijingChinCollortiveInnovtionCenteronForestndEvlutionofMeteorologilDisstersNnjingUniversityofInformtionSienendTehnologyNn

    WANG To nd MIAO Ji-PengNnsen-Zhu Interntionl Reserh Center, Institute of Atmospheri Physis, Chinese Ademy of Sienes, Beijing, Chin; Collortive Innovtion Center on Forest nd Evlution of Meteorologil Dissters, Nnjing University of Informtion Siene nd Tehnology, Nnjing,Chin; College of Erth Sienes, University of Chinese Ademy of Sienes, Beijing, Chin

    1. Introduction

    The Pacific Decadal Oscillation (PDO) is one of the most important modes of decadal climate variability (Mantua et al. 1997; Mantua and Hare 2002), whose index is defined as the leading principal component of SST anomalies in the Pacific basin, poleward of 20°N. Based on the last 100 years of observations, the spatial pattern of the PDO shows a characteristic ‘horseshoe’ shape in the North Pacific. During a positive PDO phase, anomalously cool SSTs are observed in the Kuroshio–Oyashio extension and central North Pacific, surrounded by anomalously warm SSTs along the west coast of the Americas that extend towards the tropics (Figure 1, observation). The spatial pattern is reversed during a negative PDO phase.

    Previous studies indicate that the PDO has significant influences on regional, or even global climate. Fox example,its regime shifts have been associated with long-term fluctuations of the East Asian summer monsoon (e.g. Yu et al.2015; Dong and Xue 2016), dry/wet conditions in North China (e.g. Wang et al. 2013; Qian and Zhou 2014; Zhu et al. 2015), Australian rainfall (Arblaster, Meehl, and Moore 2002; Cai and van Rensch 2012), and climate changes over the North Pacific and its coasts (Mantua and Hare 2002;Deser, Phillips, and Hurrell 2004). Additionally, the recent global-warming hiatus has also been partly attributed to the negative PDO-like SSTs in the early years of the twenty-first century (Kosaka and Xie 2013).

    Figure 1. Observed and simulated regression distributions of SST on the PDO index (units: °C).

    Despite its importance, the root cause of the PDO is still unclear. Local air–sea interactions in the North Pacific are suggested as a crucial process for the PDO. An anomalous Aleutian low and anomalous advection in the Kuroshio–Oyashio extension and the subtropical-gyre have also been invoked to explain the PDO (Latif and Barnett 1994;Schneider and Cornuelle 2005; Sun and Wang 2006).However, Deser, Phillips, and Hurrell (2004) suggested that the tropics should play a key role in North Pacific interdecadal climate variability. At the same time, the remote influence from the Atlantic Multidecadal Oscillation cannot be excluded (Zhang and Delworth 2007). Therefore, this issue is so complicated that the mechanisms responsible for the PDO are open disputed.

    In the twentieth century, the PDO experienced four regime shifts, in roughly 1925, 1946, 1977, and 1999(http://research.jisao.washington.edu/pdo/). Although,as an internal variability, the PDO and its regime shifts are most likely influenced by external forcings (e.g. solar irradiance, volcanoes, anthropogenic greenhouse gases, and aerosols) (Wang et al. 2012; Dong, Zhou, and Chen 2014).Therefore, all relevant external forcings are needed for a model to obtain the correct timing of the simulated PDO in the twentieth century. There is a large amount of historical simulations within CMIP5. Both the natural and anthropogenic forcings covering the period 1850–2005 have been added into the models in these simulations. A more recent study indicated that most coupled models in CMIP5 have good capacity to simulate the climate mean state of the Asian-Pacific climate (Zhou 2016). Nevertheless, the skill of these coupled models in modelling the PDO remains unclear. In the present study, therefore, we use CMIP5 historical simulations to examine the performance of multiple models for the simulation of the spatial pattern and evolution of the PDO during the entire twentieth century.

    The rest of this paper is organized as follows: Section 2 describes the models, experimental design, and the method employed. In Section 3, the simulated PDO in the CMIP5 coupled models is compared with observations.Finally, conclusions and a discussion are given in Section 4.

    2. Model experiments, data, and method

    A total of 109 historical simulations from 25 coupled models in CMIP5 (Taylor, Stouffer, and Meehl 2012) are analyzed in this study. The coupled models in the historical simulations (also called all-forcing simulations) are forced by both natural (total solar irradiance and volcanoes) and anthropogenic (well-mixed greenhouse gases and anthropogenic aerosols) forcings, which cover the period from 1850 to 2005. The details of the CMIP5 coupled models,including the model acronyms and affiliations, are listed in Table 1. The observed SST used in this study is from the Hadley Center’s monthly SST data-set (Rayner et al. 2003).In this study, we calculated the PDO index as the leading principal component of SST anomalies in the NorthPacific (poleward of 20°N). Before the EOF analysis, the global warming signal is removed from the data by subtracting the mean global SST anomaly. For the entire twentieth century, we focus on the spatiotemporal characteristics of the PDO in the Northern Hemisphere winter (i.e. November–March), because the PDO behavior is substantially intensified in winter (Mantua et al.1997; Deser and Phillips 2006). We use the regular-grid surface temperature (i.e. the CMIP5 output variable ‘ts’)over the ocean instead of the irregular-grid SST fields in the analysis of modeled data. In addition, we set the surface temperature in regions covered by sea ice to?1.8 °C according to the observed SST data-set (Rayner et al. 2003).

    Table 1. Details of the 25 CMIP5 coupled models in this study.

    To evaluate the effectiveness of the models for the simulation of the PDO, the spatial correlation coefficient (SCC)of the PDO teleconnection patterns and the correlation coefficient of the PDO indices between the observations and CMIP5 coupled models are computed in this study.The multi-model ensemble simulation is calculated as the arithmetic mean of the ensemble simulation for the multi-member 22 coupled models with multi-member simulations (i.e. greater than one member). The Pearson’s linear correlation coefficient is used to describe the significance of the correlation coefficients. To highlight the decadal signals, the 9-yr running mean is used on all of the PDO indices before calculating the correlation coefficients of the time series. The formula of Quenouille (1952) is used to estimate the effective degrees of freedom (Ne) of the 9-yr running mean indices:

    whereNis the number of data points, andaiandbiare theith order autocorrelations for time seriesaandb,respectively.

    3. Results

    As shown in the regression map (Figure 1), the observed SSTs are anomalously cool in the western-central region of the North Pacific during the positive PDO phase, and are surrounded by anomalously warm SSTs along the west coast of the Americas. At the same time, El Ni?o–like SST anomalies are evident in the central-eastern tropical Pacific, but negative SST anomalies are observed in the subtropical South Pacific. The explained variance for the PDO pattern is 33.2% in the observations. Compared with the observations, most coupled models in CMIP5 reproduce the PDO pattern well, particularly in the North Pacific, which is also the case for the CMIP5 last millennium simulations (Fleming and Anchukaitis 2016). BNU-ESM,CanESM2, CCSM4, CESM1-CAM5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, HadCM3, HadGEM2-ES, MIROC5, and NorESM1-M reproduce the observed teleconnections of the PDO to SSTs in the tropical and Southern Pacific well.These simulated teleconnections in other models are relatively weak, particularly for the r1i1p1 simulations of BCC_CSM1.1, CNRM-CM5, GISS-E2-H, and MRI-CGCM3. Based on the statistical results, BNU-ESM, CanESM2, CCSM4,CESM1-FASTCHEM, FGOALS-g2, GFDL CM3, MIROC5, and NorESM1-M better depict the PDO pattern (Table 2). The SCCs of the PDO regression maps between the observations and these models are greater than 0.8. Additionally,the CanESM2, CCSM4, CESM1-FASTCHEM, FGOALS-g2,MIROC5, and NorESM1-M simulate a higher explained variance for the PDO pattern (~30%), which is comparable to the observations. In the r1i1p1 simulations of GISS-E2-R,MPI-ESM-LR, and MRI CGCM3, the explained variance for the PDO pattern is small, at less than 20%.

    The ensemble results for the 22 coupled models(i.e. multi-model ensemble) are shown in Figure 2.MIROC5 reproduces the PDO pattern most similar to the observations. Its SCC is 0.88, which is greater than most single-model ensemble simulations. TheSCC of the CCSM4 ensemble simulation is 0.89, and is the highest SCC. However, the intensity of its PDO pattern is weaker than in the observations, as is the case for the other single-model ensemble simulations.This suggests that the internal variability of the PDO is weakened to some extent by the ensemble average,particularly for simulations by the larger members(e.g. CNRM-CM5 and CSIRO Mk3.6.0; Figure 2). In the multi-model ensemble simulation, the simulated PDO pattern explains 38.1% of the total variance of the SST anomalies. The SCC between the PDO pattern and the observations is as high as 0.81 (Figure 3). However, the teleconnections to the SST anomalies are very weak, as also seen in Figure 3.

    Table 2. Spatial correlation coefficients (SCCs) of the PDO regression maps between the observation and simulations.

    Figure 2. Observed and simulated regression distributions of SST on the PDO index (units: °C).

    Figure 3. Simulated regression distribution of SST on the PDO index (units: °C) in the multi-model ensemble simulation.

    Many climate shifts are closely tied to the phase transition of the PDO (e.g. Hartmann and Wendler 2005; Zhu et al. 2011; Lyon, Barnston, and DeWitt 2014). Therefore,more attention has been paid to the evolution of the PDO and its phase shifts. In the twentieth century, the observed PDO enters a positive phase in the early 1920s, and then a negative phase in the early 1940s (Figure 4). Finally, it returns to a positive phase again in the late 1970s. The simulated PDO evolutions in the twentieth century are very different from one another. Different external forcings(e.g. volcanic forcing and anthropogenic aerosols) used in these models can contribute to the differences in simulated PDO evolutions. Even for individual models and forced by the same external forcings, the simulated PDO evolutions are also different among members. This means that the initial states probably play an important role in shaping subsequent PDO evolution. Compared to the observations, therefore, most simulations do not reproduce the observed temporal phases of the PDO (Table 3).However, eight simulations produce a similar PDO evolution as observed (Figure 4). These are the r5i1p1 simulation of CanESM2, the r3i1p1 and r8i1p1 simulations of CNRM-CM5, the r6i1p1 simulation of CSIRO Mk3.6.0, the r3i1p1 simulation of GISS-E2-R, the r8i1p1 simulation of HadCM3, the r4i1p1 simulation of IPSL-CM5A-LR, and the r1i1p1 simulation of MPI-ESM-LR. The simulated PDO time series in five simulations are significantly associated with the observed PDO index. Their correlation coefficients are greater than 0.36 (p< 0.05; Table 3), which suggests that some of the coupled models, forced by all relevant external forcings, could by chance reproduce the observed PDO evolution to some extent. Additionally, the r6i1p1 simulation of CSIRO Mk3.6.0 reproduces the PDO evolution in the second half of the twentieth century well (Figure 4).

    Figure 4. Observed and simulated PDO indices.

    Table 3. Correlation coefficients between the observed and simulated PDO indices, and between the observation and ensemble simulation for each model.

    No ensemble simulations reproduce the observed PDO evolution (Table 3). In CanESM2, GFDL CM3, GISS-E2-H,GISS-E2-R, HadGEM2-ES, IPSL-CM5A-MR, and MIROC-ESM ensemble simulations, and the multi-model ensemble, the simulated PDO indices show a significant long-term tendency to the positive phase in the twentieth century. One reason for large discrepancies between the observed and simulated PDO indices may be that the internal variability of the PDO has been averaged out in the ensemble simulations, as noted by Dong, Zhou, and Chen (2014). Particularly for the multi-model ensemble, the positive trend of simulated PDO index probably reflects the response of the PDO to increasing levels of the greenhouse gases in the twentieth century (Dong, Zhou, and Chen 2014), which are the same for all the coupled models in this study.

    4. Summary and discussion

    We examine the spatial and temporal characteristics of the PDO in the 109 historical simulations from 25 coupled models in CMIP5. Most of the simulations successfully reproduce the ‘horseshoe’ shape SST anomalies in the North Pacific and observed PDO teleconnections to SSTs in the tropical and South Pacific. Additionally, BNU-ESM,CanESM2, CCSM4, CESM1-FASTCHEM, FGOALS-g2, GFDL CM3, MIROC5, and NorESM1-M better simulate the PDO-associated SST pattern in the Pacific. The SCCs between the observed and simulated PDO regression maps are greater than 0.8.

    Compared with the observed PDO evolution in the twentieth century, only five simulations of a total of 109 historical members simulate similar temporal phases of the PDO. The correlation coefficients between the simulated and observed PDO indices are greater than 0.36 for the r3i1p1 and r8i1p1 simulations of CNRM-CM5, the r6i1p1 simulation of CSIRO Mk3.6.0, the r8i1p1 simulation of HadCM3, and the r4i1p1 simulation of IPSL-CM5A-LR.Their similarity is significant at the 0.05 significance level.It suggests that coupled models, forced by all the relevant external forcings, can by chance reproduce the observed PDO evolution. In other words, the current coupled models barely simulate the temporal evolution of the observed PDO in the twentieth century. Perhaps realistic initial states of the oceanic field are necessary for the models to capture the temporal characteristics of the PDO.

    We also analyze the simulated PDO in the ensemble simulation for each coupled model and in the multi-model ensemble. After the ensemble average, different internal variabilities from multi-member simulations interfere with one another. Particularly for the multi-model ensemble,some external forcings (e.g. volcanic forcing and anthropogenic aerosol forcing) used in these coupled models are different. Therefore, it is not appropriate to investigate the impacts of the internal modes (e.g. the PDO and the Atlantic Multidecadal Oscillation) on the regional and global climate using ensemble simulations, because the internal variabilities from different members are not consistent and interfere with one another.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Key R&D Program of China [grant number 2017YFA0603802]; the National Natural Science Foundation of China [grant numbers 41661144005,41320104007, and 41575086]; and the CAS–PKU (Chinese Academy of Sciences–Peking University) Joint Research Program.

    Arblaster, J. M., G. A. Meehl, and A. M. Moore. 2002. “Interdecadal Modulation of Australian Rainfall.”Climate Dynamics18 (6):519–531.

    Cai, W. J., and P. van Rensch. 2012. “The 2011 Southeast Queensland Extreme Summer Rainfall: A Confirmation of a Negative Pacific Decadal Oscillation Phase?”Geophysical Research Letters39: L08702.

    Deser, C., and A. S. Phillips. 2006. “Simulation of the 1976/77 Climate Transition Over the North Pacific: Sensitivity to Tropical Forcing.”Journal of Climate19 (23): 6170–6180.

    Deser, C., A. S. Phillips, and J. W. Hurrell. 2004. “Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter Since 1900.”Journal of Climate17 (16): 3109–3124.

    Dong, X., and F. Xue. 2016. “Phase Transition of the Pacific Decadal Oscillation and Decadal Variation of the East Asian Summer Monsoon in the 20th Century.”Advances in Atmospheric Sciences33 (3): 330–338.

    Dong, L., T. J. Zhou, and X. L. Chen. 2014. “Changes of Pacific Decadal Variability in the Twentieth Century Driven by Internal Variability, Greenhouse Gases, and Aerosols.”Geophysical Research Letters41 (23): 8570–8577.

    Fleming, L. E., and K. J. Anchukaitis. 2016. “North Pacific Decadal Variability in the CMIP5 Last Millennium Simulations.”Climate Dynamics47: 3783–3801.

    Hartmann, B., and G. Wendler. 2005. “The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska.”Journal of Climate18 (22): 4824–4839.

    Kosaka, Y., and S. P. Xie. 2013. “Recent Global-warming Hiatus Tied to Equatorial Pacific Surface Cooling.”Nature501 (7467):403–407.

    Latif, M., and T. P. Barnett. 1994. “Causes of Decadal Climate Variability Over the North Pacific and North-America.”Science266 (5185): 634–637.

    Lyon, B., A. G. Barnston, and D. G. DeWitt. 2014. “Tropical Pacific Forcing of a 1998-1999 Climate Shift: Observational Analysis and Climate Model Results for the Boreal Spring Season.”Climate Dynamics43 (3–4): 893–909.

    Mantua, N. J., and S. R. Hare. 2002. “The Pacific Decadal Oscillation.”Journal of Oceanography58 (1): 35–44.

    Mantua, N. J., S. R. Hare, Y. Zhang, et al. 1997. “A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production.”Bulletin of the American Meteorological Society78(6): 1069–1079.

    Qian, C., and T. J. Zhou. 2014. “Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010.”Journal of Climate27 (3): 1210–1222.

    Quenouille, M. H. 1952.Associated Measurements, 242. New York: Butterworths Scientific Publications, London and Academic Press.

    Rayner, N. A., D. E. Parker, E. B. Horton, et al. 2003. “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century.”Journal of Geophysical Research-Atmospheres108 (D14): 4407.

    Schneider, N., and B. D. Cornuelle. 2005. “The Forcing of the Pacific Decadal Oscillation.”Journal of Climate18 (21): 4355–4373.

    Sun, J. Q., and H. J. Wang. 2006. “Relationship between Arctic Oscillation and Pacific Decadal Oscillation on Decadal Timescale.”Chinese Science Bulletin51 (1): 75–79.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.”Bulletin of the American Meteorological Society93 (4): 485–498.

    Wang, T., O. H. Ottera, Y. Q. Gao, et al. 2012. “The Response of the North Pacific Decadal Variability to Strong Tropical Volcanic Eruptions.”Climate Dynamics39 (12): 2917–2936.

    Wang, T., H. J. Wang, O. H. Ottera, et al. 2013. “Anthropogenic Agent Implicated as a Prime Driver of Shift in Precipitation in Eastern China in the Late 1970s.”Atmospheric Chemistry and Physics13 (24): 12433–12450.

    Yu, L., T. Furevik, O. H. Ottera, et al. 2015. “Modulation of the Pacific Decadal Oscillation on the Summer Precipitation Over East China: a Comparison of Observations to 600-years Control Run of Bergen Climate Model.”Climate Dynamics44(1–2): 475–494.

    Zhang, R., and T. L. Delworth. 2007. “Impact of the Atlantic Multidecadal Oscillation on North Pacific Climate Variability.”Geophysical Research Letters34: L23708.

    Zhou, B. T. 2016. “The Asian-Pacific Oscillation Pattern in CMIP5 Simulations of Historical and Future Climate.”International Journal of Climatology36: 4778–4789.

    Zhu, Y. L., H. J. Wang, W. Zhou, et al. 2011. “Recent Changes in the Summer Precipitation Pattern in East China and the Background Circulation.”Climate Dynamics36 (7–8): 1463–1473.

    Zhu, Y. L., H. J. Wang, J. H. Ma, et al. 2015. “Contribution of the Phase Transition of Pacific Decadal Oscillation to the Late 1990s’ Shift in East China summer rainfall.”Journal of Geophysical Research-Atmospheres120 (17): 8817–8827.

    国产精品久久久久成人av| 欧美日韩亚洲综合一区二区三区_| 91大片在线观看| 久久国产精品男人的天堂亚洲| 黄色怎么调成土黄色| 精品国内亚洲2022精品成人 | 精品少妇黑人巨大在线播放| 人妻 亚洲 视频| 女性被躁到高潮视频| 午夜久久久在线观看| 欧美人与性动交α欧美精品济南到| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 亚洲欧洲精品一区二区精品久久久| 精品少妇黑人巨大在线播放| 国产亚洲精品一区二区www | 免费人妻精品一区二区三区视频| 欧美精品一区二区大全| 电影成人av| 香蕉国产在线看| 三级毛片av免费| 最新在线观看一区二区三区| 国产精品 欧美亚洲| 国产成人av激情在线播放| 午夜福利视频精品| 免费日韩欧美在线观看| 在线观看www视频免费| 午夜免费成人在线视频| 精品一区二区三卡| 亚洲精品一二三| 国产亚洲欧美在线一区二区| 宅男免费午夜| 久久天堂一区二区三区四区| 久久久水蜜桃国产精品网| 午夜福利在线观看吧| 一级片'在线观看视频| 超碰成人久久| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 最新美女视频免费是黄的| 一级a爱视频在线免费观看| av在线播放免费不卡| 18禁美女被吸乳视频| 操美女的视频在线观看| 一本综合久久免费| 亚洲一区中文字幕在线| 啦啦啦视频在线资源免费观看| 久久中文看片网| 女同久久另类99精品国产91| 黄色a级毛片大全视频| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 国产成人免费观看mmmm| 欧美日本中文国产一区发布| 婷婷成人精品国产| 男人舔女人的私密视频| 国产日韩欧美亚洲二区| www.999成人在线观看| 欧美激情高清一区二区三区| 最近最新免费中文字幕在线| 99国产综合亚洲精品| 久久久国产精品麻豆| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| videosex国产| 大型黄色视频在线免费观看| 蜜桃国产av成人99| 亚洲 欧美一区二区三区| 少妇的丰满在线观看| 精品国产一区二区三区久久久樱花| 欧美精品高潮呻吟av久久| a级片在线免费高清观看视频| 国产男女超爽视频在线观看| 高清毛片免费观看视频网站 | 超碰97精品在线观看| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 黑丝袜美女国产一区| 大陆偷拍与自拍| 美女午夜性视频免费| 欧美国产精品va在线观看不卡| av片东京热男人的天堂| 成人亚洲精品一区在线观看| 一个人免费看片子| 老司机亚洲免费影院| 成人18禁高潮啪啪吃奶动态图| 啦啦啦在线免费观看视频4| 精品福利观看| 丝袜在线中文字幕| 亚洲视频免费观看视频| 一区福利在线观看| 国产91精品成人一区二区三区 | 亚洲色图 男人天堂 中文字幕| 久久中文看片网| 一区二区三区激情视频| svipshipincom国产片| 国产欧美日韩一区二区精品| 国产免费福利视频在线观看| 精品一品国产午夜福利视频| 男女床上黄色一级片免费看| 99国产精品一区二区蜜桃av | 国产午夜精品久久久久久| 国产精品免费视频内射| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠躁躁| 国产成人系列免费观看| 欧美黑人欧美精品刺激| 男女之事视频高清在线观看| 操出白浆在线播放| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 亚洲国产欧美日韩在线播放| 99re在线观看精品视频| 国产精品.久久久| 亚洲五月婷婷丁香| 国产激情久久老熟女| 亚洲成人手机| 变态另类成人亚洲欧美熟女 | 黄频高清免费视频| 无人区码免费观看不卡 | 国产日韩欧美在线精品| 黄色 视频免费看| 精品国产超薄肉色丝袜足j| 每晚都被弄得嗷嗷叫到高潮| 久久狼人影院| 成在线人永久免费视频| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 男男h啪啪无遮挡| 欧美日韩黄片免| 考比视频在线观看| 国产免费福利视频在线观看| 一区二区av电影网| 欧美国产精品一级二级三级| 一本大道久久a久久精品| 中文字幕制服av| 美女高潮喷水抽搐中文字幕| 电影成人av| 大码成人一级视频| 国产在视频线精品| 12—13女人毛片做爰片一| 一个人免费看片子| 波多野结衣av一区二区av| 亚洲国产毛片av蜜桃av| 日韩欧美三级三区| 一二三四社区在线视频社区8| 电影成人av| 成人三级做爰电影| 王馨瑶露胸无遮挡在线观看| 欧美 日韩 精品 国产| 热99久久久久精品小说推荐| 日本a在线网址| 菩萨蛮人人尽说江南好唐韦庄| 日日夜夜操网爽| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 国产欧美日韩一区二区精品| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| www.999成人在线观看| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 亚洲男人天堂网一区| 午夜精品久久久久久毛片777| 亚洲专区字幕在线| 日韩 欧美 亚洲 中文字幕| 国产一区二区激情短视频| 国产午夜精品久久久久久| 国产精品99久久99久久久不卡| 十分钟在线观看高清视频www| 午夜精品久久久久久毛片777| 91av网站免费观看| 国产午夜精品久久久久久| 国产在线一区二区三区精| 亚洲一区中文字幕在线| 欧美 日韩 精品 国产| 丁香欧美五月| 黄色视频,在线免费观看| 久久久精品国产亚洲av高清涩受| 亚洲九九香蕉| 大香蕉久久成人网| 两个人看的免费小视频| 国产老妇伦熟女老妇高清| 少妇粗大呻吟视频| 亚洲 国产 在线| 国产在线一区二区三区精| 好男人电影高清在线观看| 757午夜福利合集在线观看| 午夜激情久久久久久久| 这个男人来自地球电影免费观看| 制服诱惑二区| 精品一区二区三区四区五区乱码| 国产高清videossex| 免费日韩欧美在线观看| 国产真人三级小视频在线观看| 天堂中文最新版在线下载| 免费女性裸体啪啪无遮挡网站| 成人手机av| 美女高潮到喷水免费观看| 国产av精品麻豆| 国产色视频综合| 丰满迷人的少妇在线观看| 九色亚洲精品在线播放| 无遮挡黄片免费观看| 黑丝袜美女国产一区| 国产麻豆69| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 又紧又爽又黄一区二区| 一夜夜www| av天堂久久9| 精品亚洲成国产av| 国产精品成人在线| 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 国产高清videossex| 老熟女久久久| 香蕉国产在线看| 色老头精品视频在线观看| 国产91精品成人一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 成年人黄色毛片网站| www日本在线高清视频| 精品少妇黑人巨大在线播放| 777米奇影视久久| 婷婷成人精品国产| 汤姆久久久久久久影院中文字幕| 亚洲午夜理论影院| 十八禁网站免费在线| 777米奇影视久久| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 精品高清国产在线一区| 精品少妇黑人巨大在线播放| 成人影院久久| 久热这里只有精品99| 老司机午夜十八禁免费视频| 久久久久久久大尺度免费视频| 精品福利永久在线观看| 高清欧美精品videossex| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 一区二区日韩欧美中文字幕| 国产单亲对白刺激| 久久人人97超碰香蕉20202| 久久久久久久久久久久大奶| 欧美精品啪啪一区二区三区| kizo精华| 18在线观看网站| 日韩中文字幕视频在线看片| 三级毛片av免费| 日韩有码中文字幕| 午夜精品久久久久久毛片777| svipshipincom国产片| 国产亚洲午夜精品一区二区久久| 多毛熟女@视频| 色视频在线一区二区三区| 岛国在线观看网站| 九色亚洲精品在线播放| 一个人免费看片子| 国产免费av片在线观看野外av| 后天国语完整版免费观看| 久久精品亚洲精品国产色婷小说| 精品一区二区三卡| 国产黄频视频在线观看| 日日夜夜操网爽| 免费在线观看影片大全网站| 久久久水蜜桃国产精品网| 高清毛片免费观看视频网站 | av一本久久久久| 午夜久久久在线观看| 在线av久久热| 久久久精品94久久精品| 免费日韩欧美在线观看| 日本五十路高清| 午夜福利,免费看| 国产精品 国内视频| 久久青草综合色| 免费黄频网站在线观看国产| 大陆偷拍与自拍| 一级片'在线观看视频| 精品国产乱子伦一区二区三区| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 女警被强在线播放| 中文字幕av电影在线播放| 成人av一区二区三区在线看| 国产精品.久久久| 国产一区二区在线观看av| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av香蕉五月 | 别揉我奶头~嗯~啊~动态视频| 大片免费播放器 马上看| 国产日韩欧美在线精品| 99riav亚洲国产免费| 国产免费视频播放在线视频| tube8黄色片| 又大又爽又粗| 精品少妇久久久久久888优播| 午夜免费成人在线视频| 亚洲精华国产精华精| 黑人欧美特级aaaaaa片| 亚洲第一青青草原| 精品第一国产精品| 日韩欧美三级三区| 亚洲成国产人片在线观看| 自线自在国产av| 一区在线观看完整版| 日韩中文字幕欧美一区二区| 一区二区三区精品91| 9热在线视频观看99| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 久久av网站| 欧美精品av麻豆av| 午夜福利欧美成人| av又黄又爽大尺度在线免费看| av线在线观看网站| 性少妇av在线| 丁香六月天网| 亚洲免费av在线视频| 99久久人妻综合| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 成年版毛片免费区| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 国产在线视频一区二区| 久久精品国产亚洲av高清一级| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲视频免费观看视频| 夜夜爽天天搞| 精品国产一区二区久久| 91精品国产国语对白视频| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清 | 久久久国产精品麻豆| 久久久久精品国产欧美久久久| 亚洲伊人色综图| 国产免费福利视频在线观看| 在线播放国产精品三级| 亚洲欧美激情在线| 精品人妻熟女毛片av久久网站| 少妇裸体淫交视频免费看高清 | av网站免费在线观看视频| 欧美黄色淫秽网站| 国产精品久久久久成人av| 欧美日韩黄片免| 亚洲av第一区精品v没综合| 亚洲色图综合在线观看| 成年动漫av网址| 久久精品91无色码中文字幕| 成人18禁在线播放| 欧美国产精品va在线观看不卡| 亚洲 国产 在线| 久久毛片免费看一区二区三区| 精品免费久久久久久久清纯 | 免费在线观看黄色视频的| 两个人看的免费小视频| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 国产精品一区二区在线观看99| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 久久亚洲真实| 色视频在线一区二区三区| 久久久久久人人人人人| 亚洲男人天堂网一区| 精品福利永久在线观看| 精品久久蜜臀av无| 亚洲中文日韩欧美视频| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 国产一区二区三区视频了| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久| 久久久精品区二区三区| 俄罗斯特黄特色一大片| 精品久久久久久电影网| 97人妻天天添夜夜摸| 十八禁网站网址无遮挡| 久久久久视频综合| 国产精品久久久久久精品古装| 中文字幕人妻丝袜一区二区| 婷婷丁香在线五月| 欧美日韩av久久| 欧美日本中文国产一区发布| 国产片内射在线| 在线观看免费视频日本深夜| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 亚洲av欧美aⅴ国产| 国产一区二区 视频在线| 在线观看www视频免费| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 飞空精品影院首页| 男女边摸边吃奶| 9热在线视频观看99| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 极品人妻少妇av视频| 手机成人av网站| 国产精品二区激情视频| 色婷婷av一区二区三区视频| 手机成人av网站| 99re6热这里在线精品视频| 精品国产一区二区久久| 久久久久网色| 99国产精品免费福利视频| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | 久久毛片免费看一区二区三区| 国产成人影院久久av| 欧美国产精品va在线观看不卡| 免费少妇av软件| 51午夜福利影视在线观看| 色播在线永久视频| 狂野欧美激情性xxxx| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲成av片中文字幕在线观看| 亚洲欧洲日产国产| 国产野战对白在线观看| a在线观看视频网站| 丰满少妇做爰视频| 精品少妇黑人巨大在线播放| 亚洲第一欧美日韩一区二区三区 | 精品亚洲成a人片在线观看| 啪啪无遮挡十八禁网站| av一本久久久久| 国产不卡一卡二| 在线av久久热| 老熟女久久久| 精品熟女少妇八av免费久了| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 真人做人爱边吃奶动态| 老汉色av国产亚洲站长工具| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三| 精品久久蜜臀av无| 老司机靠b影院| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 亚洲第一青青草原| 人人妻人人澡人人看| 99国产精品一区二区三区| 国产三级黄色录像| 亚洲国产欧美在线一区| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 国产成人欧美在线观看 | 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 69av精品久久久久久 | 午夜精品久久久久久毛片777| 涩涩av久久男人的天堂| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 咕卡用的链子| 性色av乱码一区二区三区2| 亚洲精品成人av观看孕妇| 操出白浆在线播放| 国产不卡一卡二| 精品一区二区三区av网在线观看 | 丰满迷人的少妇在线观看| 91成年电影在线观看| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区免费开放| 在线观看人妻少妇| 久久人妻av系列| 老司机影院毛片| 国产精品一区二区精品视频观看| 欧美日韩福利视频一区二区| 国产又色又爽无遮挡免费看| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| www.熟女人妻精品国产| 免费少妇av软件| av片东京热男人的天堂| 99久久人妻综合| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播| 免费在线观看黄色视频的| 在线亚洲精品国产二区图片欧美| 久久午夜亚洲精品久久| 一个人免费看片子| 青青草视频在线视频观看| 国产一区二区激情短视频| netflix在线观看网站| 国产成人系列免费观看| 99riav亚洲国产免费| 亚洲色图av天堂| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 成人手机av| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx| 久热这里只有精品99| 青青草视频在线视频观看| videosex国产| 国精品久久久久久国模美| 午夜福利,免费看| 国产成人av激情在线播放| 国产91精品成人一区二区三区 | 午夜激情av网站| 69av精品久久久久久 | av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频| 在线观看免费视频网站a站| 一级毛片电影观看| 国产不卡一卡二| 性少妇av在线| 999久久久国产精品视频| 国产精品成人在线| 黄色成人免费大全| 久久精品国产亚洲av高清一级| 91九色精品人成在线观看| 欧美激情极品国产一区二区三区| 中文字幕最新亚洲高清| 国产主播在线观看一区二区| 大码成人一级视频| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 免费黄频网站在线观看国产| 亚洲国产av新网站| 午夜免费成人在线视频| 首页视频小说图片口味搜索| 啦啦啦免费观看视频1| 久久久精品94久久精品| 人妻一区二区av| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 免费在线观看视频国产中文字幕亚洲| 亚洲av国产av综合av卡| 午夜福利视频在线观看免费| 黄色怎么调成土黄色| cao死你这个sao货| 老熟女久久久| 9色porny在线观看| 最近最新中文字幕大全免费视频| 黄色 视频免费看| www.精华液| 日韩视频一区二区在线观看| 精品国产超薄肉色丝袜足j| 777米奇影视久久| 女人久久www免费人成看片| 一级黄色大片毛片| 一本—道久久a久久精品蜜桃钙片| 亚洲精品美女久久久久99蜜臀| 激情在线观看视频在线高清 | 色综合婷婷激情| 欧美日韩成人在线一区二区| 无遮挡黄片免费观看| 啦啦啦中文免费视频观看日本| 亚洲国产欧美一区二区综合| 精品亚洲成a人片在线观看| 50天的宝宝边吃奶边哭怎么回事| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区蜜桃| 久久影院123| 亚洲av日韩在线播放| 自线自在国产av| 丰满迷人的少妇在线观看| 在线看a的网站| 韩国精品一区二区三区| 两个人看的免费小视频| 国产福利在线免费观看视频| 日韩欧美国产一区二区入口| 亚洲情色 制服丝袜| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃| 精品第一国产精品| 欧美在线一区亚洲| av线在线观看网站| 国产成人av激情在线播放| 啪啪无遮挡十八禁网站| 女人高潮潮喷娇喘18禁视频| 人人澡人人妻人| 久久久久久久精品吃奶| 国产男靠女视频免费网站| 啦啦啦中文免费视频观看日本| 久久精品成人免费网站| 国产又爽黄色视频| 亚洲av成人一区二区三|