• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization

    2018-01-31 03:32:08SUNQinWUBoZHOUTinJunYANZiXingCollegeofAtmospheriSieneChenguUniversityofInformtionTehnologyChenguChinLeshnCentrlSttionofEnvironmentMonitoringLeshnChinLASGInstituteofAtmospheriPhysisChineseAemyofSienesBeijingChinColleg

    SUN Qin, WU Bo, ZHOU Tin-Jun n YAN Zi-XingCollege of Atmospheri Siene, Chengu University of Informtion Tehnology, Chengu, Chin; Leshn Centrl Sttion of Environment Monitoring, Leshn, Chin; LASG, Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; College of Atmospheri Siene, Nnjing University of Informtion Siene n Tehnology, Nnjing, Chin

    1. Introduction

    El Ni?o–Southern oscillation (ENSO) is the most dominant air–sea coupling mode of the climate system and has striking impacts on the global climate system (Aceituno 1992; Alexander et al. 2002; McPhaden, Zebiak, and Glantz 2006; Wang, Wu, and Fu 2000; Webster et al. 1998).Conventional ENSO is characterized by maximum warm sea surface temperature anomalies (SSTAs) in the equatorial eastern Pacific (Harrison and Larkin 1998; Rasmusson and Carpenter 1983). In the last 10 years, a new type of El Ni?o has emerged from the conventional El Ni?o, referred to as El Ni?o Modoki (Ashok et al. 2007), central Pacific (CP)El Ni?o (Yeh et al. 2009), or warm pool El Ni?o (Kug, Jin,and An 2009). The dominant feature of El Ni?o Modoki is maximum warm SSTAs in the equatorial central Pacific around the date line and weak negative SSTAs in the equatorial western and eastern Pacific.

    Because of its strong variability and substantial global climate impacts, ENSO has always been a central target of seasonal and interannual climate predictions (see review by Barnston et al. 2012). ENSO predictions can be conducted using dynamical or statistical models. Impressive progress has been achieved in ENSO prediction by dynamical models. Some strong ENSO events can be predicted by dynamic models at 1-yr or even longer lead times, and most moderate and weak ENSO events can also be predicted several months in advance (Anderson et al. 2002;Cane, Zebiak, and Dolan 1986; Jin et al. 2008; Latif et al.1998; Luo and Yamagata 2005). ENSO predictive skill can be improved through the following approaches: ensemble forecasting using an intermediate coupled model (Zheng et al. 2006), assimilating wind observations (Zheng and Zhu 2010), and minimizing the uncertainties of parameterizing the effects of subsurface temperature (Zheng and Zhu 2015). At present, the skills of dynamical models exceed those of statistical models, especially for real-time predictions (Barnston et al. 2012).

    An essential step of dynamical prediction is initialization, which obtains an initial model state close to the observation. There are two distinct types of initialization approaches: full-field and anomaly initialization (Smith,Eade, and Pohlmann 2013). Their major difference is that the former initializes the model through assimilating raw observational data, while the latter through assimilating model climatology plus observational anomalies. Full-field initialization effectively corrects model biases by constraining model states to the observations during assimilation processes, and thus obtains more accurate initial conditions than those obtained from anomaly initialization.However, a model initialized by the full-field approach will tend to gradually drift towards its preferred climatology,because it is not constrained by observations during hindcast/forecast integrations. In contrast, anomaly initialization preserves the preferred climatology of the model to a large extent, and thus minimizes the drift during hindcast/forecast integrations (Smith, Eade, and Pohlmann 2013).

    Recently, the Institute of Atmospheric Physics (IAP)near-term climate prediction system, referred to as IAPDecPreS, was constructed using the FGOALS-s2 global general circulation model and a new ocean data assimilation scheme. The main aim of this study are to evaluate the skill of the system in ENSO and El Ni?o Modoki prediction,and to compare the differences in skill between the anomaly and full-field initialization approaches. IAP-DecPreS and the observational datasets used are introduced in Section 2. Section 3 evaluates the skill of the system in ENSO prediction from two aspects–the temporal evolution of ENSO indices and large-scale spatial patterns during ENSO mature winter. A summary is given in Section 4.

    2. Climate prediction system and observational data

    2.1. Climate prediction system

    IAP-DecPreS was constructed based on a state-of-the-art coupled global climate model (CGCM), FGOALS-s2, developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) at the IAP, Chinese Academy of Sciences (Bao et al.2013; Zhou et al. 2014, supplementary material). A new ocean data assimilation scheme, referred to as ‘ensemble optimal interpolation-incremental analysis update’(EnOI-IAU; supplementary material) was developed for FGOALS-s2. EnOI-IAU is the result of a combination of the EnOI and IAU assimilation schemes. EnOI is used to generate an analysis increment. Then, IAU is used to incorporate the analysis increment into the model (Wu, Zhou, and Sun 2017, supplementary material). Initializations using two different approaches–full-field and anomaly initializations–were conducted separately.

    Initiated from the initial states derived from the full-field or anomaly initialization runs, systematic hindcast runs were conducted. They are referred to as full-field or anomaly hindcasts. The hindcast runs were initiated from February, May, August, and November, separately, for each year in the period 1979–2015. Both the full-field and anomaly hindcasts had nine ensemble members, with small perturbations of atmospheric and oceanic initial states.Following Barnston et al. (2012), three-month mean variables were taken as prediction targets. We used ann-month lead time to represent the separation between the initial date and the three-month forecast target period. For both the hindcasts and the corresponding observational references, anomalies were calculated as deviations from their climatology over the period 1979–2015.

    2.2. Observational data

    The following observational datasets were used to assess the predictive skill: (1) The monthly mean precipitation data provided by the Global Precipitation Climatology Project(GPCP; Adler et al. 2003); (2) The extended reconstructed sea surface temperature (SST) from the National Oceanic and Atmospheric Administration (ERSST.v4; Huang et al.2015); (3) The monthly mean sea level pressure (SLP) and circulation data derived from ERA-Interim (Dee et al. 2011).All the datasets cover the period 1979–2015.

    3. Results

    3.1. Temporal correlation skill for SSTAs

    Figure 1 shows the spatial distributions of the temporal correlation skill scores for SSTA predictions at 1-, 4-, 7-, and 10-month lead time. For the anomaly hindcasts, significant correlations are apparent in most areas of the Pacific, tropical Indian Ocean, and North Atlantic at 1-month lead time(Figure 1(a)). The highest skill scores are in the equatorial central-eastern Pacific (CEP), a key area of ENSO. For the lead times of 4, 7, and 10 months, the ocean areas with significant skill scores gradually shrink (Figure 1(b)–(d)).The correlation skill scores in the equatorial CEP gradually decrease from about 0.6 to 0.3. In contrast, the skill scores in the tropical western Pacific, western Atlantic, and Indian Ocean remain above 0.6 persistently, which may be associated with the deeper thermocline and associated greater thermal inertia in these regions.

    Figure 1.Spatial distributions of temporal correlation skill scores for predictions of monthly SSTAs in the period 1979–2015: (a–d)anomaly hindcasts at 1-, 4-, 7-, and 10-month lead time; (e–h) as in (a–d) but for the full-field hindcasts. Dotted areas denote values reaching the 0.05 significance level. (i–l) Differences between (a–d) and (e–h).

    For the full-field hindcasts, the correlation skill scores at 1-month lead time are lower than their counterparts in the anomaly hindcasts in some ocean areas by about 0.1–0.2(Figure 1(a) and (e)). The areas with significant skill scores are also much smaller. For the lead times of 4, 7, and 10 months,the skill scores of the full-field hindcasts in the equatorial CEP decrease even faster than in the anomaly hindcasts(Figure 1(f)–(h)). However, the long persistence of high skill scores in the tropical western Pacific, western Atlantic, and Indian Ocean is also seen in the full-field hindcasts.

    3.2. Predictive skill for temporal evolution of Ni?o3.4 and El Ni?o Modoki indices

    The Ni?o3.4 index, defined as the area-averaged SSTAs in the equatorial CEP (5°N–5°S, 170°–120°W), is commonly used to measure the intensity of conventional ENSO events (Barnston, Chelliah, and Goldenberg 1997). Ashok et al. (2007) defined an El Ni?o Modoki index (EMI) as the area-averaged SSTA over the equatorial central Pacific(165°E–140°W, 10°S–10°N) minus half of the sum of SSTAs in the equatorial far eastern Pacific (110°–70°W, 15°S–5°N)and equatorial western Pacific (125°–145°E, 10°S–20°N),which characterizes the sandwich structure of El Ni?o Modoki. The predictive skill scores of the hindcast runs in the Ni?o3.4 index and EMI are evaluated.

    The Ni?o3.4 index values predicted by the anomaly hindcasts are significantly correlated with those in the observation, with correlation coefficients reaching 0.84,0.67, 0.56, and 0.42 at 1-, 4-, 7-, and 10-month lead time,respectively (Table 1). The strongest El Ni?o event in 1997/1998, and La Nina event in 1988/1989, are successfully predicted at the 10-month lead time. Most moderate and weak ENSO events are reproduced at the 4- and 7-month lead times. The intensities of the predicted El Ni?o events are underestimated in the hindcast runs at the 7- and 10-month lead times, while the intensities of the predicted La Ni?a events are close to those in the observation (Figure 2(a)). As a result, the positive skewness of ENSO in the observation, representing that El Ni?o tends to be stronger than La Ni?a (An and Jin 2004), is underestimated in the anomaly hindcasts at the 7-month lead time by about 45%, and even wrongly simulated in sign at the 10-month lead time.

    A previous study noted that the predictive skill for ENSO after 2000 has reduced (Barnston et al. 2012), because of the variability reduction of ENSO events during the period(Hu et al. 2013; McPhaden 2012). However, such a decline in skill is not seen in the anomaly hindcasts of IAP-DecPreS.The temporal correlation skill scores for the Ni?o3.4 index after 2000 are even somewhat higher that before 2000.The correlation coefficients are 0.83, 0.66, 0.54, and 0.43(0.85, 0.7, 0.59, and 0.42) at the 1-, 4-, 7-, and 10-month lead time for the period before (after) 2000. We calculated the correlation accuracies of the anomaly initialization runs for sea surface height (SSH) anomalies in the CEP over the periods 1980–2000 and 2001–2015, separately. The correlation accuracy increases from 0.90 to 0.94. It is speculated that the increase in skill in the anomaly hindcasts is associated with more accurate initial conditions due to a considerable increase in assimilated ocean observation records after the implementation of the Argo project (supplementary material).

    The correlation skill scores of the full-field hindcasts for the Ni?o3.4 index are 0.85, 0.58, 0.39, and 0.24 at the 1-,4-, 7-, and 10-month lead time, respectively–lower than those of the anomaly hindcasts, except at the 3-month lead time (Table 1). Though the strongest El Ni?o and La Ni?a events are predicted, the full-field hindcasts show much lower skill than the anomaly hindcasts in moderate and weak events (Figure 2(b)).

    For the EMI, the correlation skill scores of the anomaly hindcasts are 0.76, 0.62, 0.53 and 0.43 at the 1-, 4-, 7-, and 10-month lead time, respectively (Table 1). The strong ElNi?o Modoki event in 2009/2010 is predicted up to the 10-month lead time, though the predicted intensity is weaker than that in the observation (Figure 2(c)). As for the Ni?o3.4 index, the predictive skill scores for the EMI index after 2000 are somewhat higher than those before 2000.

    Table 1. Correlation skill scores of the Ni?o3.4 index and El Ni?o Modoki index at the 1-, 4-, 7-, and 10-month lead time predicted by the anomaly and full-field hindcasts, separately.

    The correlation skill scores of the full-field hindcasts for the EMI index are 0.68, 0.38, 0.1, and ?0.14 at the 1-,4-, 7-, and 10-month lead time, respectively–much lower than those of the anomaly hindcasts (Table 1). In addition,the intensities of the EMI predicted by the full-field hindcasts are far weaker than those in the observation and the anomaly hindcasts (Figure 2(d)).

    Figure 2. Time series of Ni?o3.4 index values predicted by the (a) anomaly and (b) full-field hindcasts. Black lines denote observations. Red, blue, purple, and green lines denote the 1-, 4-,7-, and 10-month lead times, respectively. (c, d) As in (a, b) but for the El Ni?o Modoki index.

    Figure 3. (a–d) Temporal correlation skill scores of time series of Ni?o3.4 index values as a function of forecast lead time for hindcast runs initiated from (a) February, (b) May, (c) August, and (d) November. Blue and red lines denote anomaly and full-field hindcasts,respectively. Bars denote ranges of best and worst skill scores of individual members. Black lines denote persistence predictions. (e–h)As in (a–d) but for the El Ni?o Modoki index.

    The temporal correlation skill scores of the Ni?o3.4 index initiated from February, May, August, and November as a function of lead time are shown separately in the left-hand panels of Figure 3. The most prominent feature is that the skill scores of the anomaly hindcasts are higher than the full-field hindcasts for all four initiating months. To objectively evaluate the skill of the dynamical model, persistence predictions were conducted. For example, for the persistence prediction initiated from February, the state in January was taken as a persistent state. The anomaly hindcasts initiated from February, May, August, and November outperform the corresponding persistence predictions at the 3-, 2-, 8-, and 6-month lead time, respectively. The persistence prediction beats the model prediction at short lead times probably due to the inaccuracy of ocean initial conditions (Zhou and Zeng 2001). We calculated the annual cycle of the correlation accuracies of the anomaly initialization runs for SSH anomalies in the equatorial CEP(figure not shown). The accuracies of the initial conditions reached the lowest level in July, which suggests that the initial ocean subsurface states have the largest biases in July and thus cause the lowest skill scores of the hindcast initiated from August relative to the corresponding persistence prediction. There are marked declines in skill scores at the lead times of 1–4, 7–10, and 4–7 months, for both the persistent and model predictions initiated from February, August, and November, respectively (Figure 3(a),(c) and (d)). The declines in skill are associated with the‘spring prediction barrier’ of ENSO (Jin et al. 2008). Finally, it is worth noting that the skill scores of ensemble means are higher than those of most individual ensemble members,suggesting that the multi-member ensemble mean is an effective way to improve the skill and reduce the uncertainty of ENSO predictions (Zheng and Zhu 2016).

    For the EMI, the skill scores of the anomaly hindcasts initiated from any month are higher than their counterparts in the full-field hindcasts (Figure 3(e)–(h)). The anomaly hindcasts initiated from February, May, and November outperform the corresponding persistence predictions at the 3-, 4-, and 6-month lead time, respectively (Figure 3(e),(f), and (h)). The skill scores of the hindcasts initiated from August are lower than those of the persistence predictions at all lead times (Figure 3(g)). Compared with the Ni?o3.4 index, both the model and persistence predictions of the EMI do not show a clear prediction barrier feature.

    3.3. Predictive skill for spatial patterns of ENSO during boreal winter

    Figure 4. (a–c) Boreal winter-mean SST (shading; units: K) and SLP (contours; units: Pa) anomalies regressed against the simultaneous normalized Ni?o3.4 index for the (a) observation and (b, c) anomaly hindcasts at (b) one-season and (c) two-season lead time. (d–f) As in (a–c) but for the precipitation (shading; units: mm d?1) and 850-hPa wind anomalies (vectors, units: m s?1).

    Typical conventional ENSO events show a strong phase-locking feature and tend to reach mature phase during boreal winter (Rasmusson and Carpenter 1983).The relationship between El Ni?o Modoki and the seasonal cycle is much more complicated than that of conventional El Ni?o. Boreal winter is one of two dominant peak phases of El Ni?o Modoki (Weng et al. 2007). The predictive skill of IAP-DecPreS in terms of large-scale SST, precipitation and low-level circulation anomalies during ENSO (El Ni?o Modoki) peak winter are evaluated specifically. Above,we demonstrated that the anomaly hindcasts have much greater skill than the full-field hindcasts in terms of the temporal evolution of both ENSO and El Ni?o Modoki.Hence, we focus on the former in this section.

    For conventional El Ni?o, both the warm SSTAs in the equatorial CEP and V-shaped cold SSTAs to the west are reproduced well by the hindcasts at the 1- and 4-month lead time (Figure 4(a)–(c)). The basin-wide warming of the tropical Indian Ocean is also reproduced. The major discrepancies of the hindcasts are that the warm SSTAs along the western coast of North America, the South China Sea, and the Kuroshio extension are not reproduced. The predicted warm SSTAs in the equatorial CEP extend excessively westward compared with those in the observation.

    During El Ni?o mature winter, precipitation over the equatorial CEP is enhanced by underlying warm SSTAs(Figure 4(d)). The positive precipitation anomalies stimulate twin Rossby-wave-like cyclonic circulation anomalies to the west, symmetric about the equator in terms of the Gill model. The tropical western North Pacific is dominated by an anomalous anticyclone, referred to as the WNPAC.The WNPAC increases the precipitation over southeastern China. The convection over the tropical eastern Indian Ocean is suppressed by the remote forcing from the equatorial CEP, though the SSTAs in the tropical Indian Ocean evolve to the basin-wide warming. The extratropical eastern North Pacific is dominated by an anomalous cyclone(low pressure; Figure 4(a) and (c)), which is associated with the Pacific North American teleconnection pattern(Wallace and Gutzler 1981). All these features are reproduced by the anomaly hindcasts at the 1- and 4-month lead time (Figure 4(b), (c), (e), and (f)). The major discrepancies are that: (1) the predicted positive precipitation anomalies over the equatorial CEP are shifted westward relative to those in the observation, corresponding to the underlying excessively extended warm SSTAs; and (2) the intensities of the low-pressure anomalies over the extratropical eastern North Pacific in the hindcasts are much weaker than those in the observation, which is associated with the fact that over the midlatitude North Pacific the atmospheric circulation anomalies are modulated by unpredictable internal high-frequency variability (Pierce 2001).

    For El Ni?o Modoki, the major features of the large-scale SST, precipitation, and low-level circulation anomalies in winter are reproduced well by the anomaly hindcast at the 1- and 4-month lead time (supplementary material).

    4. Conclusions

    In this study, we evaluated the performances of the IAP’s near-term climate prediction system, IAP-DecPreS, which is based on the CGCM FGOALS-s2 and the EnOI-IAU initialization scheme, in ENSO prediction. The skill scores of hindcasts initiated from two distinct initialization approaches–anomaly and full-field initialization–were compared. The major conclusions can be summarized as follows:

    (1) The anomaly hindcasts show higher predictive skill than the full-field hindcasts for SSTAs in most global ocean areas at lead times from 1 to 10 months. For both the Ni?o3.4 and El Ni?o Modoki indices, the anomaly hindcasts have higher predictive skill than the full-field hindcast at most lead times. Hence, for the current IAPDecPreS based on FGOALS-s2, anomaly initialization is superior to full-field initialization in terms of ENSO prediction.

    (2) The ensemble mean results have predictive skill close to those individual ensemble members with highest skill, for both the Ni?o3.4 and El Ni?o Modoki indices. This indicates that the ensemble mean is an effective way to improve the prediction skill and reduce the uncertainty.

    (3) The predictive skill for ENSO is dependent on the initiating month. Both model and persistence predictions for the Ni?o3.4 index initiated from February, August, and November experience declines in skill at the 1–4-, 7–10-, and 4–7-month lead times, respectively, due to the so-called spring prediction barrier of ENSO.

    (4) The anomaly hindcasts at the 1- and 4-month lead time reproduce the major features of largescale SST, precipitation, and low-level circulation anomalies during ENSO (El Ni?o Modoki) winter.Impressively, the anomalous anticyclone over the tropical western North Pacific and positive precipitation anomalies over southeastern China are realistically predicted, suggesting that the prediction system has potential in the seasonal prediction of the western North Pacific–East Asian winter monsoon.

    The results of this study suggest that, for the current IAP-DecPreS system based on FGOALS-s2, the anomaly initialization method is superior to full-field initiation. It is speculated that this superiority is associated with the following reason: The method of anomaly initialization only assimilates the anomaly field, and thus preserves the model’s preferred climatology, which can effectively reduce the initial shocks in the hindcast/forecast runs.However, this result is model-dependent. For example,Smith, Eade, and Pohlmann (2013) reported that full-field initialized hindcasts are more skillful than anomaly initialized hindcasts. What mechanisms are responsible for the differences in skill between the two initialization approaches deserves further study.

    There are many other interesting questions that also deserve further study based on IAP-DecPreS. For example,Zheng, Hu, and L’Heureux (2016) found that the decaying phase of ENSO is more predictable than its developing phase. Thus, an interesting line of research in the future would be to evaluate the impacts of the two different initialization approaches on the predictive skill for ENSO in its different phases.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Key Research and Development Program of China (grant number 2017YFA0604201), the National Natural Science Foundation of China (grant numbers. 41661144009 and 41675089), and the R&D Special Fund for Public Welfare Industry (meteorology)(grant number GYHY201506012).

    Aceituno, P. 1992. “El Ni?o, the Southern Oscillation, and ENSO: Confusing Names for a Complex Ocean-atmosphere Interaction.”Bulletin of the American Meteorological Society73(4): 483–485.

    Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak,B. Rudolf, et al. 2003. “The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis(1979 Present).”Journal of Hydrometeorology4 (6): 1147–1167.

    Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau,and J. D. Scott. 2002. “The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans.”Journal of Climate15 (16): 2205–2231.

    An, S. I., and F. F. Jin. 2004. “Nonlinearity and Asymmetry of ENSO.”Journal of Climate17 (12): 2399–2412.

    Anderson, D., T. Stockdale, M. Balmaseda, L. Ferranti, F. Vitart,R. Doblasreyes, R. Hagedorn, et al. 2002. “Comparison of the ECMWF Seasonal Forecast System 1 and 2, including the Relative Performance for the 1997/98 El Nino.”Logic Colloquium211–227.

    Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata. 2007.“El Ni?o Modoki and Its Possible Teleconnection.”Journal of Geophysical Research112 (C11): 505.

    Bao, Q., P. Lin, T. Zhou, L. Liu, J. Liu, Q. Bao, S. Xu, and W.Huang. 2013. “The Flexible Global Ocean-atmosphere-land System Model, Spectral Version 2: FGOALS-s2.”Advances in Atmospheric Sciences30 (3): 561–576.

    Barnston, A. G., M. Chelliah, and S. B. Goldenberg. 1997.“Documentation of a Highly ENSO-Related SST Region in the Equatorial Pacific.”Atmosphere-Ocean35 (3): 367–383.

    Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G.DeWitt. 2012. “Skill of Real-time Seasonal ENSO Model Predictions during 2002–2011: Is Our Capability Increasing?”Bulletin of the American Meteorological Society93 (5): 631–651.

    Cane, M. A., S. E. Zebiak, and S. C. Dolan. 1986. “Experimental Forecasts of El Ni?o.”Nature322 (6073): 827–832.

    Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S.Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, and P.Bauer. 2011. “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System.”Quarterly Journal of the Royal Meteorological Society137 (656): 553–597.

    Harrison, D. E., and N. K. Larkin. 1998. “El Ni?o-southern Oscillation Sea Surface Temperature and Wind Anomalies,1946–1993.”Reviews of Geophysics36 (3): 353–399.

    Hu, Z.-Z., A. Kumar, H. L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin.2013. “Weakened Interannual Variability in the Tropical Pacific Ocean since 2000.”Journal of Climate26 (8): 2601–2613.

    Huang, B., V. F. Banzon, E. Freeman, J. Lawrimore, W. Liu, and T. C. Peterson. 2015. “Extended Reconstructed Sea Surface Temperature Version 4 (ersst.v4). Part I: Upgrades and Intercomparisons.”Journal of Climate28 (3): 911–930.

    Jin, E. K., J. L. Kinter, B. Wang, C. K. Park, I. S. Kang, B. P. Kirtman, J. S.Kug, A. Kumar, J. J. Luo, and J. Schemm. 2008. “Current Status of ENSO Prediction Skill in Coupled Ocean–Atmosphere Models.”Climate Dynamics31 (6): 647–664.

    Kug, J. S., F. F. Jin, and S. I. An. 2009. “Two Types of El Ni?o Events:Cold Tongue El Ni?o and Warm Pool El Ni?o.”Journal of Climate22 (22): 1499–1515.

    Latif, M., D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa,J. O’Brien, A. Rosati, and E. Schneider. 1998. “A Review of the Predictability and Prediction of ENSO.”Journal of Geophysical Research Oceans103393 (30): 375–314.

    Luo, J. J., and T. Yamagata. 2005. “Seasonal Climate Predictability in a Coupled OAGCM Using a Different Approach for Ensemble Forecasts.”Journal of Climate18 (21): 4474–4497.

    McPhaden, M. J. 2012. “A 21st Century Shift in the Relationship between ENSO SST and Warm Water Volume Anomalies.”Geophysical Research Letters39 (9): 9706.

    McPhaden, M. J., S. E. Zebiak, and M. H. Glantz. 2006. “ENSO as an Integrating Concept in Earth Science.”Science314 (5806):1740.

    Pierce, D. W. 2001. “Distinguishing Coupled Ocean–Atmosphere Interactions from Background Noise in the North Pacific.”Progress in Oceanography49 (1-4): 331–352.

    Rasmusson, E. M., and T. H. Carpenter. 1983. “The Relationship between Eastern Equatorial Pacific Sea Surface Temperatures and Rainfall over India and Sri Lanka.”Monthly Weather Review111 (111): 517.

    Smith, D. M., R. Eade, and H. Pohlmann. 2013. “A Comparison of Full-field and Anomaly Initialization for Seasonal to Decadal Climate Prediction.”Climate Dynamics41 (11–12): 3325–3338.

    Wallace, J. M., and D. S. Gutzler. 1981. “Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter.”Monthly Weather Review109: 784–804.

    Wang, B., R. Wu, and X. Fu. 2000. “Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate?”Journal of Climate13 (9): 1517–1536.

    Webster, P. J., V. O. Maga?a, T. N. Palmer, J. Shukla, R. A. Tomas,M. Yanai, and T. Yasunari. 1998. “Monsoons: Processes,Predictability, and the Prospects for Prediction.”Journal of Geophysical Research: Oceans1031 (C7): 14451–14510.

    Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata. 2007.“Impacts of Recent cp El Ni?o on Dry/Wet Conditions in the Pacific Rim during Boreal Summer.”Climate Dynamics29 (2):113–129.

    Wu, B., T. J. Zhou, and Q. Sun. 2017. “Impacts of Initialization Schemes of Oceanic States on the Predictive Skills of the IAP near-Term Climate Prediction System.”Advances in Earth Science32 (4): 342–352.

    Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F.Jin. 2009. “El Ni?o in a Changing Climate.”Nature461 (7263):511.

    Zheng, F., and J. Zhu. 2010. “Coupled Assimilation for an Intermediated Coupled ENSO Prediction Model.”O(jiān)cean Dynamics60 (5): 1061–1073.

    Zheng, F., and J. Zhu. 2015. “Roles of Initial Ocean Surface and Subsurface States on Successfully Predicting 2006–2007 El Ni?o with an Intermediate Coupled Model.”O(jiān)cean Science11(1): 187–194.

    Zheng, F., and J. Zhu. 2016. “Improved Ensemble-mean Forecasting of ENSO Events by a Zero-mean Stochastic Error Model of an Intermediate Coupled Model.”Climate Dynamics2016: 1–15.

    Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou. 2006. “Ensemble Hindcasts of SST Anomalies in the Tropical Pacific Using an Intermediate Coupled Model.”Geophysical Research Letters33(19): 318–37.

    Zheng, Z., Z. Z. Hu, and M. L’Heureux. 2016. “Predictable Components of ENSO Evolution in Real-time Multi-model Predictions.”Scientific Reports6: 35909.

    Zhou, G., and Q. Zeng. 2001. “Predictions of Enso with a Coupled Atmosphere-Ocean General Circulation Model.”Advances in Atmospheric Sciences18 (4): 587–603.

    Zhou, T. J., Y. Q. Yu, Y. M. Liu, and B. Wang. 2014. “Flexible Global Ocean-atmosphere-land System Model: A Modeling Tool for the Climate Change Research Community.”Springer-Verlag,Berlin Heidelberg483: 217–224. doi:10.1007/978-3-642-41801-3.

    亚洲午夜理论影院| av有码第一页| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 淫妇啪啪啪对白视频| 亚洲专区国产一区二区| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| av片东京热男人的天堂| 在线国产一区二区在线| 亚洲 欧美 日韩 在线 免费| 99精品欧美一区二区三区四区| 国产高清有码在线观看视频 | 亚洲精品久久国产高清桃花| 露出奶头的视频| 亚洲av成人av| 亚洲专区中文字幕在线| 亚洲av中文字字幕乱码综合 | 少妇粗大呻吟视频| 999久久久精品免费观看国产| 亚洲五月色婷婷综合| 亚洲中文字幕日韩| 波多野结衣高清作品| 又大又爽又粗| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 午夜免费观看网址| 麻豆av在线久日| 国产精品久久电影中文字幕| 女同久久另类99精品国产91| 国产av在哪里看| 国内少妇人妻偷人精品xxx网站 | 丁香欧美五月| ponron亚洲| 天天躁夜夜躁狠狠躁躁| 久久久国产欧美日韩av| 亚洲人成77777在线视频| 国产成人av教育| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 久久精品国产清高在天天线| 黄片大片在线免费观看| 亚洲 欧美一区二区三区| 精品国产超薄肉色丝袜足j| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频 | 极品教师在线免费播放| 色综合欧美亚洲国产小说| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 中文字幕另类日韩欧美亚洲嫩草| 啪啪无遮挡十八禁网站| 久久中文字幕人妻熟女| 丰满的人妻完整版| 香蕉av资源在线| 免费av毛片视频| 亚洲人成77777在线视频| 亚洲欧美一区二区三区黑人| 色精品久久人妻99蜜桃| 日韩欧美免费精品| 国产精品日韩av在线免费观看| 亚洲精品粉嫩美女一区| 久久中文字幕人妻熟女| 亚洲国产欧美一区二区综合| 制服诱惑二区| 欧美黄色片欧美黄色片| 色哟哟哟哟哟哟| netflix在线观看网站| 国内精品久久久久精免费| 午夜两性在线视频| 日韩三级视频一区二区三区| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 亚洲久久久国产精品| 亚洲精品久久成人aⅴ小说| 国产高清激情床上av| 90打野战视频偷拍视频| x7x7x7水蜜桃| 欧美精品啪啪一区二区三区| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 亚洲在线自拍视频| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 色综合欧美亚洲国产小说| 亚洲午夜精品一区,二区,三区| 日韩 欧美 亚洲 中文字幕| 色播亚洲综合网| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 99re在线观看精品视频| 在线观看一区二区三区| 亚洲成人久久性| 欧美精品亚洲一区二区| 久久欧美精品欧美久久欧美| 欧美成人性av电影在线观看| 一本精品99久久精品77| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 久久久久亚洲av毛片大全| 极品教师在线免费播放| 特大巨黑吊av在线直播 | 香蕉丝袜av| 国产亚洲欧美98| www日本在线高清视频| 男女下面进入的视频免费午夜 | 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 精品人妻1区二区| 香蕉av资源在线| 成人手机av| 亚洲男人的天堂狠狠| 精品久久久久久成人av| 国内精品久久久久久久电影| 亚洲免费av在线视频| 久久久久精品国产欧美久久久| 一边摸一边做爽爽视频免费| 亚洲精品国产精品久久久不卡| x7x7x7水蜜桃| 亚洲最大成人中文| 国产av不卡久久| 午夜老司机福利片| 成年版毛片免费区| 欧美激情 高清一区二区三区| 一级作爱视频免费观看| 中文资源天堂在线| 国产私拍福利视频在线观看| 很黄的视频免费| 中文字幕精品免费在线观看视频| 岛国视频午夜一区免费看| 最近在线观看免费完整版| 波多野结衣巨乳人妻| 波多野结衣av一区二区av| 久久中文字幕一级| 久久香蕉激情| tocl精华| videosex国产| www.999成人在线观看| 可以在线观看的亚洲视频| 国产亚洲精品综合一区在线观看 | 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 国语自产精品视频在线第100页| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 一边摸一边做爽爽视频免费| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播 | 亚洲人成伊人成综合网2020| 日韩精品中文字幕看吧| 久久香蕉国产精品| www.精华液| 国产一区二区三区视频了| 亚洲无线在线观看| 伦理电影免费视频| 国产男靠女视频免费网站| 亚洲国产精品成人综合色| 黄色a级毛片大全视频| 久久久久亚洲av毛片大全| 欧美zozozo另类| 黄片播放在线免费| 97人妻精品一区二区三区麻豆 | 精品无人区乱码1区二区| 精品熟女少妇八av免费久了| 在线观看日韩欧美| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看| 久久这里只有精品19| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 一夜夜www| 制服诱惑二区| 好男人在线观看高清免费视频 | 国产成人系列免费观看| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 人人妻人人澡人人看| 久久久久国产精品人妻aⅴ院| 99热只有精品国产| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 18禁美女被吸乳视频| 九色国产91popny在线| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放 | 国产精品综合久久久久久久免费| 搡老妇女老女人老熟妇| 窝窝影院91人妻| 午夜福利欧美成人| 日韩有码中文字幕| 一级黄色大片毛片| 亚洲九九香蕉| 怎么达到女性高潮| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 欧美国产精品va在线观看不卡| 日本精品一区二区三区蜜桃| 亚洲精品国产一区二区精华液| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 看片在线看免费视频| 国产真人三级小视频在线观看| 国产亚洲av嫩草精品影院| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 国产成人av教育| 国产精品1区2区在线观看.| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 免费搜索国产男女视频| 一本综合久久免费| 日韩三级视频一区二区三区| 日韩欧美国产在线观看| 国产真人三级小视频在线观看| 99在线视频只有这里精品首页| 女性被躁到高潮视频| 99在线人妻在线中文字幕| 校园春色视频在线观看| 韩国精品一区二区三区| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲av美国av| 精品欧美一区二区三区在线| 欧美+亚洲+日韩+国产| 麻豆av在线久日| 欧美日本视频| 黄片小视频在线播放| 在线av久久热| 自线自在国产av| 国产精品久久视频播放| 女性被躁到高潮视频| 美女高潮到喷水免费观看| 国产久久久一区二区三区| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 精品久久久久久久久久免费视频| www日本黄色视频网| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 免费观看精品视频网站| 日韩欧美三级三区| 久久伊人香网站| 亚洲 国产 在线| a在线观看视频网站| 久久久久免费精品人妻一区二区 | 成熟少妇高潮喷水视频| 中亚洲国语对白在线视频| 成人欧美大片| 丰满的人妻完整版| 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 男人操女人黄网站| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 久久久久久久久中文| 他把我摸到了高潮在线观看| 久久精品国产99精品国产亚洲性色| 午夜视频精品福利| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| 在线av久久热| 久久精品人妻少妇| 在线观看日韩欧美| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 在线观看舔阴道视频| 深夜精品福利| 两个人看的免费小视频| www日本黄色视频网| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 欧美乱妇无乱码| 欧美不卡视频在线免费观看 | 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲| 丁香欧美五月| 亚洲精品在线观看二区| 亚洲 欧美一区二区三区| 欧美精品亚洲一区二区| 亚洲男人天堂网一区| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 久久人妻福利社区极品人妻图片| 校园春色视频在线观看| 老司机靠b影院| 日韩欧美国产一区二区入口| 久久久水蜜桃国产精品网| 免费在线观看黄色视频的| 免费在线观看日本一区| 精品国产亚洲在线| 国产午夜精品久久久久久| aaaaa片日本免费| 级片在线观看| 国产99久久九九免费精品| 久久精品91蜜桃| 男女之事视频高清在线观看| 男人操女人黄网站| 国产1区2区3区精品| 亚洲一区二区三区色噜噜| 国产精品日韩av在线免费观看| 真人一进一出gif抽搐免费| 一级毛片女人18水好多| 美女午夜性视频免费| 91国产中文字幕| 精品高清国产在线一区| 国产精品一区二区精品视频观看| 午夜福利一区二区在线看| 国产精品久久视频播放| 免费看十八禁软件| 欧美大码av| 丝袜在线中文字幕| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 不卡av一区二区三区| 成人av一区二区三区在线看| a级毛片a级免费在线| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址| 男女午夜视频在线观看| 琪琪午夜伦伦电影理论片6080| 这个男人来自地球电影免费观看| 国产v大片淫在线免费观看| 免费在线观看视频国产中文字幕亚洲| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| www.自偷自拍.com| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 久热爱精品视频在线9| 久久婷婷人人爽人人干人人爱| 欧美性长视频在线观看| 韩国精品一区二区三区| 免费搜索国产男女视频| 脱女人内裤的视频| 日韩免费av在线播放| 国产精品九九99| 亚洲一区高清亚洲精品| 无限看片的www在线观看| 亚洲国产看品久久| 精品免费久久久久久久清纯| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 欧美国产日韩亚洲一区| 麻豆成人av在线观看| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 国产99久久九九免费精品| 国产爱豆传媒在线观看 | 日韩精品免费视频一区二区三区| 亚洲精品久久国产高清桃花| 怎么达到女性高潮| av中文乱码字幕在线| 在线观看午夜福利视频| 色播在线永久视频| 丰满的人妻完整版| 国产区一区二久久| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| av有码第一页| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 色综合站精品国产| 亚洲精品国产一区二区精华液| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜 | 50天的宝宝边吃奶边哭怎么回事| 久久久久亚洲av毛片大全| 露出奶头的视频| 精品熟女少妇八av免费久了| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 亚洲av第一区精品v没综合| 女性被躁到高潮视频| 免费人成视频x8x8入口观看| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 一区二区三区高清视频在线| aaaaa片日本免费| 色在线成人网| 老司机福利观看| 人人妻人人澡欧美一区二区| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩无卡精品| 一本久久中文字幕| 日本一本二区三区精品| 自线自在国产av| 亚洲欧美一区二区三区黑人| 级片在线观看| 国产精品影院久久| 19禁男女啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 婷婷精品国产亚洲av在线| 视频在线观看一区二区三区| 91在线观看av| 国产精品一区二区三区四区久久 | 精品久久久久久久人妻蜜臀av| 嫩草影院精品99| 亚洲自偷自拍图片 自拍| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久精品91蜜桃| 一级作爱视频免费观看| 村上凉子中文字幕在线| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 黄片播放在线免费| 免费高清在线观看日韩| 岛国在线观看网站| 亚洲五月婷婷丁香| 此物有八面人人有两片| 人妻久久中文字幕网| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 亚洲无线在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆av在线久日| 国产亚洲av高清不卡| 欧美成人性av电影在线观看| 夜夜躁狠狠躁天天躁| 天天躁狠狠躁夜夜躁狠狠躁| 一级作爱视频免费观看| 美国免费a级毛片| 久久99热这里只有精品18| 99热6这里只有精品| 老司机靠b影院| 夜夜爽天天搞| 韩国av一区二区三区四区| 久久久久久久午夜电影| 亚洲av片天天在线观看| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 国产国语露脸激情在线看| 亚洲欧美日韩无卡精品| svipshipincom国产片| 波多野结衣高清作品| 在线国产一区二区在线| 亚洲国产精品成人综合色| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站| 国产又爽黄色视频| 黑人欧美特级aaaaaa片| 天天添夜夜摸| 成人国产综合亚洲| 亚洲av熟女| 又黄又爽又免费观看的视频| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 看黄色毛片网站| 久久久久久久午夜电影| 可以在线观看毛片的网站| 黄色视频不卡| 国产在线精品亚洲第一网站| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 禁无遮挡网站| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久5区| 免费一级毛片在线播放高清视频| 亚洲激情在线av| 婷婷丁香在线五月| 啦啦啦免费观看视频1| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| ponron亚洲| 视频在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻福利社区极品人妻图片| 精品高清国产在线一区| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 欧美一级毛片孕妇| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 精品国产亚洲在线| 日韩大码丰满熟妇| 熟女电影av网| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 黄频高清免费视频| 超碰成人久久| 日本免费a在线| 中文字幕精品免费在线观看视频| 免费观看人在逋| 国产亚洲精品一区二区www| 日韩视频一区二区在线观看| 在线国产一区二区在线| 亚洲无线在线观看| 国产成人精品久久二区二区免费| 亚洲精品色激情综合| 国产又黄又爽又无遮挡在线| 国产精品免费一区二区三区在线| www.熟女人妻精品国产| 两个人免费观看高清视频| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 精品日产1卡2卡| 国产在线观看jvid| 人妻久久中文字幕网| 色在线成人网| 欧美黄色淫秽网站| 久久久国产欧美日韩av| 可以免费在线观看a视频的电影网站| 久久久国产欧美日韩av| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 精品人妻1区二区| 亚洲欧美激情综合另类| 国产亚洲精品第一综合不卡| aaaaa片日本免费| 人人妻人人澡欧美一区二区| 成人国语在线视频| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 国产一区在线观看成人免费| 亚洲第一欧美日韩一区二区三区| 欧美在线黄色| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 最近最新中文字幕大全电影3 | 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 99久久无色码亚洲精品果冻| 在线观看66精品国产| 一区二区三区精品91| 12—13女人毛片做爰片一| 久久久精品国产亚洲av高清涩受| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 成年女人毛片免费观看观看9| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| www.www免费av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品久久国产高清桃花| 成人特级黄色片久久久久久久| 男人操女人黄网站| 好男人电影高清在线观看| 国产亚洲欧美98| www日本黄色视频网| 欧美中文综合在线视频| 亚洲成人国产一区在线观看| 精品一区二区三区av网在线观看| 国产午夜精品久久久久久| 91在线观看av| 国产黄色小视频在线观看| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| aaaaa片日本免费| 国产一区在线观看成人免费| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 一级a爱视频在线免费观看| 久久性视频一级片| 波多野结衣高清无吗| 女人被狂操c到高潮| 午夜a级毛片| 正在播放国产对白刺激| 波多野结衣高清作品| 国产亚洲精品综合一区在线观看 | 18禁美女被吸乳视频| 美女国产高潮福利片在线看| 俺也久久电影网| 18禁观看日本| 久久久久久亚洲精品国产蜜桃av| av欧美777| 50天的宝宝边吃奶边哭怎么回事| 女性生殖器流出的白浆| 搡老熟女国产l中国老女人| 大型av网站在线播放| 不卡一级毛片| 成年免费大片在线观看| 国产av一区二区精品久久|