• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns

    2018-01-31 03:32:09LIRongXiaandSUNJianQi

    LI Rong-Xia and SUN Jian-Qi

    aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; bJoint Laboratory for Climate and Environmental Change at Chengdu University of Information Technology, Chengdu, China; cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    1. Introduction

    According to IPCC AR5 (IPCC 2013), temperatures have increased globally since the early twentieth century.Climate extremes have changed significantly because of global warming. In addition, a number of studies have shown that climate extremes have a larger response to climate change than mean climate (Alexander et al. 2012;Easterling et al. 2000; Karl and Easterling 1999; Karl and Knight 1985; Katz and Brown 1992; Plummer et al. 1999).Therefore, an increasing amount of attention has been paid to extreme climate variability and its possible mechanisms.

    An extreme hot event (EHE) is a type of climate extreme in China that has a serious impact on human society and the natural environment. Thus, EHEs have been emphasized in previous studies (Ren, Feng, and Yan 2010; Yin, Yin, and Zhang 2013; Zhai and Pan 2003). It has been found that EHEs in China show distinct regional characteristics. According to the long-term trend, EHEs have increased in recent decades in northern parts of China and some areas in western China (Ding, Qian, and Yan 2009; Zhai and Pan 2003), but decreased in central China (Zhai and Pan 2003). There is no significant trend of EHE frequency in the Yangtze River basin region over the period 1960–2002 (Su, Jiang, and Jin 2006). According to the decadal variability, more EHEs are observed within southern China in the 1960s and 1980s,and within central China in the 1960s and 1990s; in addition, EHEs show a significant increase over northern China mainly after the late 1990s (Sun, Wang, and Yuan 2011).

    The occurrence of EHEs is closely related to various factors. For example, the anomalous geopotential height at the middle and upper levels is an important atmospheric factor that influences the occurrence of EHEs in China (Li et al. 2015; Sun, Wang, and Yuan 2011). For central and southern China, besides the geopotential height anomaly, the temperature advection at the lower level is also an important atmospheric factor influencing EHEs (Sun,Wang, and Yuan 2011). Sun (2014) pointed out that the upper-level westerly is an important atmospheric factor influencing the occurrence of EHEs in the Jianghuai region.Li, Wang, and Yan (2012) indicated that the synergistic variation of extreme high temperature and extreme precipitation in eastern China has a close relationship with the East Asian summer monsoon circulation. In addition, Sun et al.(2014) showed that the increase in EHEs in eastern China from 1955 to 2013 is also attributable to the anthropogenic emissions of greenhouse gases.

    In China, the MLYR is a special region with a developed economy and high population and production. In addition, the MLYR is also a core region for EHEs in China, with higher frequency and greater variability (Sun, Wang, and Yuan 2011). Variations of EHEs have a profound impact on the MLYR region. Therefore, studying EHEs in the MLYR has important scientific significance and also provides input for disaster prevention and mitigation.

    Previous studies have focused mainly on the interannual variation and case studies of EHEs over the MLYR,as well as the possible underlying mechanism (Li et al.2015; Peng et al. 2005; Sun et al. 2014; Wang, Zhou, and Chen 2013; Wang et al. 2013; Yang and Li 2005). The western Pacific subtropical high (WPSH) is considered an important atmospheric circulation pattern for EHEs over southern China. When the WPSH enhances, anticyclonic anomalies over the Yellow Sea and the Korean Peninsula will result in more EHEs in eastern China (Ding, Qian, and Yan 2009; You et al. 2011). In a case study, Yang and Li(2005) suggested that the anomalous high temperature in South China during the summer of 2003 was mainly due to the extreme intensity and westward extension of the WPSH. Besides the WPSH, Sun (2014) has indicated that the upper-level westerly is another important factor influencing the occurrence of EHEs in the Jianghuai region.Compared to the interannual variability, the interdecadal variation and its possible mechanism for large-scale EHEs in the MLYR in recent decades is not clear. Thus, in this study, the decadal variability of large-scale EHE frequency over the MLYR is investigated, and the atmospheric pattern associated with the decadal variability of EHE frequency is then explored. The results of this study will deepen our understanding of the decadal variability of EHE frequency over the MLYR and its possible underlying mechanism.

    2. Data and method

    In order to investigate the variability of EHEs, we use a homogenized temperature data-set for China (Li et al.2016), which includes homogenized daily maximum temperature series from 753 stations in China spanning from 1960 to 2013. Here, the MLYR is defined as the region covering (25°–35°N, 105°–125°E), and there are 266 stations in this region.

    In order to diagnose the atmospheric circulation associated with EHE frequency variability, the monthly reanalysis data from the Japan Meteorological Agency (JRA-55) are used. The data are available with a horizontal resolution of 1.25° × 1.25°. Additionally, to explore the temperature and atmospheric circulation over a long time period,the National Oceanic and Atmospheric Administration–Cooperative Institute for Research in Environmental Sciences (NOAA–CIRES) twentieth Century Reanalysis V2c data (Compo et al. 2011) and NASA Goddard Institute for Space Studies (GISS) analysis of global surface air temperature data (GISTEMP Team 2016; Hansen et al. 2010) are also used. The NOAA–CIRES twentieth Century Reanalysis V2c data are available at a resolution of 2°. The GISS global surface air temperature data are available at a resolution of 2°.

    According to the definition from the National Meteorological Center, an EHE is defined as a day when the daily maximum temperature is equal to or greater than 35 °C. Different from previous studies mentioned in the introduction to this paper, and in order to remove the impact from a single station or few stations, here, the largescale EHE frequency is studied with the goal of obtaining the general variability features of EHEs over the MLYR. A large-scale EHE is defined as a day with maximum temperature equal to or greater than 35 °C over more than one third of stations in the MLYR. Figure 1(a) shows the monthly frequencies of large-scale EHEs over the MLYR. The figure suggests that MLYR large-scale EHEs mainly occur in July and August. In this study, summer is therefore defined as the mean of July and August.

    3. Results

    3.1. Interdecadal variability of large-scale EHE frequency over the MLYR

    Figure 1(b) shows the detrended anomalous large-scale EHE frequency over the MLYR during the period 1960–2013, which depicts a more–less–more variational shape during the past half century. To investigate the interdecadal change of the large-scale EHE frequency, Figure 1(c)shows the ten-year movingt-test result for the detrended large-scale EHE frequency over the MLYR during 1960–2013. The figure suggests that the EHE frequency over the MLYR experiences two significant decadal changes.Over the periods before the early 1970s and after the early 2000s, the EHE frequencies are above normal, and over the period between the early 1970s and the early 2000s,the EHE frequency is below normal. Mexican wavelet analysis shows a consistent result with the ten-year movingt-test (figure not shown), further confirming the two interdecadal changes of large-scale EHE over the MLYR.Therefore, based on Figure 1(c), the period of 1960–2013 is divided into three sub-periods: Period-1 (1960–72),Period-2 (1973–2000), and Period-3 (2001–13). The averaged EHE frequency over the three sub-periods are 19,12, and 22 days, respectively. The differences in the EHE frequencies between Period-2 and Period-1 and between Period-2 and Period-3 are both within the 99% confidence level, based on thet-test. Therefore, large-scale EHEs in the MLYR have experienced a more–less–more interdecadal variation over the past half century.

    Figure 1(d) shows the spatial distribution of the EHE frequency interdecadal differences between the highfrequency periods (Period-1 and Period-3) and the lowfrequency period (Period-2). The figure suggests that almost all stations over the MLYR experience more EHEs over Period-1 and Period-3 compared to Period-2. In addition, most of the stations show a significant increase of EHEs. These results indicate that such interdecadal change is a general feature of large-scale EHEs over the MLYR.

    3.2. Atmospheric circulations associated with the interdecadal variability of the large-scale EHE frequency over the MLYR

    Figure 2. (a, b) Interdecadal differences in the summer (a) 500 hPa geopotential height (units: gpm) and (b) 200 hPa geopotential height (units: gpm) between the high-frequency periods and low-frequency period. (c, d) Linear regression patterns of the summer anomalous 200 hPa geopotential height (units: gpm) and wind (units: m s?1) against the normalized (c) teleconnection pattern index and (d) PC2 (principal component time series of the second EOF mode) on the year-to-year timescale over the period 1960–2013. Dark(light) shading indicates statistical significance at the 99% (95%) confidence level, based on the t-test.

    Figure 3. (a) Correlation coefficients between summer 500 hPa geopotential height and the MLYR’s (middle and lower reaches of the Yangtze River basin’s) large-scale EHE (extreme hot event) frequency on the year-to-year timescale over the period 1960–2013. Dark(light) shading indicates statistical significance at the 99% (95%) confidence level. (b) Normalized 15-year running mean of the summer WPSH (western Pacific subtropical high) index (red line), large-scale EHE frequency (green line), and PC2 (principal component time series of the second EOF mode) (blue line) over the period 1960–2013.

    The WPSH is generally considered an important atmospheric circulation pattern for the EHE interannual variability over eastern China (Shi, Ding, and Cui 2009; Wang,Zhou, and Chen 2013). We investigate whether the WPSH is the main circulation factor for the interdecadal variability of large-scale EHEs over the MLYR. The interdecadal difference in summer mean 500 hPa geopotential height between the high EHE frequency periods and the low EHE frequency period is calculated. Figure 2(a) suggests that there is nearly no significant signal over the WPSH region,except for a small area over the North Pacific east of 150°E.These results indicate that the variations of the WPSH and EHE frequency over the MLYR are inconsistent on an interdecadal timescale. Therefore, the WPSH cloud not be the main atmospheric circulation factor for the interdecadal variation of large-scale EHE frequency over the MLYR.

    Some previous studies have indicated that the anomalies of geopotential height at the upper level play an important role in the variability of temperatures and EHEs(Li et al. 2015; Sun, Wang, and Yuan 2008, 2011). Therefore,in order to diagnose the atmospheric factor for the EHE frequency variation over the MLYR, the interdecadal difference in summer mean 200 hPa geopotential height between the high EHE frequency periods and the low EHE frequency period is displayed in Figure 2(b). In contrast to the weak signal at the middle level, there is a significant signal at the upper level. The interdecadal difference in the upper-level geopotential height shows a zonal wave train–like pattern over the Eurasian continent. This wave train–like pattern is closely related to the circumglobal teleconnection (CGT) revealed in previous studies (Ding and Wang 2005; Lu, Oh, and Kim 2002). A significant correlation between EHEs over southeastern China and the CGT has been noted on the interannual timescale (Wang et al. 2013). Here, we find that this teleconnection pattern is highly related to the variation of large-scale EHEs over the MLYR on the interdecadal timescale.

    According to Figure 2(b), a teleconnection pattern index is defined as the normalized 200 hPa geopotential height averaged over East Asia (30°–45°N, 90°–110°E)(the boxed area shown in Figure 2(b)). Figure 2(c) shows the 200 hPa geopotential height and wind regressed on the teleconnection pattern index. The figure depicts a zonal wave train–like pattern over the Eurasian continent,which is similar to the wave train–like pattern in Figure 2(b). Therefore, the teleconnection pattern index is defined reasonably, which can be used to investigate the variation of the teleconnection pattern over the Eurasian continent.

    The correlation coefficient between the EHE frequency and the teleconnection pattern index is 0.46, at the 99%confidence level. If the interdecadal variation is obtained using the 15-year running mean, the correlation coefficient between the two can reach 0.92, confirming the covariation of the EHE frequency and teleconnection pattern on the interdecadal timescale.

    The above analysis indicates the upper-level teleconnection pattern is closely related to the EHE frequency interdecadal variation over the MLYR. We then want to see whether or not the teleconnection pattern is a dominant mode. To answer this question, empirical orthogonal function (EOF) analysis is applied to the detrended 200 hPa geopotential height over the Eurasian continent (10°–65°N,0°–130°E). The second EOF mode (EOF2) accounts for 14.4%of the total variance. The 200 hPa geopotential height and wind regressed on the principal component time series of EOF2 (PC2) are shown in Figure 2(d), and a zonal wave train–like pattern can also be seen over the Eurasian continent. The spatial correlation between Figures 2(c) and(d) is 0.75, at the 99% confidence level. In addition, PC2 is highly correlated with the teleconnection pattern index;the coefficient between them is 0.62 on the year-to-year timescale, at the 99% confidence level. On the interdecadal timescale, based on the 15-year running mean method,the correlation coefficient between PC2 and the teleconnection pattern index is 0.92. The correlation between PC2 and the EHE frequency is also high; the coefficient is 0.39 on the year-to-year timescale, and 0.92 on the interdecadal timescale, both at the 99% confidence level. This result indicates there is a close correlation between the Eurasian continent’s upper-level dominant atmospheric mode and the MLYR’s large-scale EHE variability on the interdecadal timescale.

    To further investigate the temporal evolution of the EHE frequency, WPSH, and PC2, on the decadal timescale,Figure 3(b) depicts the three normalized 15-year running mean indices. We calculate the correlation distribution of the 500 hPa geopotential height with the MLYR EHE frequency on the year-to-year variability. The figure displays a significant signal over the MLYR region (Figure 3(a)). The result is consistent with previous studies (e.g., Peng et al. 2005), which have shown the WPSH affects EHEs over southern China via its western extension, controlling the region. Thus, here, the averaged 500 hPa geopotential height over the MLYR is defined as the WPSH index. In Figure 3(b), PC2 shows a consistent variability with the EHE frequency. If the linear trends are removed, the variations of PC2 and MLYR are more consistent. In contrast, the interdecadal variation of the WPSH is different from that of the large-scale EHE frequency over the MLYR. In particular,during the period before the early 1970s, there are more EHEs over the MLYR; however, the WPSH is weakened. The index analysis confirms the change in the upper-level dominant teleconnection pattern over the Eurasian continent is closely related to the EHE frequency interdecadal change over the MLYR, while the WPSH cannot be the major factor for the MLYR’s EHE variation on the interdecadal timescale,consistent with the result in Figure 2.

    Figure 4. Linear regression patterns of summer anomalous (a) 200 hPa zonal wind (units: m s?1), (b) 200 hPa divergence (units: 10?7 s?1),(c) 200–500 hPa averaged omega (units: 10?2 Pa s?1), and (d) middle and low cloud cover (units: %), against the normalized PC2 (principal component time series of the second EOF mode) on the year-to-year timescale over the period 1960–2013. Dark (light) shading indicates statistical significance at the 95% (90%) confidence level.

    Figure 5. Normalized 15-year running mean of the detrended MST (mean surface temperature) index (blue line) and the teleconnection pattern index (green line) over the period 1900–2014.

    In order to further analyze the linkage of the physical processes between PC2 and the large-scale EHEs over the MLYR, the PC2-related 200 hPa zonal wind, the 200 hPa divergence, the 200–500 hPa averaged omega, and the middle and low cloud cover are regressed. Li et al. (2015)showed the upper-level westerly jet has an effect on EHEs in the Jianghuai region. The effect of the upper-level westerly is even larger than the effect of the WPSH (Sun 2014).Wang, Zhou, and Chen (2013) indicated the upper-level westerly jet has a stable relationship with EHEs over southeastern China; however, the WPSH’s relationship with EHEs is unstable. In Figure 4(a), the positive-phase teleconnection pattern is related to the weakened westerly jet over East Asia. Against such a background, there is an upperlevel convergence over the MLYR (Figure 4(b)). Based on mass balance, the upper-level convergence can result in downward motion over the MLYR, and is consistent with the positive signal of the 200–500 hPa average omega anomalies in Figure 4(c). According to the positive-phase upper-level teleconnection, the downward motion does not benefit cloud formation, and results in less middle and low cloud cover over the MLYR (Figure 4(d)), and less cloud cover is favorable for solar radiation reaching the ground and consequently raising the temperature. These atmospheric changes are all favorable for the occurrence of EHEs over the MLYR.

    4. Summary and discussion

    Based on analysis of the summer large-scale EHE frequency over the MLYR during 1960–2013, it is found that the largescale summer EHE frequency over the MLYR has significant interdecadal variability. There are more large-scale EHEs over the MLYR before the early 1970s and after the early 2000s, and fewer between the two periods.

    Some studies have suggested that the WPSH is an important factor for EHEs over the MLYR on the interannual and synoptic scale (Peng et al. 2005; Shi, Ding, and Cui 2009;Wang, Zhou, and Chen 2013; Yang and Li 2005); however,the atmospheric circulation analysis in this study indicates that the WPSH can not be the major factor responsible for the interdecadal variation of EHE frequency over the MLYR.In contrast, the dominant teleconnection pattern over the Eurasian continent at the upper level has a highly consistent variability with the EHE frequency over the MLYR. When the teleconnection is in a positive phase, it results in a weakened upper-level westerly jet over East Asia, upper-level convergence, downward motion, and less cloud cover over the MLYR. All these changes are favorable for solar radiation reaching the ground, and thus rising temperatures. Such atmospheric changes favor more EHEs over the MLYR.

    The above result of a close relationship between the Eurasian continent’s upper-level teleconnection and the MLYR’s large-scale EHE frequency is based on an analysis over the past half century. The result is also confirmed by long-term data. Specifically, the teleconnection pattern index is calculated using the NOAA-CIRES twentieth Century Reanalysis data over the period 1900–2014. Because there are no century-scale daily temperature data over China,the monthly mean data are used as a proxy for the EHE variability. Here, the summer mean surface temperature(MST) index over MLYR (25°–35°N, 105°–125°E) is calculated using the GISS data. Over the period 1960–2013, the correlation coefficient on the year-to-year timescale between the MLYR’s large-scale EHE frequency and the MST index is 0.75, and on the interdecadal timescale it is 0.95, both at the 99% confidence level. Therefore, it is reasonable to use the MST index to represent the large-scale EHE frequency over the MLYR. Figure 5 shows the normalized 15-year running mean of the detrended MST index and teleconnection pattern index. The figure suggests that these two indices show a consistent variability on the interdecadal timescale, with a correlation coefficient of 0.92. Although there is quantitative uncertainty in analyzing data over the first half of the twentieth century, the qualitative aspect of the result is reliable. The long-term data analysis further confirms there is a close relationship between the variability of large-scale EHE frequency over the MLYR region and the upper-level teleconnection pattern over the Eurasian continent on the interdecadal timescale.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China [grant number 41421004], [grant number 41522503]; and the External Cooperation Program of the Bureau of International Co-operation, Chinese Academy of Sciences [grant number 134111KYSB20150016].

    Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason,A. M. G. Klein Tank, M. Haylock, et al. 2012. “Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation.”Journal of Geophysical Research Atmospheres111: D05109. doi: 10.1029/2005JD006290.

    Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui,R. J. Allan, X. Yin, B. E. Gleason, et al. 2011. “The Twentieth Century Reanalysis Project.”Quarterly Journal of the Royal Meteorological Society137 (654): 1–28.

    Ding, Q. H., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.”Journal of Climate18(17): 3483–3505.

    Ding, T., W. H. Qian, and Z. W. Yan. 2009. “Changes in Hot Days and Heat Waves in China during 1961–2007.”International Journal of Climatology30 (10): 1452–1462.

    Easterling, D. R., J. L. Evans, P. Y. Groisman, T. R. Karl, K. E. Kunkel,and P. Ambenje. 2000. “Observed Variability and Trends in Extreme Climate Events: A Brief Review.”Bulletin of the American Meteorological Society81 (3): 417–426.

    GISTEMP Team. 2016. “GISS Surface Temperature Analysis(GISTEMP): NASA Goddard Institute for Space Studies.”Dataset. https://data.giss.nasa.gov/gistemp/.

    Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global Surface Temperature Change.”Reviews of Geophysics48 (4): 7362–7388.

    IPCC. 2013.Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers. Cambridge: Cambridge University Press.

    Karl, T. R., and D. R. Easterling. 1999. “Climate Extremes: Selected Review and Future Research Directions.”Climatic Change42(1): 309–325.

    Karl, T. R., and R. W. Knight. 1985. “Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States.”Bulletin of the American Meteorological Society79 (2): 231–241.

    Katz, R. W., and B. G. Brown. 1992. “Extreme Events in a Changing Climate: Variability is More Important than Averages.”Climatic Change21 (3): 289–302.

    Li, J., W. J. Wang, and Z. W. Yan. 2012. “Changes of Climate Extremes of Temperature and Precipitation in Summer in Eastern China Associated with Changes in Atmospheric Circulation in East Asia during 1960–2008 (in Chinese).”Science Bulletin57 (15): 1856–1861.

    Li, Z. H., C. Y. Li, J. Song, Y. K. Tan, and X. Li. 2015. “An Analysis of the Characteristics and Causes of Extremely High Temperature Days in the Yangtze-Huaihe River Basins in Summer 1960–2013 (in Chinese).”Climatic and Environmental Research20 (5): 511–522.

    Li, Z., L. Cao, Y. Zhu, and Z. Yan. 2016. “Comparison of Two Homogenized Datasets of Daily Maximum/Mean/Minimum Temperature in China during 1960–2013.”Journal of Meteorological Research30 (1): 53–66.

    Lu, R. Y., J. H. Oh, and B. J. Kim. 2002. “A Teleconnection Pattern in Upper-level Meridional Wind over the North African and Eurasian Continent in Summer.”Tellus54 (1): 44–55.

    Peng, H. Y., Z. K. Zhou, Y. L. Zhao, J. S. Jian, and Q. M. Yang. 2005.“The Analysis of Abnormal High Temperature in 2003 Summer(in Chinese).”Scientia Meteorologica Sinica25 (4): 355–361.

    Plummer, N., M. J. Salinger, N. Nicholls, R. Suppiah, K. J. Hennessy,R. M. Leighton, B. Trewin, C. M. Page, and J. M. Lough. 1999.“Changes in Climate Extremes over the Australian Region and New Zealand during the Twentieth Century.”Weather and Climate Extremes42 (1): 183–202.

    Ren, Y. G., G. L. Feng, and Z. W. Yan. 2010. “Progresses in Observation Studies of Climate Extremes and Changes in Mainland China (in Chinese).”Climatic and Environmental Research15 (4): 337–353.

    Shi, J., H. Ding, and L. L. Cui. 2009. “Climatic Characteristics of Extreme Maximum Temperature in East China and Its Causes(in Chinese).”Chinese Journal of Atmospheric Sciences33 (2):347–358.

    Su, B. D., T. Jiang, and W. B. Jin. 2006. “Recent Trends in Observed Temperature and Precipitation Extremes in the Yangtze River Basin, China.”Theoretical and Applied Climatology83 (1): 139–151.

    Sun, J. Q. 2014. “Record-breaking SST over mid-North Atlantic and Extreme High Temperature over the Jianghuai-Jiangnan Region of China in 2013.”Science Bulletin59 (27): 3465–3470.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2008. “Decadal Variations of the Relationship between the Summer North Atlantic Oscillation and Middle East Asian Air Temperature.”Journal of Geophysical Research113: D15107. doi: 10.1029/2007JD009626.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2011. “Decadal Variability of the Extreme Hot Event in China and Its Association with Atmospheric Circulations (in Chinese).”Climate and Environment Research16 (2): 199–208.

    Sun, Y., X. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin,and G. Y. Ren. 2014. “Rapid Increase in the Risk of Extreme Summer Heat in Eastern China.”Nature Climate Change4 (12):1082–1085.

    Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong. 2013.“Summer High Temperature Extremes in Southeast China Associated with the East Asian Jet Stream and Circumglobal Teleconnection.”Journal of Geophysical Research Atmospheres118 (15): 8306–8319.

    Wang, W., W. Zhou, and D. Chen. 2013. “Summer High Temperature Extremes in Southeast China: Bonding with the El Nino-southern Oscillation and East Asian Summer Monsoon Coupled System.”Journal of Climate27 (11): 4122–4138.

    Yang, H., and C. Y. Li. 2005. “Diagnostic Study of Serious High Temperature over South China in 2003 Summer (in Chinese).”Climatic and Environmental Research10 (1): 80–85.

    Yin, Z., J. Yin, and X. Zhang. 2013. “Multi-Scenario-Based Hazard Analysis of High Temperature Extremes Experienced in China during 1951–2010.”Journal of Geographical Sciences23 (3):436–446.

    You, Q. L., S. C. Kang, E. Aguilar, N. Pepin, W. A. Flügel, Y. P. Yan,Y. W. Xu, Y. J. Zhang, and J. Huang. 2011. “Changes in Daily Climate Extremes in China and Their Connection to the Large Scale Atmospheric Circulation during 1961–2003.”Climate Dynamics36 (11): 2399–2417.

    Zhai, P. M., and X. H. Pan. 2003. “Trends in Temperature Extremes during 1951–1999 in China.”Geophysical Research Letters30(17): 169–172.

    午夜久久久久精精品| 黄片wwwwww| 精品久久国产蜜桃| 在线观看午夜福利视频| 精品日产1卡2卡| 欧美一级a爱片免费观看看| 看免费成人av毛片| 欧美日韩在线观看h| 精品午夜福利在线看| 99久久无色码亚洲精品果冻| 国产精品一二三区在线看| 亚洲在线观看片| 国产精品国产高清国产av| 亚洲精品自拍成人| 国产一区二区亚洲精品在线观看| 国产精品美女特级片免费视频播放器| 欧美潮喷喷水| 你懂的网址亚洲精品在线观看 | 丰满人妻一区二区三区视频av| 18禁在线播放成人免费| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看| 少妇的逼好多水| 欧美xxxx黑人xx丫x性爽| 国产69精品久久久久777片| 联通29元200g的流量卡| av.在线天堂| 色噜噜av男人的天堂激情| 99九九线精品视频在线观看视频| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 欧美+亚洲+日韩+国产| 国产精品人妻久久久影院| 亚洲高清免费不卡视频| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 男人舔女人下体高潮全视频| 亚洲av第一区精品v没综合| 久久久久性生活片| 久久久久久久久中文| 身体一侧抽搐| 精品久久久久久久久av| 国产精品美女特级片免费视频播放器| 亚洲成av人片在线播放无| 边亲边吃奶的免费视频| 国产精品三级大全| 又爽又黄无遮挡网站| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 亚洲18禁久久av| 99riav亚洲国产免费| 亚洲美女搞黄在线观看| 女同久久另类99精品国产91| 久久久久久久久久黄片| 老司机影院成人| 国产精品永久免费网站| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| 少妇被粗大猛烈的视频| 岛国在线免费视频观看| 色视频www国产| 在线国产一区二区在线| 日韩欧美 国产精品| 精品一区二区免费观看| 岛国在线免费视频观看| 直男gayav资源| 伊人久久精品亚洲午夜| av天堂在线播放| a级毛片免费高清观看在线播放| 在现免费观看毛片| 国产精品电影一区二区三区| 国产成人精品久久久久久| 99热网站在线观看| av视频在线观看入口| 嘟嘟电影网在线观看| 国产成人一区二区在线| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av天美| 色综合色国产| 免费电影在线观看免费观看| 精品一区二区三区视频在线| 久久久久久久久久成人| 一区福利在线观看| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| 亚洲成人av在线免费| 亚洲av男天堂| 亚洲国产精品成人久久小说 | 欧美性感艳星| 国产精品久久久久久久久免| 一个人看的www免费观看视频| 国内揄拍国产精品人妻在线| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| 免费观看在线日韩| 99在线人妻在线中文字幕| 亚洲四区av| 国产 一区 欧美 日韩| 欧美最新免费一区二区三区| av免费在线看不卡| 好男人在线观看高清免费视频| 国产色爽女视频免费观看| 国产精品1区2区在线观看.| 哪个播放器可以免费观看大片| 乱人视频在线观看| 精品久久久久久成人av| 成人特级黄色片久久久久久久| 亚洲av免费在线观看| 中国美女看黄片| 亚洲精品456在线播放app| 欧美+日韩+精品| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| 欧美高清性xxxxhd video| 三级经典国产精品| 亚洲av免费在线观看| 亚洲国产精品成人久久小说 | 午夜亚洲福利在线播放| 久久精品国产鲁丝片午夜精品| av福利片在线观看| 国产成人精品婷婷| 青春草国产在线视频 | 少妇的逼好多水| 简卡轻食公司| 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 免费看日本二区| 日本熟妇午夜| av免费在线看不卡| 午夜激情欧美在线| 国产精品.久久久| 亚洲av男天堂| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久| 男女那种视频在线观看| 最好的美女福利视频网| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在 | 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 免费看a级黄色片| 免费大片18禁| 高清毛片免费看| 高清午夜精品一区二区三区 | 国产伦理片在线播放av一区 | 国产成人影院久久av| 国产成人a区在线观看| 亚洲中文字幕一区二区三区有码在线看| 少妇的逼好多水| 99热6这里只有精品| 成人一区二区视频在线观看| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 欧美高清性xxxxhd video| 熟女电影av网| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 三级经典国产精品| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 久久久久久伊人网av| 国内精品宾馆在线| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 久久久久久久久中文| 五月伊人婷婷丁香| 1024手机看黄色片| 天天一区二区日本电影三级| av又黄又爽大尺度在线免费看 | 91精品国产九色| 亚洲经典国产精华液单| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 日本黄大片高清| 97在线视频观看| 晚上一个人看的免费电影| 国产老妇女一区| 亚洲av免费在线观看| 三级毛片av免费| 伦精品一区二区三区| 午夜视频国产福利| 美女大奶头视频| 天天躁日日操中文字幕| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 少妇熟女欧美另类| 国产精品1区2区在线观看.| 中文精品一卡2卡3卡4更新| 一进一出抽搐动态| 成年版毛片免费区| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 人妻系列 视频| 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 午夜激情欧美在线| 美女脱内裤让男人舔精品视频 | 久久久a久久爽久久v久久| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| 国产三级在线视频| 亚洲va在线va天堂va国产| 啦啦啦韩国在线观看视频| 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 国产精品爽爽va在线观看网站| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| 一级毛片久久久久久久久女| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观| 国产精品久久视频播放| 亚洲无线观看免费| 久久中文看片网| 国产一区二区三区在线臀色熟女| 尤物成人国产欧美一区二区三区| 永久网站在线| 亚洲国产欧洲综合997久久,| 给我免费播放毛片高清在线观看| kizo精华| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 女同久久另类99精品国产91| 天美传媒精品一区二区| 男女那种视频在线观看| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区 | 天堂√8在线中文| 精品人妻熟女av久视频| 欧美区成人在线视频| 国产一区二区三区在线臀色熟女| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 亚洲图色成人| 自拍偷自拍亚洲精品老妇| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放 | 夜夜爽天天搞| 中文资源天堂在线| 国产国拍精品亚洲av在线观看| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 欧美日本视频| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 日本免费一区二区三区高清不卡| 噜噜噜噜噜久久久久久91| 麻豆乱淫一区二区| 不卡一级毛片| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| ponron亚洲| 丝袜美腿在线中文| 18+在线观看网站| 高清日韩中文字幕在线| 高清毛片免费看| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 成人欧美大片| 日本色播在线视频| 韩国av在线不卡| 国产成人精品久久久久久| av视频在线观看入口| 久久久久久久久中文| 我的女老师完整版在线观看| 99久国产av精品| 人妻夜夜爽99麻豆av| 色播亚洲综合网| 看片在线看免费视频| 久久久久久伊人网av| 国产单亲对白刺激| 日日啪夜夜撸| 国产人妻一区二区三区在| 国产精品.久久久| 日韩强制内射视频| 欧美潮喷喷水| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 中文欧美无线码| 国产精品久久久久久精品电影小说 | 欧美最新免费一区二区三区| av在线播放精品| 可以在线观看毛片的网站| 丰满的人妻完整版| 99久国产av精品| 亚洲精品乱码久久久久久按摩| videossex国产| 国产免费男女视频| 九九热线精品视视频播放| 国产高清三级在线| 亚洲av.av天堂| 极品教师在线视频| 亚洲成人精品中文字幕电影| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 日本欧美国产在线视频| av福利片在线观看| 国产成人a∨麻豆精品| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 日韩视频在线欧美| av免费在线看不卡| 欧美极品一区二区三区四区| 精品人妻视频免费看| 国产真实乱freesex| 三级经典国产精品| 夜夜爽天天搞| 国产黄片美女视频| 69av精品久久久久久| 日韩成人伦理影院| 色哟哟·www| 男女那种视频在线观看| av免费在线看不卡| 天堂影院成人在线观看| 国产不卡一卡二| 少妇熟女欧美另类| 男人舔奶头视频| 久久九九热精品免费| 国产免费男女视频| 一级毛片久久久久久久久女| 欧美人与善性xxx| 久久久精品欧美日韩精品| 国内揄拍国产精品人妻在线| 国产91av在线免费观看| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 国产高清激情床上av| 精品日产1卡2卡| 五月伊人婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 热99re8久久精品国产| 精品一区二区三区人妻视频| 久久九九热精品免费| 插逼视频在线观看| 春色校园在线视频观看| 国产午夜福利久久久久久| 欧美xxxx黑人xx丫x性爽| 国语自产精品视频在线第100页| 亚洲av第一区精品v没综合| 麻豆成人av视频| 国产精品精品国产色婷婷| 国产成人午夜福利电影在线观看| 舔av片在线| 99久久精品一区二区三区| 国产一区亚洲一区在线观看| 美女被艹到高潮喷水动态| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 国产在线男女| 国产精品精品国产色婷婷| 91精品一卡2卡3卡4卡| 日韩三级伦理在线观看| 欧美最黄视频在线播放免费| 狂野欧美激情性xxxx在线观看| 欧美潮喷喷水| 亚洲精品国产成人久久av| 成人午夜精彩视频在线观看| 噜噜噜噜噜久久久久久91| 欧美日本视频| 一级毛片久久久久久久久女| 黄色一级大片看看| 国产精品久久视频播放| 永久网站在线| 国产精品一区www在线观看| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 免费一级毛片在线播放高清视频| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 美女国产视频在线观看| 99热这里只有是精品50| 99在线人妻在线中文字幕| 欧美变态另类bdsm刘玥| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 卡戴珊不雅视频在线播放| 亚洲成人av在线免费| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久久久毛片| 美女cb高潮喷水在线观看| 1000部很黄的大片| 一级黄片播放器| 亚洲精品日韩在线中文字幕 | 少妇被粗大猛烈的视频| 日本三级黄在线观看| 热99在线观看视频| 日本在线视频免费播放| 亚洲av免费在线观看| 99精品在免费线老司机午夜| 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 亚洲性久久影院| 免费大片18禁| 免费无遮挡裸体视频| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 极品教师在线视频| 国产成人91sexporn| 亚洲天堂国产精品一区在线| 天堂√8在线中文| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三| 老司机影院成人| 日韩一本色道免费dvd| 青春草国产在线视频 | 99热这里只有是精品在线观看| 深夜a级毛片| 中文字幕免费在线视频6| 97人妻精品一区二区三区麻豆| 午夜爱爱视频在线播放| 国产高清不卡午夜福利| 国产视频首页在线观看| 成人鲁丝片一二三区免费| 精品熟女少妇av免费看| 亚洲欧美精品自产自拍| 变态另类丝袜制服| 久久精品国产亚洲av天美| av天堂在线播放| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕 | 黄色一级大片看看| 最近视频中文字幕2019在线8| 亚洲人成网站高清观看| 久久99精品国语久久久| 久久久久网色| 久久久久国产网址| 国产视频首页在线观看| 欧美一级a爱片免费观看看| 91av网一区二区| 简卡轻食公司| 在线天堂最新版资源| 狠狠狠狠99中文字幕| 免费人成在线观看视频色| 久久99蜜桃精品久久| 六月丁香七月| 波多野结衣巨乳人妻| 菩萨蛮人人尽说江南好唐韦庄 | 国产黄a三级三级三级人| 99久国产av精品| 欧美精品一区二区大全| 一个人观看的视频www高清免费观看| 免费人成在线观看视频色| 亚洲综合色惰| 如何舔出高潮| 人妻夜夜爽99麻豆av| 亚洲高清免费不卡视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美国产在线观看| eeuss影院久久| 晚上一个人看的免费电影| avwww免费| 亚洲美女搞黄在线观看| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久 | 不卡一级毛片| 亚洲国产精品成人久久小说 | 欧美色欧美亚洲另类二区| 久久人人精品亚洲av| 亚洲精品456在线播放app| 国产不卡一卡二| 别揉我奶头 嗯啊视频| 91麻豆精品激情在线观看国产| 老师上课跳d突然被开到最大视频| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区在线av高清观看| 一本精品99久久精品77| 少妇丰满av| 三级毛片av免费| av.在线天堂| 亚洲va在线va天堂va国产| .国产精品久久| 日韩av在线大香蕉| 91精品一卡2卡3卡4卡| 国产一区二区在线av高清观看| 久久婷婷人人爽人人干人人爱| 成人二区视频| 国产精品无大码| 免费看av在线观看网站| 日韩一本色道免费dvd| 中国美女看黄片| 日本熟妇午夜| 日本爱情动作片www.在线观看| 波多野结衣巨乳人妻| 亚洲内射少妇av| 男女那种视频在线观看| 深夜精品福利| 久久久久久久久久久丰满| 欧美bdsm另类| 在线免费十八禁| 男的添女的下面高潮视频| 春色校园在线视频观看| 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 97超碰精品成人国产| 嫩草影院精品99| 日韩一区二区视频免费看| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 亚洲欧洲日产国产| 看片在线看免费视频| 综合色av麻豆| 99精品在免费线老司机午夜| 国产精品国产三级国产av玫瑰| 亚洲天堂国产精品一区在线| 99久久中文字幕三级久久日本| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 精品日产1卡2卡| 男人舔女人下体高潮全视频| 午夜精品国产一区二区电影 | 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| 亚洲经典国产精华液单| 69av精品久久久久久| 日本成人三级电影网站| videossex国产| 大香蕉久久网| 久久6这里有精品| 国产免费男女视频| 观看美女的网站| av在线亚洲专区| 91久久精品国产一区二区三区| 中文资源天堂在线| av在线天堂中文字幕| 看黄色毛片网站| 嫩草影院精品99| 中文字幕av在线有码专区| 国产高清视频在线观看网站| 美女被艹到高潮喷水动态| 欧美性猛交╳xxx乱大交人| 国产精品一区二区三区四区免费观看| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 一本久久中文字幕| 国产乱人视频| 最近的中文字幕免费完整| 日日啪夜夜撸| 国产亚洲欧美98| 少妇人妻一区二区三区视频| 色视频www国产| 在线观看一区二区三区| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 中文资源天堂在线| 久久综合国产亚洲精品| 国产成人freesex在线| 国产高清有码在线观看视频| 少妇熟女aⅴ在线视频| 最近中文字幕高清免费大全6| 久久久久国产网址| 18禁在线无遮挡免费观看视频| 寂寞人妻少妇视频99o| 久久久国产成人免费| 日韩精品青青久久久久久| 老司机福利观看| av免费在线看不卡| av专区在线播放| 青青草视频在线视频观看| 国产精品一区二区在线观看99 | 国产伦理片在线播放av一区 | 国产av一区在线观看免费| 亚洲国产欧洲综合997久久,| 少妇的逼水好多| 两个人视频免费观看高清| 变态另类成人亚洲欧美熟女|