• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions

    2018-01-31 03:32:07YANFeiWANGXioCongndLIUYiMinShnghiInstituteofMeteorologilSieneShnghiMeteorologilBureuShnghiChinStteKeyLortoryofNumerilModelingforAtmospheriSienesndGeophysilFluidDynmisLASGInstituteofAtmospheriPhysisBeijingChinCollegeo

    YAN Y-Fei, WANG Xio-Cong nd LIU Yi-MinShnghi Institute of Meteorologil Siene, Shnghi Meteorologil Bureu, Shnghi, Chin; Stte Key Lortory of Numeril Modeling for Atmospheri Sienes nd Geophysil Fluid Dynmis (LASG), Institute of Atmospheri Physis, Beijing, Chin; College of Erth Siene,University of Chinese Ademy of Sienes, Beijing, Chin

    1. Introduction

    Clouds play a pivotal role in modulating the global radiation budget through reflection of solar radiation and absorption of thermal radiance (Ramanathan et al. 1989;Li, Barker, and Moreau 1995; Kubar, Hartmann, and Wood 2009). However, clouds remain one of the key sources of uncertainty in climate modeling (Dufresne and Bony 2008; Zelinka et al. 2013). One reason is that cloud vertical structures and its microphysical processes are poorly represented (Zhang et al. 2005; Jiang et al. 2012). As an intermediate link between water vapor evaporation and condensation, the effect of cloud on the water cycle is related to both cloud microphysical characteristics and cloud macroscopic characteristics (Charlson et al. 1987).Moreover, cloud vertical structures particularly affect the occurrence and intensity of precipitation (Jakob and Klein 1999). The Tibetan Plateau (TP) significantly affects the atmospheric circulation and climate of Asia through its dynamic and thermal forcing (Wu and Zhang 1998; Duan and Wu 2005; Liu et al. 2007). The transformation process between clouds and precipitation has considerable effects on manipulating atmospheric heating profiles and generating plateau-scale uplifting force, which is a major forcing for establishing and maintaining the TP monsoon circulation (Kuo and Qian 1981). Therefore, exploring cloud vertical structures and its relationship with precipitation over the TP is not only beneficial to further understanding the complexity of the climate system over the plateau, but also helpful in improving the representation of the moist processes that modulate the distribution and variability of clouds and precipitation in numerical models over the TP.

    Many studies have investigated the characteristics of cloud over the TP, especially following the advent of satellite-based passive remote sensing (e.g. Fujinami and Yasunari 2001; Kurosaki and Kimura 2002; Chen and Liu 2005; Li, Liu, and Chen 2006; Fu, Li, and Zi 2007). The launch of the CloudSat satellite (Stephens et al. 2002) carrying cloud profile radar, and the CALIPSO satellite (Winker,Hunt, and McGill 2007) carrying the Cloud–Aerosol Lidar with Orthogonal Polarization, in 2006, by NASA, provides an unprecedented opportunity to explore cloud internal properties and vertical structures based on active sensors.Based on CloudSat/CALIPSO products, previous studies have analyzed the vertical structures of cloud microphysical and macrophysical properties over the TP (Wang et al. 2010; Luo, Zhang, and Qian 2011; Rüthrich et al. 2013;Chen and Zhou 2015; Hong and Liu 2015), as well as the relationship between cloud vertical properties and precipitation (Yin, Wang, and Zhai 2011; Zhao, Wang, and Yin 2014). However, little attention has been paid to cloud vertical structures at different precipitation magnitudes.

    In operational forecasting, precipitation strength is categorized into light rain (0–10 mm d?1), moderate rain(10–25 mm d?1), heavy rain (25–50 mm d?1), rainstorms(50–100 mm d?1) and heavy rainstorms (>100 mm d?1).But what are the corresponding characteristics of cloud macro- and microphysics in the vertical direction? In this paper, we aim to understand the nature of cloud vertical structures over the TP in association with the precipitation magnitudes used in operational forecasting. For comparison, the TP’s neighboring regions, which we refer to as NIST (northern India and south of the Tibetan Plateau) and TO (tropical ocean), are also analyzed. Following Yan, Liu,and Lu (2016), the three areas are defined as follows: TP(27°–40°N, 70°–103°E; altitude >3000 m); NIST (20°–27°N,70°–103°E); and TO (20S°–20°N, 60°–150°E; over ocean only).

    The rest of the paper is organized as follows: Section 2 describes the data and methodology. Section 3 presents the relationship between cloud macrophysical structures and precipitation, as well as the spectral distribution of cloud vertical microphysics in terms of different precipitation magnitudes. Section 4 presents our conclusions and offers additional discussion.

    2. Data and methodology

    Two datasets (2B-CWC-RO and 2B-CLDCLASS-LIDAR)(Stephens et al. 2002; 2008), from January 2007 to December 2010, obtained by CloudSat/CALIPSO, are used in this study. The periods when the products failed to provide retrievals are excluded from the diagnostics(Table 1). The 2B-CWC-RO product retrieves estimates of cloud water content, particle effective radius, and numberconcentration in liquid or ice phase. The portion of the profile colder than ?20 °C is deemed to be pure ice, and warmer than 0 °C pure liquid. When the temperature is between 0 °C and ?20 °C, the ice and liquid solutions are scaled linearly with temperature by adjusting their particle number concentrations (Austin 2007). Based on this product, GCMs have been evaluated (Su et al. 2011), revealing that models underestimate ice water content in the upper troposphere. Cloud radar has proven to be a highly valuable tool for studies on rainfall and thick precipitating clouds (Matrosov 2007). It has been found that cloud radar can accurately sense between ?28 and 6 dBZe, and above 6 dBZe with uncertainties of ±50% (Heymsfield et al. 2008). Thus, especially for heavy rainstorm conditions,the uncertainties in satellite data should be kept in mind.The 2B-CLDCLASS-LIDAR product identifies each cloud detected as one of the eight cloud types (cumulus, stratocumulus, stratus, altocumulus, altostratus, nimbostratus,cirrus, and deep convective cloud), and provides cloud-top height and cloud-base height (Sassen and Wang 2008).

    Table 1. The periods when the products failed to provide retrievals.

    We use the same period of three-hourly precipitation data from TRMM 3B42 (Version 6 (Huffman et al. 2007) with a horizontal resolution of 0.25 × 0.25°), together with the CloudSat/CALIPSO datasets, to calculate the relationship between cloud vertical structures and precipitation. This TRMM product has been shown to agree well with gauge measurements and have a weak dependence on topography over the TP (Gao and Liu 2013; Tong et al. 2014). It should be clarified that original orbital profile data (horizontal resolution: ~1.3 km in the across-track direction and~1.1 km in the along-track direction; vertical resolution:~240 m) from the 2B-CLDCLASS-LIDAR and 2B-CWC-RO products are used in this study. The sorting method to match the CloudSat/CALIPSO orbital data and TRMM grid data is similar to that used by Yan, Liu, and Lu (2016),which ensures the cloud and precipitation to be almost synchronous (sorted within 1.5 h in the spatial range of 12.5 × 12.5 km). In this study, we define the precipitation rate bins in 10 mm d?1intervals. In total, 26 bins from 0 mm d?1to 260 mm d?1, and 1 bin greater than 260 mm d?1, are used, which can provide an intuitive reference for operational forecasting. The joint probability distribution functions (PDFs) are only calculated over precipitating samples, to facilitate comparison of the three regions.The height above sea surface level is used in the analysis.

    3. Results

    3.1. Cloud vertical macrophysical structures

    Figure 1 indicates that the TP’s terrain has a compression effect on both precipitation intensity and cloud total thickness (with the clear-sky thickness between adjacent cloud layers deducted). Given that cirrus cloud has little effect on precipitation and may be advected from other regions, it is excluded in the diagnosis. It is found that,even in summer, when precipitation most likely occurs,the main magnitude of precipitation is light, moderate or heavy, while the occurrence of rainstorms or greater magnitude on the plateau is much less than for other regions(Figure 1(d)), which is consistent with the findings of Pan and Fu (2015). The likely reason for this is the restriction of moisture transport caused by high terrain. By calculating the vertically integrated water vapor transport, Zhang(2001) and Yan, Liu, and Lu (2016) found that the abundant water vapor transported from the Indian Ocean is consumed mostly over the southern slopes of the Himalaya.In July, the average divergence of the vertically integrated moisture flux over the three regions is 0.18, ?0.59 and?0.08 (units: 10?4kg s?1m?2), respectively. In addition, in summer, the total cloud thickness is 0–12 km over the TP when precipitation is smaller than 50 mm d?1, contrasting to 0–16 km over NIST and TO. It is a common feature that clouds thicken with an increase in precipitation magnitude when precipitation is greater than 50 mm d?1. The dominant thickness is 8–12 km over the TP – far thinner compared with the other regions (12–17 km over NIST and TO) (Figure 1(d–f)), demonstrating the limitation imposed by the plateau on the vertical expansion of precipitating clouds.

    The PDF of precipitation intensity and cloud-top height(Figure 2) further illustrates the suppression effect of the plateau’s topography on precipitation intensity and cloud vertical expansion. When moderate or heavy rain occurs,the main range of cloud-top height over the TP is 4–17 km,indicating that precipitation over the TP during summer is mainly due to shallow convection – consistent with Fu and Liu (2007). While the cloud-top height between 12 and 18 km over TO is more frequent for any precipitation magnitude, combined with the distribution of total cloud thickness (Figure 1), it is clear that more frequent deep convection occurs over TO. The cloud-top height above 18 km over TO in all four seasons, and over NIST in the warm seasons, is related to the activities of overshooting convection(Jensen, Ackerman, and Smith 2007). The variational range of cloud-top height associated with a certain precipitation magnitude shows visible seasonal variation over the TP.For example, when heavy rainstorms occur in spring, the cloud-top height is around 12 km and with a narrow variational range (Figure 2(a)), whereas the top height increases and the variational range expands to 12–18 km in summer,demonstrating strong seasonal variation of cloud vertical structures associated with precipitation magnitudes over the TP.

    3.2. Cloud vertical microphysical structures

    We focus on the primary rainfall season, summer (June–August), to analyze the vertical distributions of cloud microphysics corresponding to different precipitation magnitudes. Taking into account that the presence of precipitation causes large uncertainty in liquid water inversion (Austin 2007), the features of the liquid phase are not given.

    Figure 3 shows the normalized frequency by altitude diagram of cloud ice microphysics for no-rain conditions.In total, there are 566 006, 465 134, and 6 087 019 profiles over the TP, NIST, and TO, respectively. The cloud ice particles are mainly concentrated within 5–10 km, wherein lies the maximum frequency of radar reflectivity (Zhao, Wang,and Yin 2014). The height with maximum probability of cloud ice water content (CIWC) is 7.5 km over the TP, 13 km over NIST, and 12 km over TO, as shown by the curve’s peak on the right-hand side of each plot. Large number concentrations (i.e. >400 L?1) of ice particles are less likely to occur in upper layers of the troposphere (higher than 10 km) over the TP, while moderate values of ice number concentration (<200 L?1) occur more frequently in the whole vertical column compared with other regions (Figure 3(d–f)).Moreover, ice particles distribute over a wider spectrum in lower layers (lower than 10 km) over the plateau, and there are even large particles with sizes greater than 160 μm (Figure 3(g)). The normalized frequency by altitude diagram of CIWC and effective radius under no-rain conditions are generally consistent with all-sky conditions(Zhang, Duan, and Shi 2015). This is because, compared with precipitation profile samples, no-rain profile samples are dominant in the multi-year average over broad areas.A wider variety of ice particle sizes (Figure 3(g)) and number concentration (Figure 3(d)) at 5–10 km in the vertical direction makes a plentiful drift of the CIWC value over the TP (Figure 3(a)). In short, cloud ice particles over the TP are mostly located within 5–10 km, with a wide variety of sizes and aggregation, under no-rain conditions, as compared to the other regions. Above 12 km, particles with large number concentrations appear more over NIST and TO than over the TP.

    Figure 1. Probability distribution function of precipitation intensity and total cloud thickness for (a–c) spring (March–May), (d–f) summer(June–August), (g–i) autumn (September–November), (j–l) winter (December–February), and (m–o) the annual mean.

    Figure 2. Probability distribution function of precipitation intensity and cloud top height for (a–c) spring (March–May), (d–f) summer(June–August), (g–i) autumn (September–November), (j–l) winter (December–February), and (m–o) the annual mean.

    When precipitation occurs, the spectrum of large CIWC increases with an increase in rainfall intensity (Figure 4(a–c); Figure 5(a–c)). Moreover, the particles are more inclined to be large in size at low layers, but still small at high layers(Figure 4(g–i); Figure 5(g–i)), and the radius decreases obviously with height (Figure 5(g–i)). Again, the TP shows unique features, reflected as follows: The CIWC is more diverse over the TP than the other two regions at the same rainfall intensity (Figure 4(a–c); Figure 5(a–c)), and the CIWC over the TP is largely concentrated between 4 and 10 km.When rain is heavy (25–50 mm d?1) (8922, 18 525, and 234 938 profiles over the TP, NIST, and TO regions, respectively), the CIWC, as well as the ice number concentration,increases with altitude below 8 km over the TP (Figure 4(a)and (d)). Above 8 km, the CIWC decreases mainly due to the sharp reduction in the ice effective radius, although the probability of a larger number concentration is increased(Figures 3(d) and 4(d)). Despite heavy rain, the maximum probability of the CIWC is still located near 8 km. Large number concentrations (>600 L?1) seldom occur, and ice clouds are more inclined to gather at moderate concentrations (100–250 L?1) above 9 km over the TP compared with the other regions. This also shows that the plateau features a relatively wider range of particle sizes at the same altitude (shown by the red or deeper colors in Figure 4(g–i)).

    Figure 3. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle), and TO (right) under no rain condition in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    Figure 4. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle) and TO (right) under heavy rain conditions in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    For heavy rainstorms (>100 mm d?1) (1613, 9175, and 91 333 profiles over the TP, NIST, and TO regions respectively), the CIWC, as well as the ice number concentration,corresponding to maximum probability, increase remarkably. For example, in heavy rainstorms, the order of dominant CIWC is e6mg m?3(Figure 5(a)), while it is e5mg m?3during heavy rain, over the TP (Figure 4(a)). Above 9 km, the probability of the ice number concentration being greater than 200 L?1enlarges too, indicating ice clouds consist of much more abundant particles during heavy rainstorms.However, like heavy rain, the probability of a larger number concentration (i.e. >600 L?1) is still less over the TP than over the other regions (Figure 5(d–f)). The particle sizes over the TP display a remarkable decreasing trend with increased altitude, similar to over TO and NIST. The larger occurrence frequencies (red shades) are narrowed (Figure 5(g)) at the same altitude compared with smaller magnitudes of precipitation (Figure 4(g)) over the TP, suggesting that the more even the sizes of cloud ice particles are, the larger the precipitation magnitude.

    Figure 5. The normalized frequency by (a–c) altitude diagram (color) of CIWC, (d–f) number concentration, and (g–i) effective radius over the TP (left), NIST (middle) and TO (right) under heavy rainstorm in summer. The X-axis bin for (a–c) is 0.1 (the corresponding value of CIWC is e0.1 mg m?3), for (d–f) is 8 L?1, and for (g–i) is 2.5 μm. While Y-axis bin for all the plots is 240 m. The curve on the right side of each plot is PDF on different altitude. While the curve on the bottom of each plot is PDF on different variable values.

    4. Conclusions and discussion

    Based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data, we analyze the characteristics of cloud vertical macro- and microphysical structures associated with precipitation magnitudes over the TP through comparison with neighboring land and ocean regions. The main conclusions are as follows:

    (1) The precipitation magnitude and cloud total thickness are compressed over the TP. Restrictions of water vapor supply induced by topography lead to a lower probability of the precipitation magnitude being greater than ‘rainstorm’ over the TP.

    (2) Cloud vertical expansion, as well as cloud-top height, for the same magnitude of precipitation,is severely confined over the TP compared with other regions. Also, cloud vertical structures associated with precipitation magnitudes show large seasonal variation over the TP.

    (3) Under no-rain conditions, cloud ice particles over the TP are mostly located at lower altitude (5–10 km), with a wide variety of sizes and aggregation, during summer. With an increase in precipitation magnitude, the CIWC and number concentration at high levels (above 10 km)enhance markedly. The low levels are dominated by large particles (100–140 μm).

    (4) Similar to under no-rain conditions, the vertical distributions of cloud ice microphysics are unique over the TP compared to the other regions, even for the same magnitude of precipitation, including a wider range of particle sizes and more moderate particle number concentrations, but a lower probability of dense aggregation (600 L?1).

    The results revealed here provide useful information for the potential relationship between cloud and precipitation. However, due to the limitation of local time sampling by CloudSat/CALIPSO, more precise information on the full diurnal cycle needs to be obtained by combining geostationary satellite measurements and ground-based observations. In addition, since uncertainties related to cloud radar retrievals increase with enhanced radar reflectivity,the results revealed here – especially for heavy rainstorm conditions – need to be verified using other datasets.Separating precipitation into convective and stratiform cases is also helpful to reveal associated cloud structures.

    Acknowledgements

    The authors are greatly appreciative of the discussions with,and suggestions made by, Prof. Jianhua LV, from the School of Atmospheric Sciences, Sun Yat-Sen University, China, which certainly improved the manuscript.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 91637312], [grant number 91437219]; the Key Research Program of Frontier Sciences of CAS, the Third Tibetan Plateau Scientific Experiment[grant number GYHY201406001]; the Science and Technology Development Project of Shanghai Meteorological Bureau [grant number QM201711]; and the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase).

    Austin, R. 2007. “Level 2B Radar-Only Cloud Water Content(2B-CWC-RO) Process Description Document.”CloudSat Project Report, 24 pp. http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro?term=28.

    Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren.1987. “Oceanic Phytoplankton, Atmospheric Sulphur, Cloud Albedo and Climate.”Nature326: 655–661.

    Chen, B., and X. Liu. 2005. “Seasonal Migration of Cirrus Clouds over the Asian Monsoon Regions and the Tibetan Plateau Measured from MODIS/Terra.”Geophysical Research Letters32:L01804. doi:10.1029/2004GL020868.

    Chen, L., and Y. Zhou. 2015. “Different Physical Properties of Summer Precipitation Clouds over Qinghai Xizang Plateau and Sichuan Basin.” [In Chinese.]Plateau Meteorology34:621–632.

    Duan, A. M., and G. X. Wu. 2005. “Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia.”Climate Dynamics24: 793–807. doi:10.1007/s00382-004-0488-8.

    Dufresne, J.-L., and S. Bony. 2008. “An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models.”Journal of Climate21:5135–5144. doi:10.1175/2008JCLI2239.1.

    Fu, Y., and G. Liu. 2007. “Possible Misidentification of Rain Type by TRMM PR over Tibetan Plateau.”Journal of Applied Meteorology and Climatology46: 667–672. doi:10.1175/jam2484.1.

    Fu, Y.-F., H.-T. Li, and Y. Zi. 2007. “Case Study of Precipitation Cloud Structure Viewed by TRMM Satellite in a Valley of the Tibetan Plateau.” [In Chinese.]Plateau Meteorology26: 98–106.

    Fujinami, H., and T. Yasunari. 2001. “The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau.”Journal of the Meteorological Society of Japan79: 1207–1227. doi:10.2151/jmsj.79.1207.

    Gao, Y., and M. Liu. 2013. “Evaluation of High-Resolution Satellite Precipitation Products Using Rain Gauge Observations over the Tibetan Plateau.”Hydrology and Earth System Sciences17:837–849. doi:10.5194/hess-17-837-2013.

    Heymsfield, A., A. Protat, R. T. Austin, D. Bouniol, R. Hogan, J.Delano?, H. Okamoto, et al. 2008. “Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data.”Journal of Applied Meteorology and Climatology47:135–163. doi:10.1175/2007JAMC1606.1.

    Hong, Y., and G. Liu. 2015. “The Characteristics of Ice Cloud Properties Derived from CloudSat and CALIPSO Measurements.”Journal of Climate28: 3880–3901.doi:10.1175/JCLI-D-14-00666.1.

    Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman,Y. Hong, E. Stocker, and D. B. Wolff. 2007. “The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear,Combined-Sensor Precipitation Estimates at Fine Scales.”Journal of Hydrometeorology8: 38–55. doi:10.1175/jhm560.1.

    Jakob, C., and S. A. Klein. 1999. “The Role of Vertically Varying Cloud Fraction in the Parametrization of Microphysical Processes in the ECMWF Model.”Quarterly Journal of the Royal Meteorological Society125: 941–965.

    Jensen, E. J., A. S. Ackerman, and J. A. Smith. 2007. “Can Overshooting Convection Dehydrate the Tropical Tropopause Layer?”Journal of Geophysical Research Atmospheres112:D11209. doi:10.1029/2006JD007943.

    Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. D. Genio, L. S. Nazarenko,L. J. Donner, et al. 2012. “Evaluation of Cloud and Water Vapor Simulations in CMIP5 Climate Models Using NASA “a-Train”Satellite Observations.”Journal of Geophysical Research Atmospheres117: D14105. doi:10.1029/2011JD017237.

    Kubar, T. L., D. L. Hartmann, and R. Wood. 2009. “Understanding the Importance of Microphysics and Macrophysics for Warm Rain in Marine Low Clouds. Part I: Satellite Observations.”Journal of the Atmospheric Sciences66: 2953–2972.doi:10.1175/2009JAS3071.1.

    Kuo, H. L., and Y. F. Qian. 1981. “Influence of the Tibetian Plateau on Cumulative and Diurnal Changes of Weather and Climate in Summer.”Monthly Weather Review109 (11): 2337–2356.

    Kurosaki, Y., and F. Kimura. 2002. “Relationship between Topography and Daytime Cloud Activity around Tibetan Plateau.”Journal of the Meteorological Society of Japan80:1339–1355.

    Li, Z., H. W. Barker, and L. Moreau. 1995. “The Variable Effect of Clouds on Atmospheric Absorption of Solar Radiation.”Nature376: 486–490.

    Li, Y., X. Liu, and B. Chen. 2006. “Cloud Type Climatology over the Tibetan Plateau: A Comparison of ISCCP and MODIS/TERRA Measurements with Surface Observations.”Geophysical Research Letters33: L17716. doi:10.1029/2006GL026890.

    Liu, Y., Q. Bao, A. Duan, Z. Qian, and G. Wu. 2007. “Recent Progress in the Impact of the Tibetan Plateau on Climate in China.”Advances in Atmospheric Sciences24: 1060–1076.doi:10.1007/s00376-007-1060-3.

    Luo, Y., R. Zhang, and W. Qian. 2011. “Intercomparison of Deep Convection over the Tibetan Plateau–Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data.”Journal of Climate24: 2164–2177.doi:10.1175/2010jcli4032.1.

    Matrosov, S. Y. 2007. “Potential for Attenuation-Based Estimations of Rainfall Rate from CloudSat.”Geophysical Research Letters34: L05817. doi:10.1029/2006GL029161.

    Pan, X., and Y.-F. Fu. 2015. “Analysis on Climatological Characteristics of Deep and Shallow Precipitation Cloud in Summer over Qinghai-Xizang Plateau.” [In Chinese.]Plateau Meteorology34: 1191–1203.

    Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom,E. Ahmad, and D. Hartmann. 1989. “Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment.”Science243: 57–63. doi:10.1126/science.243.4887.57.

    Rüthrich, F., B. Thies, C. Reudenbach, and J. Bendix. 2013.“Cloud Detection and Analysis on the Tibetan Plateau Using Meteosat and CloudSat.”Journal of Geophysical Research Atmospheres118: 10,082–10,099. doi:10.1002/jgrd.50790.

    Sassen, K., and Z. Wang. 2008. “Classifying Clouds around the Globe with the CloudSat Radar: 1-Year of Results.”Geophysical Research Letter35 (L04): 805. doi:10.1029/2007GL032591.

    Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z.Wang, A. J. Illingworth, et al. 2002. “The Cloudsat Mission and the A-Train.”Bulletin of the American Meteorological Society83:1771–1790. doi:10.1175/bams-83-12-1771.

    Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey,D. Reinke, et al 2008. “CloudSat Mission: Performance and Early Science after the First Year of Operation.”Journal of Geophysical Research Atmospheres113: D00A18.doi:10.1029/2008JD009982.

    Su, H., J. H. Jiang, J. Teixeira, A. Gettelman, X. Huang, G.Stephens, D. Vane, and V. S. Peru. 2011. “Comparison of Regime-Sorted Tropical Cloud Profiles Observed by CloudSat with GEOS5 Analyses and Two General Circulation Model Simulations.”Journal of Geophysical Research116: D09104.doi:10.1029/2010JD014971.

    Tong, K., F. Su, D. Yang, and Z. Hao. 2014. “Evaluation of Satellite Precipitation Retrievals and Their Potential Utilities in Hydrologic Modeling over the Tibetan Plateau.”Journal of Hydrology519: 423–437. doi:10.1016/j.jhydrol.2014.07.044.

    Wang, S.-J., W.-Y. He, H.-B. Chen, J.-C. Bian, and Z.-H. Wang. 2010.“Statistics of Cloud Height over the Tibetan Plateau and Its Surrounding Region Derived from the CloudSat Data.”Plateau Meteorology (in Chinese)29: 1–9.

    Winker, D. M., W. H. Hunt, and M. J. McGill. 2007. “Initial Performance Assessment of CALIOP.”Geophysical Research Letters34: L19803. doi:10.1029/2007gl030135.

    Wu, G. X., and Y. S. Zhang. 1998. “Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea.”Monthly Weather Review126: 913–927.doi:10.1175/1520-0493(1998)126<0913:Tpfatt>2.0.Co;2.

    Yan, Y., Y. Liu, and J. Lu. 2016. “Cloud Vertical Structure,Precipitation, and Cloud Radiative Effects over Tibetan Plateau and Its Neighboring Regions.”Journal of Geophysical Research Atmospheres121: 5864–5877. doi:10.1002/2015JD024591.

    Yin, J., D. Wang, and G. Zhai. 2011. “Long-Termin SituMeasurements of the Cloud-Precipitation Microphysical Properties over East Asia.”Atmospheric Research102: 206–217. doi:10.1016/j.atmosres.2011.07.002.

    Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J.M. Gregory, and P. Forster. 2013. “Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5.”Journal of Climate26: 5007–5027. doi:10.1175/JCLI-D-12-00555.1.

    Zhang, R. H. 2001. “Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China.”Advance of Atmosphere Science18 (5): 1005–1017.

    Zhang, M. H., W. Y. Lin, S. A. Klein, J. T. Bacmeister, S. Bony,R. T. Cederwall, A. D. Delgenio, et al 2005. “Comparing Clouds and Their Seasonal Variations in 10 Atmospheric General Circulation Models with Satellite Measurements.”Journal of Geophysical Research Atmospheres110: D15S02.doi:10.1029/2004JD005021.

    Zhang, X., K. Duan, and P. Shi. 2015. “Cloud Vertical Profiles from CloudSat Data over the Eastern Tibetan Plateau during Summer.”Chinese Journal of tmospheric Sciences (in Chinese)39: 1073–1080. doi:10.3878/j.issn.1006-9895.1502.14196.

    Zhao, Y., D. Wang, J. Yin. 2014. “A Study on Cloud Microphysical Characteristics over the Tibetan Plateau Using CloudSat Data.”Journal of Tropical Meteorology (in Chinese)30: 239–248.

    一区二区三区精品91| 在线观看免费高清a一片| 国产精品久久久久久精品电影小说| 国产69精品久久久久777片| 日韩欧美一区视频在线观看| 寂寞人妻少妇视频99o| 少妇被粗大猛烈的视频| 亚洲情色 制服丝袜| 亚洲av免费高清在线观看| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 观看av在线不卡| 久久综合国产亚洲精品| 黄网站色视频无遮挡免费观看| 午夜影院在线不卡| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 99久久精品国产国产毛片| 亚洲国产精品国产精品| 九九在线视频观看精品| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 久久狼人影院| 人成视频在线观看免费观看| av一本久久久久| 久久久久网色| 2021少妇久久久久久久久久久| 久久久久久人妻| 国产欧美亚洲国产| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 久久久久网色| 80岁老熟妇乱子伦牲交| 亚洲一码二码三码区别大吗| 亚洲欧洲日产国产| 国产成人aa在线观看| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 我的女老师完整版在线观看| 五月天丁香电影| 一级爰片在线观看| 国产精品 国内视频| 午夜激情久久久久久久| 亚洲人与动物交配视频| 尾随美女入室| av免费观看日本| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 91精品三级在线观看| 如日韩欧美国产精品一区二区三区| 91久久精品国产一区二区三区| 少妇 在线观看| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人 | 亚洲av福利一区| 欧美国产精品va在线观看不卡| 国产精品久久久av美女十八| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频 | 黑人猛操日本美女一级片| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 欧美亚洲 丝袜 人妻 在线| 少妇的逼好多水| 精品一区二区三区视频在线| kizo精华| 少妇人妻 视频| 嫩草影院入口| 免费人成在线观看视频色| 久久99一区二区三区| 777米奇影视久久| 日本欧美国产在线视频| 热99久久久久精品小说推荐| 成人手机av| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 大香蕉久久网| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 不卡视频在线观看欧美| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 久久狼人影院| 最新的欧美精品一区二区| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 五月天丁香电影| 国产av一区二区精品久久| 久久99精品国语久久久| 黄色毛片三级朝国网站| 午夜影院在线不卡| 日本av免费视频播放| 日本爱情动作片www.在线观看| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久久电影| 久久影院123| 蜜桃国产av成人99| 精品国产露脸久久av麻豆| 桃花免费在线播放| 日韩一区二区三区影片| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 在现免费观看毛片| 人人妻人人爽人人添夜夜欢视频| 中文欧美无线码| 亚洲,一卡二卡三卡| 九九爱精品视频在线观看| 亚洲成色77777| 女人精品久久久久毛片| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| av福利片在线| 成年人午夜在线观看视频| 赤兔流量卡办理| 亚洲精品,欧美精品| 黄色怎么调成土黄色| 18禁动态无遮挡网站| 久久国产精品大桥未久av| 精品久久蜜臀av无| 少妇熟女欧美另类| 亚洲av电影在线进入| 最近手机中文字幕大全| 日韩电影二区| 国产精品 国内视频| 国产男人的电影天堂91| 老司机影院成人| 韩国精品一区二区三区 | 亚洲综合色惰| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 激情视频va一区二区三区| 国产成人精品福利久久| 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| av有码第一页| 免费av中文字幕在线| 亚洲av综合色区一区| 欧美最新免费一区二区三区| 国产国拍精品亚洲av在线观看| 国产乱来视频区| 亚洲在久久综合| 亚洲美女视频黄频| 国内精品宾馆在线| 岛国毛片在线播放| 有码 亚洲区| 人妻系列 视频| 精品人妻在线不人妻| 国产熟女欧美一区二区| 少妇被粗大猛烈的视频| 欧美国产精品一级二级三级| 最近2019中文字幕mv第一页| 国产日韩欧美在线精品| 免费观看在线日韩| 亚洲成国产人片在线观看| 久久国产精品大桥未久av| 两性夫妻黄色片 | 日日爽夜夜爽网站| 亚洲av中文av极速乱| 丰满乱子伦码专区| 9色porny在线观看| 免费看av在线观看网站| 国产在线视频一区二区| 成人手机av| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 不卡视频在线观看欧美| 观看av在线不卡| av在线播放精品| 妹子高潮喷水视频| 国产一区二区三区综合在线观看 | 在线 av 中文字幕| 日韩一区二区视频免费看| 午夜日本视频在线| 观看美女的网站| 午夜精品国产一区二区电影| 色94色欧美一区二区| 搡女人真爽免费视频火全软件| 国产免费视频播放在线视频| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 亚洲av日韩在线播放| 精品一区二区免费观看| 99九九在线精品视频| 国产成人欧美| 亚洲精品美女久久久久99蜜臀 | 有码 亚洲区| 下体分泌物呈黄色| 国产免费又黄又爽又色| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 久久 成人 亚洲| 亚洲欧美日韩另类电影网站| 赤兔流量卡办理| 日韩av不卡免费在线播放| 午夜久久久在线观看| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 成年女人在线观看亚洲视频| 女人精品久久久久毛片| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 国产免费视频播放在线视频| 两个人免费观看高清视频| 成人国产麻豆网| 男人爽女人下面视频在线观看| 国产在线视频一区二区| 国产高清国产精品国产三级| 免费少妇av软件| 成人黄色视频免费在线看| 欧美 亚洲 国产 日韩一| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 久久精品国产亚洲av天美| 国产黄色免费在线视频| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 最近的中文字幕免费完整| 国产精品.久久久| 大片电影免费在线观看免费| av线在线观看网站| 欧美日韩视频精品一区| 熟女人妻精品中文字幕| 日本免费在线观看一区| av卡一久久| 午夜视频国产福利| 亚洲成国产人片在线观看| 国产成人欧美| 大香蕉久久成人网| 熟女人妻精品中文字幕| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| 精品久久国产蜜桃| 亚洲欧美色中文字幕在线| 观看av在线不卡| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 夜夜骑夜夜射夜夜干| 国产一区二区三区综合在线观看 | 免费大片黄手机在线观看| √禁漫天堂资源中文www| 国产乱人偷精品视频| 视频在线观看一区二区三区| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 国产又色又爽无遮挡免| 在线观看三级黄色| 乱人伦中国视频| 国产精品成人在线| 韩国av在线不卡| 香蕉丝袜av| 精品少妇久久久久久888优播| 日韩电影二区| 777米奇影视久久| 乱人伦中国视频| 日本av免费视频播放| 欧美日韩av久久| 欧美激情极品国产一区二区三区 | 久久精品人人爽人人爽视色| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区 | 999精品在线视频| 成人毛片60女人毛片免费| 美女福利国产在线| 亚洲精品美女久久av网站| 亚洲精品国产色婷婷电影| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看| 晚上一个人看的免费电影| 22中文网久久字幕| 五月天丁香电影| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 精品一区二区三卡| 亚洲成国产人片在线观看| 内地一区二区视频在线| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕 | 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 亚洲成av片中文字幕在线观看 | 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 亚洲av电影在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| 我的女老师完整版在线观看| 丁香六月天网| 菩萨蛮人人尽说江南好唐韦庄| 女人被躁到高潮嗷嗷叫费观| 婷婷色综合大香蕉| 黄色 视频免费看| 免费高清在线观看视频在线观看| 搡老乐熟女国产| 国产在视频线精品| 一级毛片黄色毛片免费观看视频| 国产综合精华液| 国产精品国产av在线观看| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 久久久国产一区二区| 国产高清三级在线| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 成人国产麻豆网| 亚洲国产欧美日韩在线播放| 波多野结衣一区麻豆| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 成人无遮挡网站| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 看免费成人av毛片| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线不卡| 国产精品人妻久久久久久| 色哟哟·www| 国产淫语在线视频| 97在线视频观看| 日本欧美视频一区| 日本猛色少妇xxxxx猛交久久| 亚洲欧美色中文字幕在线| av免费在线看不卡| 丁香六月天网| 大码成人一级视频| 国产日韩欧美在线精品| 在线观看三级黄色| 日韩一区二区视频免费看| 2018国产大陆天天弄谢| 亚洲丝袜综合中文字幕| 男女国产视频网站| 国产不卡av网站在线观看| 男女国产视频网站| 国产成人午夜福利电影在线观看| av天堂久久9| av视频免费观看在线观看| √禁漫天堂资源中文www| 秋霞伦理黄片| av天堂久久9| kizo精华| 久久久久久久精品精品| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 国产又爽黄色视频| 国产激情久久老熟女| 巨乳人妻的诱惑在线观看| 五月玫瑰六月丁香| 日韩电影二区| 欧美精品av麻豆av| 在线精品无人区一区二区三| 久久久久久久精品精品| 看十八女毛片水多多多| videossex国产| 大陆偷拍与自拍| 最后的刺客免费高清国语| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 国产女主播在线喷水免费视频网站| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 一边摸一边做爽爽视频免费| 男人操女人黄网站| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 亚洲第一av免费看| 少妇的逼好多水| 午夜视频国产福利| 黄片播放在线免费| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| 日韩av不卡免费在线播放| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| 亚洲国产精品国产精品| 久久久久视频综合| 成年女人在线观看亚洲视频| 成人18禁高潮啪啪吃奶动态图| 高清视频免费观看一区二区| 久久 成人 亚洲| 老司机影院毛片| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| av播播在线观看一区| 国产一级毛片在线| 极品人妻少妇av视频| 日本91视频免费播放| 99热网站在线观看| 自线自在国产av| 国产 一区精品| 晚上一个人看的免费电影| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 天堂中文最新版在线下载| 我要看黄色一级片免费的| videosex国产| 在线观看美女被高潮喷水网站| 国产激情久久老熟女| 午夜激情av网站| 熟女电影av网| 狂野欧美激情性xxxx在线观看| av线在线观看网站| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| av有码第一页| 黑人欧美特级aaaaaa片| 午夜福利视频在线观看免费| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 有码 亚洲区| 两个人免费观看高清视频| 精品久久蜜臀av无| 国产色爽女视频免费观看| 国产麻豆69| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 黄色 视频免费看| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 插逼视频在线观看| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| 成人无遮挡网站| 亚洲av电影在线进入| xxxhd国产人妻xxx| 成年女人在线观看亚洲视频| 蜜臀久久99精品久久宅男| av国产久精品久网站免费入址| 精品一区二区三卡| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 欧美最新免费一区二区三区| 欧美精品人与动牲交sv欧美| 天美传媒精品一区二区| 国产日韩欧美在线精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| a级毛片黄视频| 性高湖久久久久久久久免费观看| 色哟哟·www| 在线观看一区二区三区激情| 久久久久视频综合| 精品国产一区二区三区四区第35| 午夜激情久久久久久久| 丝袜在线中文字幕| 亚洲第一av免费看| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 成人手机av| 99热这里只有是精品在线观看| 男女边摸边吃奶| 人妻系列 视频| 国产精品无大码| 热re99久久精品国产66热6| 视频在线观看一区二区三区| 韩国av在线不卡| 蜜臀久久99精品久久宅男| 人妻系列 视频| 九九在线视频观看精品| 日日摸夜夜添夜夜爱| 91精品三级在线观看| 免费观看性生交大片5| 久久鲁丝午夜福利片| av在线播放精品| 岛国毛片在线播放| 一级毛片电影观看| 亚洲第一av免费看| 精品一区二区免费观看| 飞空精品影院首页| 丝袜人妻中文字幕| 在线 av 中文字幕| 全区人妻精品视频| 热re99久久国产66热| 亚洲国产日韩一区二区| 制服人妻中文乱码| h视频一区二区三区| 美女国产视频在线观看| 欧美日韩亚洲高清精品| 中文欧美无线码| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 三级国产精品片| 日产精品乱码卡一卡2卡三| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 九草在线视频观看| 久久青草综合色| 久久鲁丝午夜福利片| 久久 成人 亚洲| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 黑丝袜美女国产一区| 亚洲国产最新在线播放| 女人久久www免费人成看片| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 国产1区2区3区精品| 波野结衣二区三区在线| 精品卡一卡二卡四卡免费| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 最近最新中文字幕大全免费视频 | 最新的欧美精品一区二区| 99久久人妻综合| 久久久精品94久久精品| 亚洲成色77777| 少妇人妻精品综合一区二区| 久久精品久久久久久噜噜老黄| 久久婷婷青草| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 欧美国产精品一级二级三级| 成人亚洲精品一区在线观看| 久久久久国产精品人妻一区二区| 极品人妻少妇av视频| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 视频中文字幕在线观看| 高清黄色对白视频在线免费看| 中文字幕亚洲精品专区| 精品久久国产蜜桃| 90打野战视频偷拍视频| 99热全是精品| 亚洲精品乱久久久久久| 久久久久精品人妻al黑| 国产精品久久久久久精品电影小说| 久久精品久久久久久噜噜老黄| 午夜免费观看性视频| 美女福利国产在线| 这个男人来自地球电影免费观看 | 中文字幕制服av| 一边亲一边摸免费视频| 久久精品人人爽人人爽视色| 欧美成人午夜精品| 黑人高潮一二区| 欧美激情极品国产一区二区三区 | 99热国产这里只有精品6| 午夜视频国产福利| 性色avwww在线观看| 国产精品一国产av| 精品视频人人做人人爽| 亚洲高清免费不卡视频| 欧美日韩成人在线一区二区| 国产日韩欧美在线精品| 国产免费视频播放在线视频| 最新的欧美精品一区二区| tube8黄色片| 中文字幕av电影在线播放| 亚洲精品视频女| 亚洲国产毛片av蜜桃av| 免费观看无遮挡的男女| 视频在线观看一区二区三区| tube8黄色片| 中文字幕av电影在线播放| 视频在线观看一区二区三区| tube8黄色片| 日日摸夜夜添夜夜爱| 2022亚洲国产成人精品| 亚洲第一av免费看| 国产精品久久久久久av不卡| 18在线观看网站| 日本欧美视频一区| 丝袜美足系列| 91aial.com中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 亚洲国产最新在线播放| 免费观看a级毛片全部| 国产午夜精品一二区理论片| 大香蕉97超碰在线| 国产国语露脸激情在线看| 亚洲,欧美精品.| 久久久久精品性色| 日本vs欧美在线观看视频| 十八禁网站网址无遮挡| 侵犯人妻中文字幕一二三四区| 各种免费的搞黄视频| 久久久久久久久久久免费av| 热re99久久精品国产66热6| 国产亚洲午夜精品一区二区久久|