• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the dynamical mechanism of year-to-year incremental prediction by nonlinear time series prediction theory

    2018-01-31 03:32:10BiShuTingWngPengFeiPnXinNongLiChoFnCenterforMonsoonSystemReserhCMSRInstituteofAtmospheriPhysisChineseAemyofSienesBeijingChinStteKeyLortoryofNumerilMoelingforAtmospheriSienesGeophysilFluiDynmisLASGInstituteofAtmosp

    Bi Shu-Ting, Wng Peng-Fei, Pn Xin-Nong n Li Cho-FnCenter for Monsoon System Reserh (CMSR), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; Stte Key Lortory of Numeril Moeling for Atmospheri Sienes n Geophysil Flui Dynmis (LASG), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin; University of Chinese Aemy of Sienes, Beijing, Chin; Key Lortory for Atmosphere n Glol Environment Oservtion (LAGEO), Institute of Atmospheri Physis, Chinese Aemy of Sienes, Beijing, Chin

    1. Introduction

    Short-term climate prediction is a hot but challenging scientific topic in current climate research. According to previous studies, the methods frequently used in short-term climate prediction include: the statistical approach, the hybrid statistical and dynamical approach, the numerical model approach, and the nonlinear time series prediction approach (hereafter NP). The latter is based on the phasespace reconstruction theorem (Casdagli 1989), which implicitly requires a stationary system. However, weather and climate systems are influenced by perturbations of driving forces; in other words, the atmosphere is essentially nonstationary in dynamic terms. Previous studies have indicated that the stationarity of atmospheric processes is changeable. For instance, Tsonis (1996) found that fluctuations around the global mean precipitation amount have increased significantly, which means that global precipitation was a nonstationary process over the past century. The cause of nonstationarity is the change in driving forces with time (Manuca and Savit 1996). This led Wang et al. (2011) to develop a new prediction model with such driving forces, which can improve the accuracy of prediction effectively when applied to the time series of a single climate variable.

    However, most time series from the real world, especially those of processes typically related to climate, are too short. When we apply the NP method to such short time series, the model sometimes encounters a data‘bottleneck’. Researchers have thus proposed the ‘spatiotemporal series’ method, which attempts to utilize the information at different spatial positions to remedy the insufficiency in the length of the time series. For example,with a spatiotemporal artificial neural network system,Yang, Zhou, and Bian (2000) carried out a regional prediction experiment regarding the distribution of atmospheric ozone over China, and the accuracy of the prediction was beyond 43%. In addition, based on the spatiotemporal series method, Chen et al. (2003) improved the extended-range (monthly) dynamical prediction of the pentad zonal mean height and revealed that spatiotemporal series can effectively improve the ergodicity of single-variable time series. Wang, Yang, and Lü (2004) introduced the idea of spatiotemporal series to enhance the original NP method and, through the example of 500 hPa height over the Northern Hemisphere, found that it is valuable to apply this technique to regional climate prediction.

    In short-term climate prediction, the predictands are traditional climate variable anomalies (Wang et al.2012). As most regions in East Asia vary in connection to the tropospheric biennial oscillation (TBO), it may be easy to capture the interannual change if the prediction method takes the TBO into consideration. However, decadal change in the climate mean may lead to uncertainty in the prediction. To deal with this issue, Fan, Wang, and Choi (2008) proposed a new prediction scheme in their study of summer rainfall over the middle to lower reaches of the Yangtze River, named the year-to-year incremental prediction (YIP) method. Hereafter, we use YR to stand for the summer rainfall in this region. In this approach, thefirst stage is to predict the year-to-year precipitation increments, and the precipitation and precipitation rate anomalies are computed. The average root-mean-square error(RMSE) of the fitting period is 20%, and 18% in the hindcast stage of YR. The prediction model captures the interannual variation of YR, and reproduces the ascending trend in 1984–1998 and the descending trend in 1998–2006, and thus raises the prediction skill of YR strikingly. This method has also been applied to the prediction of summer rainfall in North China (Fan, Lin, and Gao 2009), winter surface air temperature (Fan 2009) and summer temperature (Fan and Wang 2010) over Northeast China, typhoon frequency over the western North Pacific (Fan and Wang 2009), wintertime heavy snow activity in Northeast China (Fan and Tian 2013), and the North Atlantic Oscillation (Tian and Fan 2015), among other climatic features.

    There have been many variants of YIP, but the fundamental method is that based on Fan, Wang, and Choi (2008).The benefit of YIP is that it involves physical mechanics,while the advantage of NP is that it has robust mathematical dynamical foundations. By combining YIP and NP, we may achieve a better understanding of YIP with respect to its dynamical mechanism. In addition, we can analyze its advantages and disadvantages, and then explore its potential for application to other seasonal events in shortterm climate prediction.

    2. Data and methods

    Monthly precipitation data from 160 stations (1964–2006) in China provided by the China Meteorological Administration are used in this study. Following Chen and Zhao (2000), the mean precipitation of 17 stations during June–August over the middle to lower reaches of the Yangtze River (Nanjing, Hefei, Shanghai, Hangzhou,Anqing, Tunxi, Jiujiang, Hankou, Zhongxiang, Yueyang,Yichang, Changde, Ningbo, Quxian, Guixi, Nanchang, and Changsha) is selected to represent the summer rainfall over this region.

    The present study employs monthly atmospheric variables from the NCEP–NCAR reanalysis data set, with a resolution of 2.5° × 2.5° (Kalnay et al. 1996).

    2.1. The YIP method

    The YR can be predicted on the basis of precursory factors using the YIP model (Fan, Wang, and Choi 2008).

    where ΔYstands for the year-to-year increments of YR, Δfis the year-to-year increments of the normalized indices(also known as DY – the difference of a variable between the current year and the preceding year),ciis the fitting parameter, and the subscript in Δfrepresents the number of the predictor.

    Each Δfis defined as

    whereNis the number of years of historical data. The details of six factors can be found in Fan, Wang, and Choi(2008) (also introduced in Section 3.1 in the present paper).

    2.2. The NP method with external forcing

    The method of using a single-point nonlinear model with driving forces refers to the work of Wang et al. (2011) and Wang, Yang, and Zhou (2013). Assuming a non-stationary process with two series, the former variable is the system state and the latter is the driving force. By selecting a proper parameterτ, we can embed them into a state space (also known as phase space) withm1+m2dimensions, and then obtain the state trajectory

    Figure 1. The wavelet power spectrum of the summer mean precipitation in the middle to lower reaches of the Yangtze River during 1965–2006.

    wherem1and, respectively; andnumber of points in phase space. After reconstructing this trajectory, we can build a prediction model by means of the global approximation method (Casdagli 1989),

    Here,φis supposed to be a second-order polynomial at most.

    The single-point prediction method can be expanded to the spatial time series prediction method, which not only includes the driving forces but also the information from the surrounding four neighboring points. The spatiotemporal series prediction model can be written as

    2.3. Relationship between YIP and NP

    This formula is analogue to the NP model (Equation (4)).This implies that they have some corresponding relationship. Equation (4) only considers one forcing originally, but we can expand it to multiple forcings and one variable system by way of Equation (6):

    Here, ?tis the fitting residual. The model only uses the value of one previous step during prediction, so it can be regarded as an NP model withm= 1 andτ= 1 to predict one step ahead. Therefore, we can conclude that YIP and NP are equivalent when linear fitting is applied andNis large enough.

    From the theoretical analysis, YIP could be considered as a special case of NP, so the YIP method can be applied to nonlinear modeling. YIP emphasizes the effect of quasi-biennial signals; thus, this method has explicit physical meaning compared with the NP method.

    3. Hindcast and result

    To reveal the equivalence of YIP and NP, and compare their performance, we apply the two methods to the following rainfall prediction experiments.

    3.1. Precipitation prediction of YIP

    Figure 1 shows the wavelet analysis of YR. It illustrates that there is a strong 2–5-yr period of YR variations in the period 1965–2006, so we can amplify the anomaly signal of the rainfall via YIP.

    Figure 2. Correlation coefficients between the year-to-year increments of the summer rainfall over the middle to lower reaches of the Yangtze River and meridional wind shear between the 850 hPa and 200 hPa levels in March–May during 1965–1996.

    Figure 3. (a) Correlation coefficients between the year-to-year increments of the summer rainfall over the middle to lower reaches of the Yangtze River and the sea level pressure in December–February (DJF) during 1965–1996. (b) Correlation coefficients between the year-to-year increments of the index for South Pacific sea level pressure in DJF and the sea level pressure in June–August (JJA) during 1965–1996.

    Fan, Wang, and Choi (2008) analyzed the correlation coefficients between the year-to-year increments of YR and the geopotential height field at 500 hPa in spring and found that the Urals high and East Asian trough have a great influence on YR. So they defined two indices: the spring Eurasian circulation index (EUI) and the spring East Asian circulation index (EAI). The EUI is the area-averaged geopotential height at 500 hPa over the region (60°–70°N, 30°–60°E), and the correlation coefficient between the year-to-year increments of YR and EUI is 0.41 during 1965–1996, reaching the 95% confidence level. The EAI is the area-averaged geopotential height at 500 hPa over the region (55°–60°N, 120°–150°E), and the correlation coefficient between the year-to-year increments of YR and the EAI is ?0.44 during 1965–1996, reaching the 95%confidence level.

    Figure 2 depicts the correlation coefficients between the year-to-year increments of YR and meridional wind shear between the 850 hPa and 200 hPa levels in March–May (MAM) (i.e.v850 minusv200). As is shown in Figure 2,there is negative correlation in the region of (20°S–10°N,120°–140°E), which is the place for the interaction of the monsoon and ENSO. Next, we define an index for meridional wind shear around Indo-Australia (WSI) using the area-averaged meridional wind shear over the region(20°S–10°N, 120°–140°E). The correlation coefficient between the year-to-year increments of YR and the WSI is ?0.33 during 1965–1996, reaching the 90% confidence level.

    Figure 3(a) reveals the correlation coefficients between the year-to-year increments of YR and sea level pressure in December–February (DJF). According to Figure 3(a), there is a remarkable negative-correlation area in the South Pacific. Therefore, we define a South Pacific sea level pressure index (SPI) using the area-averaged sea level pressure over the region (40°–30°S, 130°–110°W). The correlation coefficient between the year-to-year increments of YR and the SPI is ?0.49 during 1965–1996, reaching the 99% confi-dence level. Figure 3(b) shows the correlation coefficients between the year-to-year increments of the SPI in DJF and the sea level pressure in JJA. The result indicates that the SPI in winter is linked to the western Pacific subtropical high in summer.

    Figure 4. Time series of observed (black solid line) and simulated (red dashed line) year-to-year increments of summer rainfall over the middle to lower reaches of the Yangtze River during 1965–2006.

    When analyzing the correlation coefficients between the year-to-year increments of YR and vorticity at 850 hPa,obvious positive coefficients are found in the region(30°–35°N, 115°–120°E) from spring to summer. Thus, we consider the vorticity index (VOI), i.e. the 850-hPa vorticity averaged in the above region, as a factor in the prediction of YR year-to-year increments. The correlation coefficient between the year-to-year increments of YR and the VOI is 0.49 during 1965–1996, reaching the 99% confidence level.

    Fan, Wang, and Choi (2008) considered the AAO(Antarctic Oscillation) index as well, but we find that the correlation coefficient of the year-to-year increments of YR and the AAO is relatively small. There is no significant difference in the prediction when we exclude the AAO index. Hence, we do not take the AAO index into account in this paper.

    We build the YIP prediction model based on the year-toyear increments of five factors from 1965 to 1996 in order to predict the YR, and then conduct the hindcast in the following 10 years. The statistical forecast model of YR yearto-year increments through the multi-linear regression is

    Figure 4 illustrates the simulated and observed year-toyear increments of YR from 1965 to 2006. It suggests that the simulated increments from the above five factors resemble the observations quite well. The correlation coefficient between the model result and observation is 0.74 in 1965–1996, and 0.56 in 1997–2006. There is an obvious biennial variation in the year-to-year increments of YR, which features alternately positive and negative anomalies in neighboring years. Most of the years with large positive and negative anomalies during the previous period from 1965 to 1996, such as in 1977, 1978, 1980, and 1981, are simulated by the model successfully. During the hindcast in 1997–2006, the model reproduces the years of extremely high YR increments, such as in 1998 and 2002.Relatively, for the year 2000, which has an extremely negative YR increment, the model does not behave well,but it still produces a negative increment.

    3.2. Precipitation prediction of NP

    When using the NP method to build the prediction model,we utilize the same five factors and the former 32-yr precipitation data to reconstruct the phase trajectory, and then conduct one-step prediction in the latter 10 years to examine the performance. In the model, we choose the embedded dimensions asm= 1 andm= 2, respectively,and the time delay parameter asτ= 1.

    The NP results are consistent with the observed values(Figure 5). In the middle to lower reaches of the Yangtze River, NP can capture the upward trend at the end of the twentieth century, and the downward trend after 2000.For the years with a large amount of precipitation, the predicted values are similar to observed, such as in 1997 and 1983. For the years with a fairly small amount of precipitation, the prediction model also behaves well, such as in 1972 and 1981. Overall, the YIP and NP methods predict similar results.

    Though the correlation coefficient of the NP model(m= 1) in the building stage is smaller than that in YIP(Table 1), the correlation coefficient in the predicting stage is similar to YIP. We also apply the NP model with a higher number of embedded dimensions (m= 2) and find an increased correlation coefficient (Table 1).

    To further evaluate the accuracy of precipitation prediction, we define two quantities: the percentage of relative error of prediction,

    And the average relative RMSE,

    Figure 5. Observed and predicted summer precipitation over the middle to lower reaches of the Yangtze River from 1965 to 2006.

    Table 1. Correlation coefficients between the prediction and observation in different models.

    Table 2. Relative percentage error of prediction (%).

    Here,yis the simulated YR,y0is the observation, andy0is the multi-year average precipitation from 1965 to 1996.

    Table 2 depicts the percentage errors of prediction from 1997 to 2006. Most of the precipitation errors are smaller than 30%, except in 1999 and 2000. This indicates that all three models are efficient in predicting YR. However, these models all still have large prediction errors in 1999 and 2000. Generally, the NP method may obtain similar results to the YIP method. When we compare the results of two cases of the NP method, the precipitation mean-square error is a little lower when the number of embedded dimensions is set to two rather than one. The mean-square errors (1997–2006) of the three models (YIP, NP (m= 1) and NP (m= 2)) are 26.62%, 22.71%, and 22.30%, respectively.

    4. Conclusion

    The YIP method is based on the knowledge that the physical processes of the predictands and the climate variables have the characteristics of quasi-biennial variation.Therefore, we can use the preceding year’s observational information as much as possible to improve the prediction results. Previous research has revealed that the YIP approach may improve the forecast skill (Wang et al. 2012).We analyze the mathematical definition of YIP and obtain its corresponding formula in the NP method. It proves that they are equivalent when the prediction time series is embedded in one-dimensional phase space. This theoretical result suggests that YIP also has robust mathematical and dynamical foundations, besides its physical mechanism.

    We demonstrate the NP model with multiple external driving forces. The model is different from previous NP models in its application of year-to-year increments (Δf)as forcing factors. Hence, the quasi-biennial signals with explicit physical meaning are included, which is better than the NP model with empirically chosen parameters. In a certain sense, the two models are equivalent.Nevertheless, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. By choosing different embedded dimensions, the NP model can reconstruct the dynamical curve into phase space with a higher number of dimensions than one. In addition, the fitting residual of NP can be set to second-order polynomial precision, which is more convenient than the original linear regression of YIP, indicating the superiority of the NP model over the YIP model. We also notice that YIP and NP have some differences when the sample numberNis not big enough, and these differences can decrease with an increase inN. The numerical results suggest that these differences are acceptable in practical prediction experiments.

    We select the YR to test the prediction skill of the NP models. Five predictors are introduced into the YIP and NP models. Results show that the NP model with yearto-year increments of former signals can obtain similar skill as the YIP model. When we increase the number of embedded dimensions to two, more accurate prediction can be obtained. These results indicate that the NP model has the potential to increase the operational skill in shortterm climate prediction.

    Pengfei WANG acknowledges Prof. Geli WANG for providing the FORTRAN code of the nonlinear time series prediction.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Sciences Foundation of China [41375112], [41530426], [41575058]; the Key Technology Talent Program of the Chinese Academy of Sciences; the Public Science and Technology Research Funds Projects of Ocean [201505013].

    Casdagli, M. 1989. “Nonlinear Prediction of Chaotic Time Series.”Physica D: Nonlinear Phenomena35 (3): 335–356.doi:10.1016/0167-2789(89)90074-2.

    Chen, B. M., L. R. Ji, P. C. Yang, D. M. Zhang, and G. L. Wang. 2003.“An Approach to Improving the Dynamical Extended-range(Monthly Prediction).”Chinese Science Bulletin48 (7): 696–703.doi:10.1007/BF03325658.

    Chen, X. F., and Z. G. Zhao. 2000. “Climatic Analysis of Summer Precipitation.” InThe Investigation of Flood Season Precipitation Prediction in China and its Application [in Chinese], 8–9. Beijing:Meteorological Press.

    Fan, K. 2009. “Predicting Winter Surface Air Temperature in Northeast China.”Atmospheric and Oceanic Science Letters2(1): 14–17. doi:10.1080/16742834.2009.11446770.

    Fan, K., M. J. Lin, and Y. Z. Gao. 2009. “Forecasting the Summer Rainfall in North China Using the Year-to-year Increment Approach.”Science in China Series D: Earth Sciences52 (4):532–539. doi:10.1007/s11430-009-0040-0.

    Fan, K., and B. Q. Tian. 2013. “Prediction of Wintertime Heavy Snow Activity in Northeast China.”Chinese Science Bulletin58(12): 1420–1426. doi:10.1007/s11434-012-5502-7.

    Fan, K., and H. J. Wang. 2009. “A New Approach to Forecasting Typhoon Frequency over the Western North Pacific.”Weather and forecasting24 (4): 974–986. doi:10.1175/2009W AF2222194.1.

    Fan, K., and H. J. Wang. 2010. “Seasonal Prediction of Summer Temperature over Northeast China Using a Year-to-year Incremental Approach.”Acta Meteorologica Sinica24 (3):269–275.

    Fan, K., H. J. Wang, and Y.-J. Choi. 2008. “A Physically-based Statistical Forecast Model for the Middle-lower Reaches of the Yangtze River Valley Summer Rainfall.”Chinese Science Bulletin53 (4): 602–609. doi:10.1007/s11434-008-0083-1.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,M. Iredell, et al. 1996. “The NCEP/NCAR 40-year Reanalysis Project.”Bulletin of the American Meteorological Society77: 437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Manuca, R., and R. Savit. 1996. “Stationarity and Nonstationarity in Time Series Analysis.”Physica D: Nonlinear Phenomena99(2–3): 134–161. doi:10.1016/S0167-2789(96)00139-X.

    Tian, B., and K. Fan. 2015. “A Skillful Prediction Model for Winter NAO Based on Atlantic Sea Surface Temperature and Eurasian Snow Cover.”Weather and Forecasting30 (1): 197–205. doi:10.1175/WAF-D-14-00100.1.

    Tsonis, A. 1996. “Widespread Increases in Low-frequency Variability of Precipitation over the Past Century.”Nature382(6593): 700–702. doi:10.1038/382700a0.

    Wang, H. J., K. Fan, X. M. Lang, J. Q. Sun, and L. J. Chen. 2012.The New Theory. Method and Technology for the Short-term Climate Prediction in China [in Chinese]. Beijing: Meteorological Press.

    Wang, G. L., P. C. Yang, J. Bian, and X. J. Zhou. 2011. “A Novel Approach in Predicting Non-stationary Time Series by Combining External Forces.”Chinese Science Bulletin56 (z2):3053–3056. doi:10.1007/s11434-011-4638-1.

    Wang, G. L., P. C. Yang, and D. R. Lü. 2004. “On Spatiotemporal Series Analysis and Its Application to Predict the Regional Short Term Climate Process.”Advances in Atmospheric Sciences21 (2): 296–299. doi:10.1007/BF02915717.

    Wang, G. L., P. C. Yang, and X. J. Zhou. 2013. “Nonstationary Time Series Prediction by Incorporating External Forces.”Advances in Atmospheric Sciences30 (6): 1601–1607. doi:10.1007/s00376-013-2134-z.

    Yang, P. C., X. J. Zhou, and J. C. Bian. 2000. “A Nonlinear Regional Prediction Experiment on a Short-range Climatic Process of the Atmospheric Ozone.”Journal of Geophysical Research Atmospheres105 (D10): 12253–12258.doi:10.1029/2000JD900098.

    国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 蜜桃亚洲精品一区二区三区| 小蜜桃在线观看免费完整版高清| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| 校园人妻丝袜中文字幕| 男人狂女人下面高潮的视频| 级片在线观看| 国产午夜精品一二区理论片| 日本熟妇午夜| 在线天堂最新版资源| 久久99精品国语久久久| 国产精品一及| 免费大片18禁| 久久午夜亚洲精品久久| 国产中年淑女户外野战色| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有是精品50| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av| 哪里可以看免费的av片| 亚洲婷婷狠狠爱综合网| 欧美3d第一页| 99热精品在线国产| 成年版毛片免费区| 久久久午夜欧美精品| 亚洲美女视频黄频| 我要搜黄色片| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| 国产成人精品婷婷| av视频在线观看入口| 久久久色成人| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 在线a可以看的网站| 日韩精品青青久久久久久| 久久99热这里只有精品18| 亚洲无线在线观看| 能在线免费观看的黄片| 别揉我奶头 嗯啊视频| 麻豆一二三区av精品| 人妻制服诱惑在线中文字幕| 99国产极品粉嫩在线观看| 天天躁夜夜躁狠狠久久av| 国语自产精品视频在线第100页| 日韩成人伦理影院| 啦啦啦韩国在线观看视频| 99久久人妻综合| 久久九九热精品免费| 综合色丁香网| 亚洲内射少妇av| 精品国产三级普通话版| 精品久久久久久久末码| 两个人视频免费观看高清| 激情 狠狠 欧美| 国产精品三级大全| 看十八女毛片水多多多| 日韩av在线大香蕉| 精品一区二区免费观看| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 又粗又硬又长又爽又黄的视频 | 欧美日韩综合久久久久久| 欧美日韩综合久久久久久| 成人毛片60女人毛片免费| 国产亚洲5aaaaa淫片| 国产一区二区在线观看日韩| 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 日韩av在线大香蕉| 最近的中文字幕免费完整| 亚洲精品456在线播放app| 国产成人精品一,二区 | 99热网站在线观看| 丰满乱子伦码专区| 最近手机中文字幕大全| 成人鲁丝片一二三区免费| 尤物成人国产欧美一区二区三区| 午夜免费男女啪啪视频观看| 99久久九九国产精品国产免费| 免费观看在线日韩| 婷婷色综合大香蕉| 色综合站精品国产| 69人妻影院| 中国美女看黄片| 久99久视频精品免费| 国产精品一二三区在线看| 国产色爽女视频免费观看| 国产精品99久久久久久久久| 久久热精品热| 美女黄网站色视频| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 极品教师在线视频| 黄色配什么色好看| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 午夜老司机福利剧场| 久久久久性生活片| 一个人看视频在线观看www免费| 亚洲第一区二区三区不卡| 黄片wwwwww| 狠狠狠狠99中文字幕| 热99re8久久精品国产| 又爽又黄a免费视频| 啦啦啦韩国在线观看视频| 久久欧美精品欧美久久欧美| 国国产精品蜜臀av免费| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| av在线蜜桃| 日韩欧美一区二区三区在线观看| 一边摸一边抽搐一进一小说| 国产av一区在线观看免费| 少妇高潮的动态图| 只有这里有精品99| 欧美在线一区亚洲| 99热这里只有精品一区| 夫妻性生交免费视频一级片| 国产精品一区二区三区四区久久| 国产片特级美女逼逼视频| av黄色大香蕉| 岛国毛片在线播放| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| kizo精华| 久久久久久九九精品二区国产| 色吧在线观看| 午夜精品在线福利| 联通29元200g的流量卡| 久久热精品热| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 99久久人妻综合| 1000部很黄的大片| 国产男人的电影天堂91| 精品久久久久久久久av| 可以在线观看的亚洲视频| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说 | 亚洲av男天堂| 99久久精品国产国产毛片| 久久久a久久爽久久v久久| 一个人看的www免费观看视频| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 黄色欧美视频在线观看| 美女脱内裤让男人舔精品视频 | 夜夜夜夜夜久久久久| 国产在线男女| 国产三级中文精品| 九色成人免费人妻av| 毛片一级片免费看久久久久| 欧美性感艳星| 日日摸夜夜添夜夜添av毛片| 亚洲成av人片在线播放无| 别揉我奶头 嗯啊视频| 尤物成人国产欧美一区二区三区| 尤物成人国产欧美一区二区三区| 91精品国产九色| 中文字幕免费在线视频6| 亚洲av电影不卡..在线观看| 一级av片app| 在线免费观看不下载黄p国产| 美女cb高潮喷水在线观看| 最近的中文字幕免费完整| 人妻系列 视频| 国产久久久一区二区三区| 国产色婷婷99| 日本黄大片高清| 99久久中文字幕三级久久日本| 六月丁香七月| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 乱系列少妇在线播放| 青春草视频在线免费观看| 免费观看在线日韩| 免费不卡的大黄色大毛片视频在线观看 | 97热精品久久久久久| 人妻久久中文字幕网| 欧美不卡视频在线免费观看| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 男女那种视频在线观看| 身体一侧抽搐| 天堂√8在线中文| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 身体一侧抽搐| 欧美zozozo另类| 人妻久久中文字幕网| 白带黄色成豆腐渣| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 国产成人一区二区在线| 少妇丰满av| 最近中文字幕高清免费大全6| 欧美另类亚洲清纯唯美| 美女脱内裤让男人舔精品视频 | 亚洲aⅴ乱码一区二区在线播放| 老女人水多毛片| 高清午夜精品一区二区三区 | 高清毛片免费看| 黄色日韩在线| 亚洲av免费在线观看| 亚洲四区av| 亚洲欧美日韩高清在线视频| 2022亚洲国产成人精品| 成人午夜高清在线视频| 高清在线视频一区二区三区 | 婷婷亚洲欧美| 国产精品av视频在线免费观看| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 全区人妻精品视频| 美女黄网站色视频| 三级毛片av免费| 欧美高清成人免费视频www| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 男人狂女人下面高潮的视频| 全区人妻精品视频| av免费在线看不卡| 丝袜美腿在线中文| 三级毛片av免费| av专区在线播放| 三级经典国产精品| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产| 国产亚洲精品av在线| 2022亚洲国产成人精品| 两个人视频免费观看高清| 午夜精品国产一区二区电影 | 永久网站在线| 男女边吃奶边做爰视频| 三级毛片av免费| 色5月婷婷丁香| av国产免费在线观看| 性插视频无遮挡在线免费观看| 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 晚上一个人看的免费电影| 婷婷精品国产亚洲av| 深夜精品福利| 麻豆av噜噜一区二区三区| av专区在线播放| 久久久久久九九精品二区国产| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 免费人成在线观看视频色| 男人舔女人下体高潮全视频| 久久九九热精品免费| 国产成人午夜福利电影在线观看| 九九久久精品国产亚洲av麻豆| 麻豆乱淫一区二区| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 国产精品一二三区在线看| 两个人的视频大全免费| 国产一区二区三区在线臀色熟女| 精品人妻一区二区三区麻豆| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| avwww免费| 超碰av人人做人人爽久久| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 黄色日韩在线| 日本免费一区二区三区高清不卡| 久久中文看片网| 少妇裸体淫交视频免费看高清| 亚洲最大成人av| 日本av手机在线免费观看| 久久九九热精品免费| 国产单亲对白刺激| 十八禁国产超污无遮挡网站| 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久| 亚洲欧美精品自产自拍| 国产极品天堂在线| 波多野结衣高清作品| 一个人免费在线观看电影| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 久久精品夜夜夜夜夜久久蜜豆| 午夜老司机福利剧场| 少妇的逼水好多| www日本黄色视频网| 一边摸一边抽搐一进一小说| 国产精品不卡视频一区二区| 日韩制服骚丝袜av| 久久九九热精品免费| 人人妻人人看人人澡| 国产av在哪里看| 夜夜爽天天搞| a级一级毛片免费在线观看| 深夜a级毛片| 欧美xxxx黑人xx丫x性爽| 精品国内亚洲2022精品成人| 美女大奶头视频| 韩国av在线不卡| 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 国产单亲对白刺激| 精品一区二区三区人妻视频| 日本爱情动作片www.在线观看| 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 成人永久免费在线观看视频| 久久久久久久久大av| 国产美女午夜福利| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| eeuss影院久久| 国产美女午夜福利| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 免费大片18禁| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久 | 一级黄片播放器| 国产精品1区2区在线观看.| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 国产av在哪里看| 男人的好看免费观看在线视频| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 免费大片18禁| 十八禁国产超污无遮挡网站| 12—13女人毛片做爰片一| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 婷婷亚洲欧美| 我的女老师完整版在线观看| 国产一级毛片在线| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品50| 久久国产乱子免费精品| 成熟少妇高潮喷水视频| 成人毛片a级毛片在线播放| 久久6这里有精品| 国内精品久久久久精免费| av免费观看日本| 毛片女人毛片| 国产成人freesex在线| 99热只有精品国产| 91精品国产九色| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 联通29元200g的流量卡| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 国产精品无大码| 成年免费大片在线观看| 久久久久久九九精品二区国产| 岛国在线免费视频观看| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 国产一区二区亚洲精品在线观看| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆成人午夜福利视频| 在线a可以看的网站| 免费看美女性在线毛片视频| 国产伦精品一区二区三区四那| 日韩制服骚丝袜av| 内地一区二区视频在线| 亚洲自拍偷在线| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 中国美女看黄片| 黄色配什么色好看| 久久久精品94久久精品| 午夜视频国产福利| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 91午夜精品亚洲一区二区三区| 99热6这里只有精品| 午夜福利在线观看免费完整高清在 | 亚洲成人久久爱视频| 黄色日韩在线| 亚洲精品国产av成人精品| 特级一级黄色大片| 听说在线观看完整版免费高清| 一夜夜www| 岛国毛片在线播放| 一本久久精品| 看免费成人av毛片| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 亚洲国产欧美人成| 日韩大尺度精品在线看网址| 97在线视频观看| 亚洲av成人精品一区久久| 国产高清激情床上av| 在线播放国产精品三级| 日韩制服骚丝袜av| 午夜福利成人在线免费观看| 热99在线观看视频| 久久精品国产亚洲网站| 99久久久亚洲精品蜜臀av| 夜夜爽天天搞| 伦理电影大哥的女人| 青春草亚洲视频在线观看| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| 精品久久久久久久久av| 国产精品电影一区二区三区| 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 午夜福利高清视频| 深爱激情五月婷婷| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人av在线免费| 五月玫瑰六月丁香| 人妻系列 视频| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区| 舔av片在线| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 看黄色毛片网站| 精华霜和精华液先用哪个| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 91av网一区二区| 99久久成人亚洲精品观看| 一区福利在线观看| 欧美成人精品欧美一级黄| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 精品久久久久久久久亚洲| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 欧美日韩在线观看h| 麻豆精品久久久久久蜜桃| 26uuu在线亚洲综合色| 性欧美人与动物交配| 欧美日本亚洲视频在线播放| 亚洲人与动物交配视频| 乱系列少妇在线播放| 欧美高清性xxxxhd video| 亚洲av男天堂| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 日日摸夜夜添夜夜添av毛片| а√天堂www在线а√下载| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| av在线蜜桃| 性色avwww在线观看| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 身体一侧抽搐| 国产69精品久久久久777片| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 免费观看a级毛片全部| 美女高潮的动态| 国产极品天堂在线| 久久精品久久久久久久性| av免费在线看不卡| 校园春色视频在线观看| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 日韩三级伦理在线观看| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 日韩大尺度精品在线看网址| 久久精品影院6| 真实男女啪啪啪动态图| 深爱激情五月婷婷| 不卡视频在线观看欧美| 久久国内精品自在自线图片| 日本黄色视频三级网站网址| 能在线免费看毛片的网站| 精品人妻偷拍中文字幕| 在现免费观看毛片| 寂寞人妻少妇视频99o| 国产视频内射| 国产 一区精品| 九九爱精品视频在线观看| 日韩欧美一区二区三区在线观看| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 国产成人午夜福利电影在线观看| 九九热线精品视视频播放| 看十八女毛片水多多多| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱| 青春草视频在线免费观看| 国产黄片视频在线免费观看| 国产午夜福利久久久久久| 成人鲁丝片一二三区免费| 在线免费观看的www视频| 色5月婷婷丁香| 最近手机中文字幕大全| 亚洲成人精品中文字幕电影| 国产亚洲av片在线观看秒播厂 | 亚洲欧美精品专区久久| 又爽又黄无遮挡网站| 国产不卡一卡二| 性色avwww在线观看| 国产精品一区www在线观看| 成人漫画全彩无遮挡| 欧美高清性xxxxhd video| 精品人妻视频免费看| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 大又大粗又爽又黄少妇毛片口| 26uuu在线亚洲综合色| 青春草国产在线视频 | 午夜爱爱视频在线播放| 麻豆成人av视频| 国产精品三级大全| 国产精品不卡视频一区二区| 久久精品综合一区二区三区| 黄色欧美视频在线观看| 美女黄网站色视频| 精品久久久久久久久久久久久| 爱豆传媒免费全集在线观看| 亚洲国产精品久久男人天堂| 精品人妻视频免费看| 久久久久性生活片| 国产女主播在线喷水免费视频网站 | 69av精品久久久久久| 久久久久久久久中文| 日韩强制内射视频| 精品久久久噜噜| 美女黄网站色视频| 日日干狠狠操夜夜爽| 欧美色欧美亚洲另类二区| 国产乱人视频| 国产亚洲av嫩草精品影院| 国产精品一区二区在线观看99 | 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 久久久午夜欧美精品| 久99久视频精品免费| 全区人妻精品视频| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 黄色一级大片看看| 日本免费a在线| 中国美白少妇内射xxxbb| 床上黄色一级片| 日韩成人伦理影院| 国产国拍精品亚洲av在线观看| 真实男女啪啪啪动态图| 久久精品久久久久久噜噜老黄 | АⅤ资源中文在线天堂| 在线播放国产精品三级| www.色视频.com| 午夜福利成人在线免费观看| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 国产老妇女一区| 日日干狠狠操夜夜爽| kizo精华| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 国产乱人视频| 免费观看的影片在线观看| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 国产高清三级在线| 精品一区二区免费观看| 午夜精品国产一区二区电影 | 一本久久中文字幕| 亚洲,欧美,日韩| 国产视频首页在线观看| 国产精品野战在线观看| 日韩三级伦理在线观看| 高清在线视频一区二区三区 | 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 免费在线观看成人毛片| av在线观看视频网站免费| 九九爱精品视频在线观看|