趙寧寧,張彩琴,趙 勇,譚鄧旭,師長(zhǎng)宏
(第四軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心, 西安 710032)
研究報(bào)告
靶向性近紅外熒光染料在肝癌模型研究中的應(yīng)用
趙寧寧,張彩琴,趙 勇,譚鄧旭,師長(zhǎng)宏*
(第四軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心, 西安 710032)
目的 探討七甲川花菁近紅外熒光(near-infrared fluorescence,NIRF)染料IR-783在肝癌模型影像研究中的應(yīng)用,分析該染料靶向腫瘤細(xì)胞的分子機(jī)制。方法 將標(biāo)記熒光素酶的人肝癌細(xì)胞HepG2皮下接種裸鼠,測(cè)試腫瘤發(fā)生部位生物發(fā)光(bioluminescence,BIL)信號(hào)與NIRF信號(hào)的相關(guān)性。采用腎包膜下移植的方式建立人肝癌裸鼠移植(patient-derived xenograft,PDX)模型,觀察IR-783對(duì)腫瘤邊界的識(shí)別能力;蘇木素-伊紅染色(hematoxylin -eosin staining,H&E staining)確認(rèn)腫瘤發(fā)生的部位,免疫組織化學(xué)(Immunohistochemistry,IHC)檢測(cè)肝癌腫瘤組織中CEA、AFP、HIF1α和OATP3A1的表達(dá);使用線粒體示蹤劑(Mito Tracker)和溶酶體示蹤劑(Lyso Tracker)確認(rèn)NIRF染料在肝癌細(xì)胞中的結(jié)合部位;測(cè)試IR-783對(duì)正常肝細(xì)胞中混合培養(yǎng)的肝癌細(xì)胞鑒別能力。結(jié)果 人肝癌裸鼠皮下移植瘤BIL與NIRF強(qiáng)度具有較好的相關(guān)性;NIRF染料IR-783能夠清晰識(shí)別腎包膜移植肝癌腫瘤邊緣;IHC染色顯示腫瘤組織中CEA、AFP、HIF1α和OATP3A1均高表達(dá);IR-783主要結(jié)合在腫瘤細(xì)胞的線粒體與溶酶體中;標(biāo)記GFP的人肝癌細(xì)胞HepG2能夠被IR-783特異性識(shí)別。結(jié)論 IR-783是一種具有腫瘤靶向和成像特征的新型近紅外熒光染料,其靶向性可能與肝癌組織中HIF1α和OATP3A1的高表達(dá)相關(guān)。
近紅外熒光染料;肝癌模型;低氧誘導(dǎo)因子;有機(jī)陰離子轉(zhuǎn)運(yùn)肽
近紅外熒光(near-infrared fluorescence,NIRF)成像技術(shù)可以從細(xì)胞、分子層面探測(cè)正常組織的病變,具有無創(chuàng)、實(shí)時(shí)、特異、精細(xì)等優(yōu)點(diǎn)[1, 2]。該技術(shù)較常使用的染料為吲哚菁綠(indocyaninegreen,ICG),該染料是唯一被美國(guó)食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)的可用于臨床診斷的NIRF染料,主要用于肝硬化、肝纖維化及胃腸道血管疾病等診斷。該類染料的穩(wěn)定性差,在極性溶劑中會(huì)迅速聚集并分解,且光照會(huì)加速分解,最終在水溶液中的不穩(wěn)定性及在血漿中的快速清除率限制了其在熒光成像、目標(biāo)組織定位方面的應(yīng)用[3]。近年來,一種新型的NIRF染料—七甲川花菁染料得到了廣泛應(yīng)用,該類染料具有成像和靶分子的雙重功能,自發(fā)熒光非常低,但與生物分子結(jié)合后,由于化學(xué)修飾提高了分子團(tuán)的穩(wěn)定性,可促發(fā)形成強(qiáng)的熒光,特異性的集聚在腫瘤細(xì)胞中,從而識(shí)別腫瘤發(fā)生部位,在腫瘤診斷,輔助腫瘤手術(shù)切除和腫瘤治療等方面具有良好的應(yīng)用前景[4-6]。本研究分別選擇了人肝癌細(xì)胞系移植模型和PDX模型,探討了該類染料的成像和靶向特性。
1.1 實(shí)驗(yàn)動(dòng)物與試劑
雄性BALB/c裸鼠,4~6周齡,由北京維通利華公司提供【SCXK(京)2012-0001】,飼養(yǎng)在第四軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心屏障動(dòng)物房【SYXK(陜)2014-001】。人體肝癌腫瘤標(biāo)本來自于第四軍醫(yī)大學(xué)西京醫(yī)院肝膽外科,通過了西京醫(yī)院倫理委員會(huì)的批準(zhǔn)(編號(hào)2015432)。七甲川花菁NIRF染料IR-783由美國(guó)Cedars-Sinai Medical Center,Leland Chung教授饋贈(zèng);動(dòng)物麻醉使用水合氯醛7 mg/只;腫瘤移植所用基質(zhì)膠(Matrigel Matrix)購(gòu)買于美國(guó)BD公司;實(shí)驗(yàn)中所用一抗CEA、AFP、HIF1α和OATP3A1均購(gòu)買于上海艾博抗體有限公司;Mito Tracker,Lyso Tracker購(gòu)買于美國(guó)Invitrogen公司;DAPI購(gòu)買于北京雷根生物技術(shù)有限公司;標(biāo)記GFP的HepG2肝癌細(xì)胞由本實(shí)驗(yàn)室保存;動(dòng)物實(shí)驗(yàn)通過了第四軍醫(yī)大學(xué)倫理委員會(huì)的批準(zhǔn)(編號(hào)14013)。
1.2 實(shí)驗(yàn)方法
1.2.1 生物發(fā)光和近紅外熒光強(qiáng)度與腫瘤體積變化的關(guān)系
將標(biāo)記有熒光素酶(luciferase, LUC)的HepG2肝癌細(xì)胞以1×106個(gè)/只移植于5只裸鼠的右側(cè)背部皮下,1周后,使用Caliper Lumina II小動(dòng)物光學(xué)成像系統(tǒng)同一體位分別測(cè)定不同小鼠腫瘤部位BIL與NIRF強(qiáng)度ROI(regions of interest, ROI)并測(cè)量腫瘤體積,其中,LUC于成像前10 min腹腔注射,劑量為每只1.5 mg;NIRF染料于成像前24 h腹腔注射,每只100 μL(濃度為100 μmol/L)。持續(xù)對(duì)小鼠腫瘤部位BIL和NIRF強(qiáng)度監(jiān)測(cè)并測(cè)量腫瘤體積,分別分析兩種光強(qiáng)度與腫瘤體積的相關(guān)性。
1.2.2 近紅外熒光染料對(duì)腫瘤邊界的識(shí)別
采用裸鼠腎包膜下移植的方式建立了3例人肝癌移植(patient-derived xenograft,PDX)模型[4],病人的住院號(hào)分別為B66873、C34566、C64003。模型建立兩周后進(jìn)行NIRF成像。將小鼠處死取出腎臟同樣方法進(jìn)行NIRF成像,最后把小鼠腎臟制成冰凍切片并HE染色,在帶有NIRF濾光片的熒光顯微鏡下觀察對(duì)比冰凍切片的組織形態(tài)和IHC結(jié)果。
1.2.3 肝癌組織中CEA、AFP、HIF1α和OATP3A1的表達(dá)
將3例PDX模型中得的傳代肝癌組織做石蠟切片,分別進(jìn)行HE染色,并使用IHC檢測(cè)腫瘤組織中CEA、AFP、HIF1α和OATP3A1的表達(dá)。
1.2.4 近紅外熒光染料在腫瘤細(xì)胞中的染色定位
將HepG2細(xì)胞以1×105/個(gè)鋪于兩個(gè)激光共聚焦平皿,37℃孵育24 h后,吸出平皿內(nèi)培養(yǎng)基,加入濃度為20 μmol/L的NIRF染料IR-783孵箱內(nèi)孵育30 min后,PBS洗掉多余的染料,分別加入濃度為75 nmol/L的Mito tracker和濃度為200 nmol/L的Lyso Tracker,37℃孵育30 min后,PBS洗掉多余染料,4%的多聚甲醛固定后,DAPI染核。在激光共聚焦下觀察,其中IR-783的近紅外熒光以633 nm的光束激發(fā),Mito Tracker的橘黃色熒光和Lyso Tracker的綠色熒光以543 nm的光束激發(fā)。
1.2.5 近紅外熒光染料對(duì)腫瘤細(xì)胞的特異性識(shí)別
將標(biāo)記GFP的HepG2肝癌細(xì)胞與正常的肝細(xì)胞混合培養(yǎng)24 h后,加入IR-783(20 nmol/L)作用30 min后,PBS洗掉多余的染料,多聚甲醛固定,DAPI染色,方法同1.2.4,在裝有NIRF濾光片的顯微鏡下觀察。
1.3 數(shù)據(jù)分析
所有結(jié)果以均數(shù)±標(biāo)準(zhǔn)差表示,兩組間的數(shù)據(jù)比較采用Student’st檢驗(yàn),以P< 0.05為差異有顯著性。
2.1 腫瘤部位生物發(fā)光信號(hào)與近紅外熒光信號(hào)具有較好的相關(guān)性
將人肝癌細(xì)胞HepG2接種裸鼠建立皮下移植模型,活體成像結(jié)果顯示,腫瘤部位生物發(fā)光和近紅外熒光強(qiáng)度均隨著腫瘤體積的增長(zhǎng)而增強(qiáng),兩者R2值分別達(dá)到0.9986和0.9974,具有較好的相關(guān)性(圖1)。
2.2 近紅外熒光染料能夠特異性識(shí)別腫瘤邊界
將3例臨床肝癌手術(shù)標(biāo)本采用裸鼠腎包膜移植的方法成功建立PDX模型,該模型NIRF活體成像和腎臟離體成像均顯示IR-783染料特異性集聚在腫瘤部位;取腎臟部位做冰凍切片,在熒光顯微鏡下觀察發(fā)現(xiàn)NIRF染料能夠清晰的識(shí)別腫瘤邊緣,且與HE染色和IHC結(jié)果相一致,符合肝癌特征(圖2)。
2.3 肝癌組織中CEA、AFP、HIF1α和OATP3A1呈強(qiáng)陽性表達(dá)
三例PDX模型肝癌組織中CEA、AFP、HIF1α和OATP3A1的表達(dá)均呈強(qiáng)陽性。CEA主要用于消化道腫瘤的檢測(cè),而AFP是診斷原發(fā)性肝癌的特異性標(biāo)志物,聯(lián)合二者結(jié)果可有效提高原發(fā)性肝癌的確診率,說明上述腫瘤組織不僅在病理形態(tài)上與病人保持一致,同時(shí)也維持了原發(fā)腫瘤的分子特征[7, 8],結(jié)果見圖3。
2.4 近紅外熒光染料主要定位于腫瘤細(xì)胞的線粒體和溶酶體
培養(yǎng)的肝癌細(xì)胞加入NIRF染料進(jìn)行了細(xì)胞定位,共聚焦顯微鏡觀察顯示NIRF染料主要聚集在腫瘤細(xì)胞的胞漿內(nèi),與線粒體和溶酶體示蹤劑顯示的部位一致,即NIRF染料主要與腫瘤細(xì)胞的線粒體和溶酶體結(jié)合(圖4)。
2.5 近紅外熒光染料能夠特異性的識(shí)別腫瘤細(xì)胞
將標(biāo)記GFP的HepG2細(xì)胞與正常肝細(xì)胞混合培養(yǎng)后,加入NIRF染料IR-783,熒光顯微鏡下發(fā)現(xiàn)NIRF染料只聚集在帶有GFP的腫瘤細(xì)胞部位,而正常的肝細(xì)胞無紅色熒光(圖5)。
IR-783是一種新型的NIRF七甲川花菁染料,它不需要結(jié)合腫瘤靶分子便可直接集聚于腫瘤部位,動(dòng)態(tài)觀察腫瘤的生長(zhǎng)變化[7-9];與其它NIRF染料相比,這種染料可特異性識(shí)別腫瘤細(xì)胞,且自發(fā)熒光低,穿透力強(qiáng)[10, 11];與BIL相比,IR-783在小鼠體內(nèi)24 h后便可清晰成像,甚至48 h后仍然能夠顯像。常規(guī)生物發(fā)光信號(hào)一般在注射底物后20 min后就開始淬滅,而且其BIL成像,需要將熒光素酶轉(zhuǎn)染入細(xì)胞,步驟比較繁瑣,無法直接應(yīng)用于PDX模型成像[12]。NIRF染料具有的腫瘤靶向性和成像特征有可能成為腫瘤監(jiān)測(cè)的良好工具。
圖1 生物發(fā)光強(qiáng)度、近紅外熒光強(qiáng)度與腫瘤體積變化的相關(guān)性Fig.1 The correlation between bioluminescence intensity, NIRF intensity and tumor volume
注:藍(lán)色箭頭為腫瘤組織,黃色箭頭為正常組織圖2 近紅外熒光染料集聚于腫瘤部位Note: Blue arrows indicate the tumor tissue, and yellow arrows indicate normal tissueFig.2 NIRF dyeis retained in the tumor tissue
圖3 PDX模型腫瘤組織HE染色與免疫組化結(jié)果(×400)Fig.3 Morphology of the tumors and distribution of the biomarker expressions in the tumor tissues (H&E and IHC staining)
圖5 近紅外熒光染料特異性識(shí)別腫瘤細(xì)胞(×400)Fig.5 Tumor cells are specifically labeled by the NIRF dye IR-783
本研究選擇的PDX模型是將人的肝癌組織直接移植于小鼠體內(nèi)的腎包膜下,這種模型保留了肝癌生長(zhǎng)的三維環(huán)境,與原發(fā)腫瘤具有較高的相似性,是一種理想的腫瘤模型[13]。結(jié)果顯示IR-783可以特異性的集聚于腫瘤部位,并且BIL與NIRF強(qiáng)度均隨腫瘤體積的增大而增強(qiáng),二者具有較好的相關(guān)性,從而驗(yàn)證了IR-783用于NIRF成像的可靠性;在腎包膜移植的PDX模型體內(nèi)注射IR-783,染料特異性的集聚在腫瘤部位,離體成像顯示腫瘤部位具有較強(qiáng)的熒光。將切片進(jìn)行H&E染色,NIRF熒光成像和IHC染色,結(jié)果顯示NIRF染料集聚在腫瘤部位,并且能夠清晰的識(shí)別腫瘤邊緣,這可能成為腫瘤外科手術(shù)良好的監(jiān)測(cè)方法;通過免疫組織化學(xué)方法分別檢測(cè)腫瘤組織中CEA,AFP,HIF1α和OATP3A1的表達(dá),結(jié)果顯示,腫瘤組織中的這4種生物標(biāo)志物表達(dá)均呈強(qiáng)陽性,其中,CEA主要用于消化道腫瘤的檢測(cè),而AFP是診斷原發(fā)性肝癌的特異性標(biāo)志物,聯(lián)合二者結(jié)果可有效提高原發(fā)性肝癌的確診率,說明上述腫瘤組織不僅在病理形態(tài)上與病人保持一致,同時(shí)也維持了原發(fā)腫瘤的分子特征;腫瘤組織中HIF1α和OATP3A1的表達(dá)比正常組織明顯增高,根據(jù)文獻(xiàn)報(bào)道,通過HIF1α/OATPs信號(hào)分子的調(diào)控促進(jìn)了前列腺癌細(xì)胞與前例腺癌移植模型腫瘤部位對(duì)該染料的吸收,低氧和OATPs的表達(dá)是腫瘤細(xì)胞廣泛存在的現(xiàn)象,因此我們推測(cè)可以將IR-783廣泛應(yīng)用于其它類型腫瘤細(xì)胞的特異性識(shí)別;同時(shí),文獻(xiàn)報(bào)道,IR-783集聚于腫瘤部位的機(jī)制與HIF1α/OATPs信號(hào)分子軸有關(guān),在低氧的條件下腫瘤細(xì)胞中染料的吸收顯著增加,相反,通過沉寂腫瘤細(xì)胞中HIF1α的表達(dá),阻止了低氧的誘導(dǎo),與常氧條件下相比IR-783的吸收沒有明顯增加;OATPs通過HIF1α的誘導(dǎo)調(diào)節(jié)將IR-783轉(zhuǎn)運(yùn)至細(xì)胞,結(jié)合已有文獻(xiàn)的報(bào)道,HIF1α和OATP3A1很可能與IR-783染料集聚在腫瘤細(xì)胞中有關(guān)[1, 14]。體外實(shí)驗(yàn)顯示IR-783特異性聚集于腫瘤細(xì)胞,而在正常細(xì)胞中少有結(jié)合,說明這種染料可以特異性的識(shí)別腫瘤細(xì)胞[15]。進(jìn)一步研究發(fā)現(xiàn)NIRF染料主要集聚在腫瘤細(xì)胞的線粒體與溶酶體中,由于線粒體和溶酶體與細(xì)胞的衰老、死亡等密切相關(guān),結(jié)合NIRF染料對(duì)腫瘤的靶向性,很可能這種染料經(jīng)過修飾,聯(lián)合藥物后可成為一種治療腫瘤的新工具[9, 10, 16]。
[1] Wu JB, Shao C, Li X, et al. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis[J]. Biomaterials, 2014, 35(28): 8175-8185.
[2] Tsai EH, Bentz BZ, Chelvam V, et al. In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics[J]. Biomed Opt Express, 2014, 5(8): 2662-2678.
[3] Abran M, St?hli BE, Merlet N, et al. Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits[J]. Biomed Opt Express, 2015, 6(10): 3989-3999.
[4] 趙寧寧,張彩勤,趙勇,等.近紅外熒光染料在胃癌人源性腫瘤組織移植模型研究中的應(yīng)用 [J]. 中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào),2015, 12(6): 643-647.
[5] Keating JJ, Nims S, Venegas O, et al. Intraoperative imaging identifies thymoma margins following neoadjuvant chemotherapy[J]. Oncotarget, 2016, 7(3): 3059-3067.
[6] James NS, Ohulchanskyy TY, Chen Y, et al. Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part-2[J]. Theranostics, 2013, 3(9): 703-718.
[7] 張丹,李遠(yuǎn),徐澤強(qiáng),等. 外周血肝癌標(biāo)志物在肝癌診斷中的價(jià)值[J].中華實(shí)用診斷與治療雜志, 2011, 25(8): 742-744.
[8] Yhee JY, Kim SA, Koo H, et al. Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes[J]. Theranostics, 2012, 2(2): 179-189.
[9] Yu Z, Sun Q, Pan W, et al. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy[J]. ACS Nano, 2015, 9(11): 11064-11074.
[10] Wan Q, Chen S, Shi W, et al. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe[J].AngewChemInt Ed Engl, 2014, 53(41): 10916-10920.
[11] Yue C, Zhang C, Alfranca G, et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy[J]. Theranostics, 2016, 6(4): 456-469.
[12] Chen F, Nayak TR, Goel S, et al. In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles[J].Mol Pharm, 2014, 11(11): 4007-4014.
[13] Einarsdottir BO, Bagge RO, Bhadury J, et al. Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions[J]. Oncotarget, 2014, 5(20): 9609-9618.
[14] Wlcek K1, Svoboda M, Riha J, et al. The analysis of organic anion transporting polypeptide (OATP) mRNA and protein patterns in primary and metastatic liver cancer[J]. Cancer BiolTher, 2011, 11(9): 801-811.
[15] 鄭明彬,鄭翠芳,龔萍,等. 吲哚菁綠納米顆粒在癌癥診斷和治療中的應(yīng)用[J]. 生物化學(xué)與生物物理進(jìn)展, 2013, 40(10): 971-976.
[16] Bunschoten A, Buckle T, Kuil J, et al. Targeted non-covalent self-assembled nanoparticles based on human serum albumin[J]. Biomaterials, 2012, 33(3): 867-875.
Application of targeting near-infrared fluorescence dye in the study of liver cancer models
ZHAO Ning-ning, ZHANG Cai-qin, ZHAO Yong, TAN Deng-xu, SHI Chang-hong*
(Laboratory Animal Center, the Fourth Military Medical University, Xi’an 710032, China)
Objective To study the application of hepatamethine cyanine near-infrared fluorescence (NIRF) dye IR-783 in the mouse models of human liver cancer exenografts, and to analyze the molecular mechanisms of the NIRF dye targeting tumor cells. Methods Luciferase-tagged HepG2 cells were inoculated subcutaneously into the nude mice. We detected the correlation of NIRF intensity and bioluminescence intensity (BIL) in the tumor region. Patient-derived xenograft (PDX) model was established in mouse by subrenal capsular implantation of clinic liver cancer specimen. After injecting the IR-783 dye, the interface between mouse kidney and the xenograft tumors was confirmed by NIRF analysis, and the tumor tissue in kidney was observed by pathology using H&E staining. The expression of CEA, AFP, HIF1α and OATP3A1 in the liver cancer tissue was detected by immunohistochemical staining. The intracellular retention of NIRF dyes was observed under fluorescence microscope after adding Mito Tracker or Lyso Tracker into cultured HepG2 cells. We added IR-783 in a co-culture system of HCCs and normal liver cells to test the specifical identification ability of IR-783 of the liver cancer cells. Results There was a good correlation between NIRF intensity and BIL intensity of the subcutaneous liver cancer xenograft region in nude mice. The margin between the mouse kidney tissue and xenograft tumors was clearly identified by IR-783.Compared with normal kidney tissue, CEA, HIF1α, OATP3A1 and AFP were highly expressed in the tumor region detected by IHC staining. The NIRF dye IR-783 was mainly accumulated in the mitochondria and lysosomes of cancer cells. GFP-tagged HepG2 cells could be recognized directly, whereas red fluorescence was not detected in normal liver cells. Conclusions IR-783 is a novel near-infrared fluorescent dye with tumor targeting and imaging properties. Its targeting ability may be related to the high expression of HIF1α and OATP3A1 in the liver cancer tissue.
Near-infrared fluorescence dye; Liver cancer models; Hypoxia-inducible factor1α; Organic anion-transporting peptides
國(guó)家自然科學(xué)基金項(xiàng)目(31572340);軍隊(duì)實(shí)驗(yàn)動(dòng)物專項(xiàng)課題(SYDW2014-002)。
趙寧寧(1985-),女,碩士,講師,研究方向:人體腫瘤分子影像。
師長(zhǎng)宏,教授,主要從事疾病動(dòng)物模型研究。E-mail: changhong@fmmu.eu.cn
R-33
A
1671-7856(2017) 03-0008-06
10.3969.j.issn.1671-7856. 2017.03.002
2016-08-19