朱彩玲, 林 海, 王志強, 趙 昕*
(1. 大連工業(yè)大學(xué) 紡織與材料工程學(xué)院, 遼寧 大連 116034; 2. 大連工業(yè)大學(xué) 信息科學(xué)與工程學(xué)院, 遼寧 大連 116034)
?
波導(dǎo)適用型鋁鍺酸鹽玻璃中銩離子上轉(zhuǎn)換熒光光子輸出與量子產(chǎn)率定量
朱彩玲1,2, 林 海1, 王志強1, 趙 昕1,2*
(1. 大連工業(yè)大學(xué) 紡織與材料工程學(xué)院, 遼寧 大連 116034; 2. 大連工業(yè)大學(xué) 信息科學(xué)與工程學(xué)院, 遼寧 大連 116034)
制備了適用于鉀鈉離子交換波導(dǎo)的Tm3+/Yb3+摻雜鋁鍺酸鹽玻璃,利用積分球配以光纖光譜儀在975 nm激光泵浦下對玻璃的上轉(zhuǎn)換熒光進行測試,解析出樣品的絕對熒光特征參量。測試與計算結(jié)果顯示,在380 ℃的KNO3熔鹽中,Tm3+/Yb3+摻雜的鋁鍺酸鹽玻璃的鉀鈉離子交換有效擴散系數(shù)為0.070 μm2/min,熱離子交換過程易于控制。鋁鍺酸鹽玻璃樣品中,Tm3+主要發(fā)出477 nm藍(lán)光和806 nm近紅外光,其中近紅外光為支配性發(fā)射。絕對熒光參數(shù)和激發(fā)功率密度呈正相關(guān),當(dāng)功率密度達(dá)到1 482 W/cm2時,三光子上轉(zhuǎn)換藍(lán)光的絕對光譜功率、凈發(fā)射光子數(shù)和量子產(chǎn)率分別為269 μW、6.46×1014/s和1.43×10-4,雙光子近紅外光上轉(zhuǎn)換對應(yīng)的3個參量分別為4 024 μW、1.63×1016/s和3.61×10-3。基于波導(dǎo)適用型鋁鍺酸鹽玻璃中Tm3+上轉(zhuǎn)換熒光的絕對化表征,為進一步研發(fā)光電子器件和激光材料提供了有益的數(shù)據(jù)參考。
波導(dǎo)適用型鋁鍺酸鹽玻璃; 銩離子; 上轉(zhuǎn)換熒光光子定量; 量子產(chǎn)率
稀土離子摻雜的上轉(zhuǎn)換發(fā)光材料在彩色顯示、光存儲、光學(xué)探測器、固體激光器、波導(dǎo)激光器以及光學(xué)放大器等方面有著廣闊的應(yīng)用前景[1-8],其中基質(zhì)材料的選擇對于實現(xiàn)有效上轉(zhuǎn)換熒光十分重要。例如,較低的聲子能量限制了無輻射馳豫幾率的發(fā)生,提高了稀土離子中間亞穩(wěn)態(tài)能級的熒光壽命,進而有效地提高了上轉(zhuǎn)換發(fā)光的效率[9-10]。在氧化物玻璃中,鍺酸鹽玻璃具有相對較低的聲子能量(820 cm-1)、較高的機械強度、良好的熱和化學(xué)穩(wěn)定性,能適應(yīng)惡劣環(huán)境,使之成為研發(fā)光學(xué)和激光材料的有力候選者[11-15]。
摻Tm3+發(fā)光材料因其能夠獲得有效的上轉(zhuǎn)換藍(lán)光和近紅外光而受到重視。通過Yb3+的敏化作用,材料可以吸收980 nm左右的激光并將能量傳遞給Tm3+,實現(xiàn)上轉(zhuǎn)換熒光的輸出[16-18]。量子產(chǎn)率是有效評估上轉(zhuǎn)換發(fā)光效率的一個關(guān)鍵參數(shù),其熒光參數(shù)的準(zhǔn)確測量有助于深入理解上轉(zhuǎn)換材料的熒光特性[19-22]。盡管傳統(tǒng)的相對光譜測量法在一定程度上描述了材料的熒光特性,然而,采用積分球法配以光纖光譜儀測試系統(tǒng),針對稀土摻雜鍺酸鹽玻璃熒光光子的絕對化表征避免了相對測量在光電測試系統(tǒng)中再現(xiàn)性差導(dǎo)致的測試結(jié)果難以重復(fù)的弊端,更有益于全面評估其應(yīng)用于高效光電子器件的潛能。
鍺酸鹽玻璃是較理想的波導(dǎo)基質(zhì)材料,國內(nèi)外學(xué)者對Tm3+、Ho3+和Er3+摻雜的鍺酸鹽玻璃上轉(zhuǎn)換發(fā)光性質(zhì)開展了系列研究[23-25],然而對于Tm3+在鍺酸鹽玻璃體系中上轉(zhuǎn)換熒光光子的絕對定量研究還較為匱乏?;诖?,本文針對Tm3+/Yb3+摻雜適用于熱離子交換制備光波導(dǎo)的鍺酸鹽玻璃,采用熒光光譜絕對測試系統(tǒng)對玻璃的上轉(zhuǎn)換發(fā)光性能進行表征,獲得了樣品的光譜功率分布和光子數(shù)分布,并利用絕對熒光量子產(chǎn)率來表征鋁鍺酸鹽玻璃中Tm3+離子上轉(zhuǎn)換熒光的發(fā)光效率。Tm3+摻雜的鋁鍺酸鹽玻璃的絕對光譜參數(shù)的解析為進一步研發(fā)高效的上轉(zhuǎn)換發(fā)光和激光材料提供了有價值的數(shù)據(jù)參考。
2.1 玻璃制備與波導(dǎo)化嘗試
鋁鍺酸鹽玻璃以量的比為23Na2O-2MgO-22Al2O3-53GeO2(簡稱NMAG玻璃) 為基質(zhì)組分,合成所用的化學(xué)藥品為Na2CO3、Al2O3、MgO和GeO2。稀土離子以高純氧化物Tm2O3和Yb2O3引入,摻雜質(zhì)量分?jǐn)?shù)分別為0.8%和2.4%,純度為99.99%。按上述比例準(zhǔn)確稱量藥品充分混勻后裝入剛玉坩堝,在1 200 ℃的箱式電阻爐中預(yù)熱4 h,取出樣品放入已加熱到1 550 ℃的電阻爐中熔融3 h后倒在鋁模具上,再在550 ℃的馬弗爐中退火4 h,隨爐冷卻至室溫即制得樣品。獲得的玻璃被拋光成各面平行的樣品待測。
選用高純KNO3熔鹽作為離子交換源,將純凈的KNO3熔鹽放入清潔的剛玉坩堝中。將清洗完全的玻璃基片以及盛有熔鹽的剛玉坩堝置入離子交換爐內(nèi),待溫度升至380 ℃并穩(wěn)定后,將玻璃基片浸沒在熔鹽中進行4 h離子交換。待離子交換結(jié)束后,將玻璃基片從熔鹽中取出,自然冷卻后去除玻璃表面殘留的熔鹽。
2.2 表征
采用Metricon 2010型棱鏡耦合儀測量玻璃基質(zhì)和平面波導(dǎo)的折射率。玻璃基質(zhì)在635.96 nm處的折射率測定為1.579 8,其他任意波長處的折射率可根據(jù)Cauchy公式n=A+B/λ2導(dǎo)出,式中A=1.557 5,B=9 909 nm2。利用975 nm多模激光作為泵浦源,采用直徑為8.38 cm(3.3 in)的積分球配以內(nèi)芯直徑為600 μm的功率光纖連接的光纖光譜儀(Ocean,USB4000)監(jiān)測玻璃樣品的上轉(zhuǎn)換光譜功率分布,其測試系統(tǒng)示意圖見圖1。玻璃樣品在自然光下的照片采用索尼α200單反相機拍攝。所有相關(guān)測試均在室溫下進行。
Fig.1 Illustration of integrating sphere measurement system for absolute spectral power distribution
3.1 K+-Na+離子交換
圖2 K+-Na+離子交換NMAG玻璃平面光波導(dǎo)的模式分布(a)與折射率分布(b)
Fig.2 Mode profile(a) and index profile(b) of NMAG glass slab waveguide by K+-Na+ion exchange
3.2 上轉(zhuǎn)換熒光的光譜功率分布
圖3所示為玻璃樣品在975nm激光泵浦下,Tm3+/Yb3+摻雜的NMAG玻璃的光譜功率分布曲線。泵浦功率密度選定為721,1 108,1 482W/cm2,肉眼可觀察到明亮的藍(lán)色上轉(zhuǎn)換熒光 (圖3中照片所示)。在不同泵浦功率密度條件下,其熒光發(fā)射峰數(shù)量和位置基本相同。在可見光譜區(qū)測得兩個上轉(zhuǎn)換熒光峰,示于圖3(a)、3(b)和3(c),峰值波長在477nm和650nm處,分別歸屬于Tm3+離子的1G4→3H6和1G4→3F4的輻射躍遷。圖3(d)、3(e)和3(f)為近紅外光譜區(qū)的上轉(zhuǎn)換熒光峰,峰值波長在806nm,歸屬于3H4→3H6的輻射躍遷[8,29]。
泵浦功率密度對上轉(zhuǎn)換吸收過程起支配性作用,隨著泵浦功率密度的增大,上轉(zhuǎn)換發(fā)射峰均增強。在721,1 108,1 482W/cm2的泵浦下,對各個發(fā)射帶的光譜功率分布進行積分,得到藍(lán)光的發(fā)射功率分別為36.42,120.59,268.61μW,近紅外光的發(fā)射功率分別為988.16,2 299.15,4 024.49μW。
3.3 上轉(zhuǎn)換光子數(shù)分布
基于Tm3+/Yb3+摻雜的NMAG玻璃的光譜功率分布P(λ),光子數(shù)分布N(λ)可通過下式獲得:
(1)
式中λ為波長,h為普朗克常數(shù),c為真空中的光速。圖4展示了在不同泵浦功率密度下,Tm3+/Yb3+摻雜NMAG玻璃的上轉(zhuǎn)換熒光的凈發(fā)射和凈吸收光子數(shù)分布。圖4(a)、4(b)和4(c)為可見光譜區(qū)的上轉(zhuǎn)換光子數(shù)分布 (插圖為凈吸收光子數(shù)分布),圖4(d)、4(e)和4(f)為近紅外光譜區(qū)的上轉(zhuǎn)換發(fā)射光子數(shù)分布。在各泵浦功率密度下,對Tm3+的凈吸收和凈發(fā)射光子數(shù)進行積分運算,得到各激發(fā)帶光子數(shù)。結(jié)果表明:隨著泵浦功率密度的增加,各發(fā)射的光子數(shù)在增強,相關(guān)功率密度下的凈吸收光子數(shù)也有所增加。當(dāng)功率密度為721,1 108,1 482 W/cm2時,藍(lán)色熒光凈發(fā)射光子數(shù)分別為8.76×1013,28.99×1013,64.56×1013/s,近紅外凈發(fā)射光子數(shù)為400.15×1013,930.92×1013,1 629.68×1013/s,此時,凈吸收光子數(shù)分別為222.17×1016,336.69×1016,451.37×1016/s。
圖3 各激光功率下玻璃的上轉(zhuǎn)換熒光光譜功率分布。插入照片為對應(yīng)功率下樣品的藍(lán)色熒光。(a)ρ=721 W/cm2, 可見光譜區(qū);(b)ρ=1 108 W/cm2,可見光譜區(qū);(c)ρ=1 482 W/cm2,可見光譜區(qū);(d)ρ=721 W/cm2,近紅外光譜區(qū);(e)ρ=1 108 W/cm2,近紅外光譜區(qū);(f)ρ=1 482 W/cm2, 近紅外光譜區(qū)。
Fig.3 Upconversion spectral power distributions (SPD) of the sample under various laser powers. Insert photos: blue fluorescence of the sample under related excitation powers. (a)ρ=721 W/cm2, in visible spectral region. (b)ρ=1 108 W/cm2, in visible spectral region. (c)ρ=1 482 W/cm2, in visible spectral region. (d)ρ=721 W/cm2, in near-infrared spectral region. (e)ρ=1 108 W/cm2, in near-infrared spectral region. (f)ρ=1 482 W/cm2, in near-infrared spectral region.
圖4 各激光功率下玻璃的上轉(zhuǎn)換凈吸收和凈發(fā)射光子數(shù)分布。(a)ρ=721 W/cm2,可見光譜區(qū);(b)ρ=1 108 W/cm2, 可見光譜區(qū);(c)ρ=1 482 W/cm2, 可見光譜區(qū);(d)ρ=721 W/cm2,近紅外光譜區(qū);(e)ρ=1 108 W/cm2,近紅外光譜區(qū);(f)ρ=1 482 W/cm2,近紅外光譜區(qū)。
Fig.4 Net upconversion absorbtion photon distributions (NAPD) and net emission photon distributions (NEPD) for sample under various laser power densities. (a)ρ=721 W/cm2, in visible spectral region. (b)ρ=1 108 W/cm2, in visible spectral region. (c)ρ=1 482 W/cm2, in visible spectral region. (d)ρ=721 W/cm2, in near-infrared spectral region. (e)ρ=1 108 W/cm2, in near-infrared spectral region. (f)ρ=1 482 W/cm2, in near-infrared spectral region.
3.4 上轉(zhuǎn)換熒光量子產(chǎn)率的計算
熒光量子產(chǎn)率 (Quantum yield) 反映熒光體吸收光子發(fā)射熒光的效率,表示為物質(zhì)發(fā)射熒光光子數(shù)與吸收光子數(shù)的比值:
(2)
不同泵浦功率密度下,Tm3+/Yb3+摻雜NMAG玻璃上轉(zhuǎn)換藍(lán)光、紅光和近紅外光分別對應(yīng)1G4→3H6(477nm)、1G4→3F4(650 nm)和3H4→3H6(806 nm) 的輻射躍遷,其熒光量子產(chǎn)率列于表1。由表中數(shù)據(jù)可見,當(dāng)泵浦功率密度由539 W/cm2增至1 482 W/cm2時,藍(lán)光、紅光和近紅外光量子產(chǎn)率分別增長到原來的5.50、5.57和2.47倍,表明藍(lán)光和紅光發(fā)射對泵浦功率密度的變化更為敏感,這是由于藍(lán)光和紅光發(fā)射為三光子吸收過程所致。
表1 Tm3+/Yb3+摻雜NMAG玻璃的量子產(chǎn)率
Tab.1 Quantum yields of Tm3+/Yb3+doped NMAG glasses
Excitationpowerdensity/(W·cm-2)Quantumyields(10-4)1G4→3H61G4→3F43H4→3H65390.260.0714.607210.390.1118.018670.540.1521.249870.700.2024.6611080.860.2427.6512271.040.2930.6913531.200.3333.0614821.430.3936.11
3.5 上轉(zhuǎn)換發(fā)光機理
隨泵浦功率密度的增加,其上轉(zhuǎn)換發(fā)射光子數(shù)也在逐漸增加。上轉(zhuǎn)換凈發(fā)射光子數(shù)(N)與泵浦功率密度(ρ)之間,二者遵循如下關(guān)系:
(3)
式中m表示發(fā)射出一個上轉(zhuǎn)換光子所吸收的泵浦光光子數(shù),上轉(zhuǎn)換凈發(fā)射光子數(shù)與激發(fā)功率密度之間是雙對數(shù)線性關(guān)系,其曲線斜率為m。
圖5為975 nm激發(fā)下,Tm3+/Yb3+摻雜NMAG玻璃中藍(lán)光、紅光和近紅外發(fā)射光子數(shù)與泵浦功率密度的對數(shù)關(guān)系曲線。在雙對數(shù)坐標(biāo)中斜率分別為2.70,2.67,1.91,表明該玻璃樣品中藍(lán)光和紅光發(fā)射為三光子激發(fā)過程,近紅外上轉(zhuǎn)換為雙光子激發(fā)過程[30-31]。
Fig.5 Dependence of net emission photon on excitation power density
為了進一步說明 Tm3+/Yb3+摻雜NMAG玻璃中的上轉(zhuǎn)換發(fā)光機制,圖6展示出Tm3+和Yb3+的能級示意圖。在975 nm激光泵浦下,Yb3+吸收能量從2F7/2能級躍遷到2F5/2激發(fā)態(tài)能級。然后通過多步能量傳遞,把Tm3+泵浦到1G4和3H4激發(fā)態(tài)能級上,實現(xiàn)477 nm藍(lán)光、650 nm紅光和806 nm近紅外光的上轉(zhuǎn)換發(fā)射[32],該過程具體可表示為:
(1)在975 nm激光泵浦下,處于激發(fā)態(tài)的Yb3+把能量傳遞 (ET) 給處于基態(tài)能級3H6上的Tm3+,從而將Tm3+從基態(tài)激發(fā)至3H5能級,該能級熒光壽命很短,很快經(jīng)無輻射弛豫到3F4能級:
2F5/2(Yb3+) +3H6(Tm3+) →2F7/2(Yb3+)+3H5(Tm3+)。
(2) 處于3F4能級的Tm3+進一步接收Yb3+傳遞 (ET) 的能量,將激發(fā)到3F2能級,然后弛豫到低的穩(wěn)態(tài)3H4能級:
2F5/2(Yb3+) +3F4(Tm3+) →2F7/2(Yb3+)+3F2(Tm3+)。
(3)處于3H4亞穩(wěn)態(tài)的Tm3+,再一次接收Yb3+傳遞 (ET) 的能量后躍遷至1G4能級:
2F5/2(Yb3+) +3H4(Tm3+) →2F7/2(Yb3+) +1G4(Tm3+)。
在上述過程中,第(2)和第(3)步也可能通過兩個激發(fā)態(tài)吸收 (ESA) 過程實現(xiàn),從3F4躍遷到1G4能級。不論是能量轉(zhuǎn)換過程還是激發(fā)態(tài)吸收過程,Tm3+在可見和近紅外區(qū)的發(fā)光都是三光子和雙光子吸收過程。上述過程的分析與圖5所表示的上轉(zhuǎn)換發(fā)射光子數(shù)與泵浦功率密度的關(guān)系是一致的。
Fig.6 Upconversion luminescence mechanism of Tm3+/Yb3+doped NMAG glasses
Tm3+/Yb3+摻雜的NMAG玻璃在380 ℃的KNO3熔鹽熱離子交換過程中,折射率最大改變量Δn=0.007 0,K+-Na+離子交換有效擴散系數(shù)De=0.070 μm2/min,表明NMAG玻璃適用型波導(dǎo)可用于上轉(zhuǎn)換功能器件的研發(fā)。采用絕對光譜功率測試系統(tǒng)對NMAG玻璃上轉(zhuǎn)換發(fā)光性能進行表征,在975 nm激光激發(fā)下,Tm3+主要發(fā)出477 nm藍(lán)光和806 nm近紅外光。絕對上轉(zhuǎn)換熒光參數(shù)和激發(fā)功率密度呈正相關(guān),當(dāng)功率密度達(dá)到1 482 W/cm2時,藍(lán)光的絕對光譜功率、凈發(fā)射光子數(shù)和量子產(chǎn)率分別為269 μW、6.46×1014/s和1.43×10-4,近紅外光對應(yīng)的3個參量分別為4 024 μW、1.63×1016/s和3.61×10-3。隨著激發(fā)功率密度的增長,與歸屬于雙光子激發(fā)過程的近紅外上轉(zhuǎn)換相比,藍(lán)光和紅光上轉(zhuǎn)換熒光的量子產(chǎn)率增長速率更快,這是由于藍(lán)光和紅光發(fā)射均為三光子激發(fā)過程所致。NMAG玻璃中Tm3+的上轉(zhuǎn)換熒光光子的絕對表征為進一步研發(fā)光電子器件和激光材料提供了有價值的數(shù)據(jù)參考,同時可為波導(dǎo)型光源器件的研發(fā)改進提供有益的參考依據(jù)。
[1] XIANG S Y, CHEN B J, ZHANG J S,etal.. Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2∶Tm3+/Yb3+microstructures [J].Opt.Mater.Express, 2014, 4(9):1966-1980.
[2] MING C G, SONG F, LIU H X. Intense blue up-conversion emission in Tm3+/Yb3+co-doped phosphate glass [J].J.Non-Cryst.Solids, 2013, 360:1-3.
[3] ZHANG S, WANG J, XU W,etal.. Fluorescence resonance energy transfer between NaYF4∶Yb, Tm upconversion nanoparticles and gold nanorods: near-infrared responsive biosensor for streptavidin [J].J.Lumin., 2014, 147:278-283.
[4] 毛露路,林海,張瑩,等. Tm∶Yb∶KY(WO4)2晶體藍(lán)光上轉(zhuǎn)換 [J]. 中國激光, 2007, 34(5):711-714. MAO L L, LIN H, ZHANG Y,etal.. Blue up-conversion in Yb3+and Tm3+-codoped KY(WO4)2[J].Chin.J.Lasers, 2007, 34(5):711-714. (in Chinese)
[5] ZHAO S L, WANG X L, FANG D W,etal.. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass for waveguide amplifier application [J].J.AlloysCompd., 2006, 424(1-2):243-246.
[6] ZHONG H, LI X P, SHEN R S,etal.. Spectral and thermal properties of Dy3+-doped NaGdTiO4phosphors [J].J.AlloysCompd., 2012, 517:170-175.
[7] ZHANG P Q, DAI S X, NIU X K,etal.. Design of rare-earth-ion doped chalcogenide photonic crystals for enhancing the fluorescence emission [J].Opt.Commun., 2014, 322:123-128.
[8] 宋凱,張慶彬,趙軍偉,等. NaYF4∶Er3+,Yb3+UCNPs為供體的均相熒光分析 [J]. 光譜學(xué)與光譜分析, 2013, 33(4):1005-1008. SONG K, ZHANG Q B, ZHAO J W,etal.. Homogeneous phase fluorescence assay based on NaYF4∶Er3+,Yb3+UCNPs as donors [J].Spectrosc.Spect.Anal., 2013, 33(4):1005-1008. (in Chinese)
[9] 付作嶺,董曉睿,盛天琦,等. 納米晶體中稀土離子的發(fā)光性質(zhì)及其變化機理研究 [J]. 中國光學(xué), 2015, 8(1):139-144 FU Z L, DONG X R, SHENG T Q,etal.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J].Chin.Opt., 2015, 8(1):139-144. (in Chinese)
[10] 何禧佳,周大成,李臣,等. Bi和Bi/Er共摻鈣鋁鍺酸鹽玻璃的超寬帶紅外發(fā)光 [J]. 光子學(xué)報, 2014, 43(3):0316001. HE X J, ZHOU D C, LI C,etal.. Bi-doped and Bi/Er co-doped calcium aluminum germanate glasses with ultra-broadband infrared luminescence [J].ActaPhoton.Sinica, 2014, 43(3):0316001. (in Chinese)
[11] TANG J Z, LU K L, ZHANG S Q,etal.. Surface plasmon resonance-enhanced 2 μm emission of bismuth germanate glasses doped with Ho3+/Tm3+ions [J].Opt.Mater., 2016, 54:160-164.
[12] HU Y B, QIU J B, SONG Z G,etal.. Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+co-doped oxyfluorogermanate glasses [J].J.Appl.Phys., 2014, 115(8):083512-1-5.
[13] ZHAO G Y, KUAN P W, FAN H Y,etal.. Enhanced green and red upconversion and 2.7 μm emission from Er3+/Tm3+co-doped bismuth germanate glass [J].Opt.Mater., 2013, 35(5):910-914.
[14] CAI M Z, WEI T, ZHOU B E,etal.. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials [J].J.AlloysCompd., 2015, 626:165-172.
[15] YU Y, SONG F, MING C G,etal.. Photoluminescence properties of Tm3+/Tb3+/Eu3+tri-doped phosphate glass and glass ceramics for white-light-emitting diodes[J].Appl.Opt., 2013, 52(23):5606-5610.
[16] XU S Q, MA H P, FANG D W,etal.. Upconversion luminescence and mechanisms in Yb3+sensitized Tm3+doped oxyhalide tellurite glasses [J].J.Lumin., 2006, 117(2):135-140.
[17] ZHAO S L, XU S Q, DENG D G,etal.. Spectroscopic properties Eu3+doped and Tm3+/Yb3+codoped oxyfluoride glass ceramics containing Ba2GdF7nanocrystals [J].Chem.Phys.Lett., 2010, 494(4-6):202-205.
[18] XIE J, MEI L F, DENG J R,etal.. Up-conversion luminescence properties and energy transfer of Tm3+/Yb3+, co-doped BaLa2ZnO5[J].J.SolidStateChem., 2015, 231:212-216.
[19] QU S N, SHEN D Z, LIU X Y,etal.. Highly luminescent carbon-nanoparticle-based materials: factors influencing photoluminescence quantum yield [J].Part.Part.Syst.Charact., 2014, 31(11):1175-1182.
[20] 張喜生,晏春愉,鄭海榮. 光譜學(xué)方法研究Tm3+離子的上轉(zhuǎn)換發(fā)光影響因素 [J]. 光子學(xué)報, 2010, 39(8):1515-1518. ZHANG X S, YAN C Y, ZHENG H R. Spectroscopic study of the upconversion effect of Tm3+ions [J].ActaPhoton.Sinica, 2010, 39(8):1515-1518. (in Chinese)
[21] LIU X W, QI J Q, GUO R,etal.. Synthesis and up/down conversion luminescence properties of Er3+/Yb3+co-doped La2TiO5phosphor [J].Chin.J.Inorg.Chem., 2016, 32(1):49-55.
[22] WANG H Y, YE S, LIU T H,etal.. Influence of local phonon energy on quantum efficiency of Tb3+-Yb3+co-doped glass ceramics containing fluoride nanocrystals [J].J.RareEarths, 2015, 33(5):524-528.
[23] TANG J Z, LU K L, ZHANG S Q,etal.. Surface plasmon resonance-enhanced 2 μm emission of bismuth germanate glasses doped with Ho3+/Tm3+ions [J].Opt.Mater., 2016, 54:160-164.
[24] ZMOJDA J, KOCHANOWICZ M, MILUSKI P,etal.. Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+triply doped antimony-germanate glass and double-clad optical fiber [J].Opt.Mater., 2016, 58:279-284.
[25] BARBOSA A J, MAIA L J Q, NASCIMENTO A M,etal.. Er3+-doped germanate glasses for active waveguides prepared by Ag+/K+?Na+ion-exchange [J].J.Non-Cryst.Solids, 2008, 354(42-44):4743-4748.
[26] LI H Y, SHEN L F, PUN E Y B,etal.. Dy3+-doped germanate glasses for waveguide-type irradiation light sources[J].J.AlloysCompd., 2015, 646:586-591.
[27] WANG F, CHEN B J, PUN E Y B,etal.. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide [J].Opt.Mater., 2015, 42:484-490.
[28] GORTYCH J, HALL D. Fabrication of planar optical waveguides by K+-ion exchange in BK7 and Pyrex glass[J].IEEEJ.QuantumElectron., 1986, 22(6):892-895.
[29] 張兵,朱忠麗. 共沉淀法制備 Tm∶Yb SAG 納米粉體及其發(fā)光性能 [J]. 硅酸鹽學(xué)報, 2015, 43(8):1172-1176. ZHANG B, ZHU Z L. Preparation of Tm∶Yb SAG nano-powder by coprecipitation method and its optical property[J].J.Chin.Ceram.Soc., 2015, 43(8):1172-1176. (in Chinese)
[30] 蘇俊,張振華,趙會峰,等. Yb3+/Tm3+共摻的硅酸鹽玻璃上轉(zhuǎn)換發(fā)光性能 [J]. 發(fā)光學(xué)報, 2016, 37(5):526-531. SU J, ZHANG Z H, ZHAO H F,etal.. Up conversion luminescence properties of Yb3+/Tm3+co-doped silicate glasses[J].Chin.J.Lumin., 2016, 37(5):526-531. (in Chinese)
[31] 趙承周,孔祥貴,宋曙光,等. Yb3+, Tm3+離子摻雜濃度對NaYF4∶Yb3+, Tm3+發(fā)光光譜的影響 [J]. 發(fā)光學(xué)報, 2013, 34(8):959-964. ZHAO C Z, KONG X G, SONG S G,etal.. Effect of doping rare-earth concentrations on the luminescence spectrum of NaYF4∶Yb3+,Tm3+nanocrystals[J].Chin.J.Lumin., 2013, 34(8):959-964. (in Chinese)
[32] 徐時清,張在宣,方達(dá)偉,等. 上轉(zhuǎn)換發(fā)光的鹵化鉛調(diào)整Tm3+/Yb3+共摻碲酸鹽玻璃 [J]. 物理學(xué)報, 2005, 54(8):3694-3697. XU S Q, ZHANG Z X, FANG D W,etal.. Upconversion luminescence of lead halide-modified Tm3+/Yb3+-codoped tellurite glasses[J].ActaPhys.Sinica, 2005, 54(8):3694-3697. (in Chinese)
朱彩玲(1993-)女,陜西榆林人,碩士研究生,2015年于蘭州理工大學(xué)獲得學(xué)士學(xué)位,主要從事稀土摻雜發(fā)光材料的研究。E-mail: 18941190112@163.com
趙昕(1968-)男,遼寧錦州人,1997年于吉林大學(xué)獲得碩士學(xué)位,主要從事光電子材料與器件的研究。E-mail: wjs@dlpu.edu.cn
Upconversion Fluorescence Photon Generation and Quantum Yield Quantification of Tm3+in Waveguide-typed Aluminum Germanate Glasses
ZHU Cai-ling1,2, LIN Hai1, WANG Zhi-qiang1, ZHAO Xin1,2*
(1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China;2.SchoolofInformationScienceandEngineering,DalianPolytechnicUniversity,Dalian116034,China)*CorrespondingAuthor,E-mail:wjs@dlpu.edu.cn
Tm3+/Yb3+doped aluminum germanate glasses adapting for K+-Na+ion-exchanged waveguide were fabricated. Absolute characteristic parameters for upconversion (UC) fluorescence of glass samples were measured by integrating sphere coupled with fiber optic spectrometer under the excitation of 975 nm pump laser. The measurement and calculation results show that the effective diffusion coefficient of K+-Na+thermal ion-exchange is 0.070 μm2/min when Tm3+/Yb3+doped aluminum germanate glasses are immersed in KNO3molten salt at 380 ℃, indicating that the K+-Na+ion-exchange process is controllable. Tm3+in aluminum germanate glasses emits 477 nm blue and 806 nm near-infrared (NIR) fluorescence, and the NIR emission plays a dominant role. The absolute fluorescence parameter is identified as a positive correlation with laser power density. When the power density is 1 482 W/cm2, the emission spectral power, emission photon and quantum yield for blue three-photon UC fluorescence are 269 μW, 6.46×1014/s and 1.43×10-4, and the ones for NIR two-photon UC fluorescence are 4 024 μW, 1.63×1016/s and 3.61×10-3, respectively. The absolute characterization for UC fluorescence of Tm3+in waveguide-typed aluminum germanate glasses provides a valuable reference in developing photoelectronic devices and laser materials.
waveguide-adaptive aluminum germanate glasses; Tm3+ions; upconversion fluorescence photon quantitative; quantum yields
1000-7032(2016)12-1471-08
2016-07-11;
2016-09-15
國家自然科學(xué)基金(61275057); 遼寧省自然科學(xué)基金(2015020187)資助項目
TQ171; O482.31
A
10.3788/fgxb20163712.1471