許慶龍, 劉曉敏, 徐小兵, 李晴晴, 張紅, 肖家欣
(安徽師范大學(xué)生命科學(xué)學(xué)院,安徽省重要生物資源保護與利用研究重點實驗室,安徽 蕪湖 241000)
?
4種叢枝菌根真菌對南高叢藍莓抗旱性的影響
許慶龍, 劉曉敏, 徐小兵, 李晴晴, 張紅, 肖家欣*
(安徽師范大學(xué)生命科學(xué)學(xué)院,安徽省重要生物資源保護與利用研究重點實驗室,安徽 蕪湖 241000)
采用盆栽試驗研究摩西球囊霉(Glomusmosseae)、地表球囊霉(G.versiforme)、根內(nèi)球囊霉(G.intraradices)和幼套球囊霉(G.etunicatum)4種叢枝菌根(arbuscular mycorrhizal,AM)真菌接種南高叢藍莓(Vacciniumcorymbosum)品種薄霧對干旱脅迫的生理生化反應(yīng)。結(jié)果表明:干旱脅迫降低了葉片相對含水量與葉綠素含量,增加了可溶性糖含量、超氧化物歧化酶(superoxide dismutase,SOD)活性與丙二醛(malondialdehyde,MDA)含量,但對菌根侵染率的影響較??;在干旱脅迫下,4種AM真菌尤其是摩西球囊霉接種株相對含水量、葉綠素和可溶性糖含量、葉片SOD活性均顯著高于未接種株,而接種株葉片MDA含量相對低于未接種株;另外,AM真菌接種處理能夠提高藍莓植株根、莖、葉的磷和鉀含量以及根圍土壤酸性磷酸酶、脲酶和過氧化氫酶活性,尤以摩西球囊霉處理最為明顯。總之,4種AM真菌接種處理提高了藍莓品種薄霧植株的抗旱性,以摩西球囊霉的效果最好。
球囊霉屬; 南高叢藍莓; 干旱脅迫; 盆栽試驗
Summary Blueberry (Vacciniumspp.) is well known for its rich anthocyanins and other bioactive compounds, which helps preventing from cardiovascular disease and other chronic illnesses. Over the past decades, blueberry has been cultured in many areas of China, thus became the fastest-growing species in fruit production, potentially making China one of the largest blueberry-producing countries in the world. However, blueberry growth and production were severely affected by drought events in areas of Yangtze River.Vacciniumplants preferred acidic soils and spontaneously formed mutualistic symbiotic associations mainly with soil fungi of the phylum Ascomycota, called ‘ericoid mycorrhizae’. However, some reports have indicated that the absence of ericoid mycorrhizal fungi inoculum may allowVacciniumplants to associate with arbuscular mycorrhizal (AM) fungi, and AM fungi inoculation significantly enhanced growth ofVacciniumplants. Southern highbush blueberry (Vacciniumcorymbosum) has short or even rare root hairs in field systems, and depends on fungi for optimal growth. Meanwhile, few reports were about the effects of AM fungi on osmotic adjustment and reactive oxygen metabolism of southern highbush blueberry.
The purpose of this study is to evaluate the effects ofGlomusmosseae,G.versiforme,G.intraradicesandG.etunicatumon the southern highbush blueberry seedlings under drought stress conditions, and antioxidant and osmotic adjustment matters, mineral nutrition in blueberry plants and enzymatic activities in rhizosphere soil were investigated.
Two soil water regimes (well-watered [WW] and drought stress [DS]) and five AM fungi inoculations (fourGlomusand non-AM fungi inoculation [CK]) were arranged in a complete randomized block design. Each treatment (one plant per pot) was performed in three replicates. Water treatments began after 134 days (July 31, 2014) adaption of greenhouse conditions, and WW pots were maintained, but DS pots were cut off for 20 days of water supply and resumed on August 20. Meanwhile, the leaves of blueberry cultivar Misty plants were collected for determination of physiological index on 13 d drought, 20 d drought and 2 d rewatering, respectively.
The results showed that the leaf relative water content (RWC) and chlorophyll contents decreased in DS treatments, while the soluble sugar content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents increased, but had no significant effects on mycorrhizal colonization. Under the DS conditions, leaf RWC, chlorophyll, soluble sugar contents and SOD activity were significantly higher in AM fungi-inoculated plants, especially inG.mosseae-inoculated plants than in non-AM fungi-inoculated plants, while the leaf MDA content was lower. In addition, AM fungi, especiallyG.mosseae, increased phosphorus (P) and potassium (K) contents in the leaves, stems and roots, as well as acid phosphatase (ACP), catalase (CAT) and urease activities in rhizosphere soil of blueberry plants, in comparison with the non-AM fungi-inoculated treatment (CK).
These results indicate that the drought tolerance of blueberry cultivar Misty is enhanced with AM fungi inoculation through increase of antioxidant enzyme and osmotic adjustment, and the soil environment is improved, accompanied by P and K uptake increases by plants. In addition,G.mosseaeis the most beneficialGlomusamong the four AM fungi to improve the resistance of blueberry cultivar Misty plants against DS.
藍莓(Vacciniumspp.)屬于杜鵑花科越橘屬,其漿果內(nèi)特有的藍莓花青素具有提高視力、抗衰老和防癌等功效。近年來,我國藍莓產(chǎn)業(yè)發(fā)展勢頭強勁,由北向南已推廣到江南、華南等地。藍莓為淺根性灌木果樹,主根不明顯,無根毛,不耐旱[1-2]。而我國南方藍莓主要栽培在丘陵山地,蓄水保水能力差,經(jīng)常遭遇局部或間歇式干旱的威脅,已成為藍莓高產(chǎn)優(yōu)質(zhì)的一個重要限制因子。
菌根是土壤中的菌根真菌與寄主根系形成的一種互惠共生體。在自然條件下,野生藍莓菌根真菌資源豐富,其侵染率可達75%;但在人工栽培條件下,藍莓自身形成菌根比較困難,其菌根真菌侵染率不到3%[3]。已有研究表明,若對藍莓進行叢枝菌根(arbuscular mycorrhizal,AM)真菌接種處理,其AM真菌侵染率及植株生物量均得到顯著提高[4-6]。有關(guān)AM真菌提高植物抗逆性尤其是抗旱性的報道較多。GHOLAMHOSEINI等[7]發(fā)現(xiàn),在水分脅迫下,用AM真菌接種處理的向日葵植株干質(zhì)量、果實產(chǎn)量和出油率均顯著提高,并能促進植株對氮(N)、磷(P)的吸收;ABBASPOUR等[8]認為,AM真菌可以提高在干旱脅迫下開心果幼苗的生物量及對礦質(zhì)元素的吸收,提高其滲透調(diào)節(jié)能力和抗氧化酶活性;OMIROU等[9]指出,AM真菌可以提高在缺水條件下西瓜對水分的利用率。本研究擬選取4種AM真菌,以南方普遍栽植的南高叢藍莓品種薄霧為試驗材料,研究AM真菌對藍莓耐旱性的影響,以期篩選出最適合提高藍莓抗旱性的AM真菌菌種,為生產(chǎn)實際提供理論與實踐參考。
1.1試驗材料
試驗基質(zhì)為V(紅壤土)∶V(石英砂)∶V(珍珠巖)=9∶3∶1的混合物,經(jīng)0.11 MPa、121 ℃高壓濕熱滅菌2 h后備用。以南高叢藍莓品系薄霧藍莓(Vacciniumcorymbosum)為試驗材料。供試的AM真菌菌劑為摩西球囊霉(Glomusmosseae,BGC HUN01A)、地表球囊霉(G.versiforme,BGC HUN02B)、根內(nèi)球囊霉(G.intraradices,BGC AH01)和幼套球囊霉(G.etunicatum,BGC HEB04),由北京市農(nóng)林科學(xué)院植物營養(yǎng)與資源研究所“中國叢枝菌根真菌種質(zhì)資源庫(Bank of Glomales in China,BGC)”提供。
1.2試驗設(shè)計
2014年3月19日,將大小相對一致的7月齡扦插藍莓苗移栽于裝有2.2 kg試驗基質(zhì)的塑料盆(盆上口內(nèi)徑22 cm、盆底內(nèi)徑16 cm、盆高18 cm)中,移栽時分別接種摩西球囊霉、地表球囊霉、根內(nèi)球囊霉和幼套球囊霉菌劑各約200個孢子,以不接種AM真菌作為對照(CK),每盆栽植1株藍莓苗,放置于通風(fēng)和光照條件良好的大棚中培養(yǎng)。設(shè)正常供水和自然干旱處理,每個處理3次重復(fù),共30盆。
7月31日,將每處理試驗材料平分成2組,一組仍正常供水(水分充足),另一組進行自然干旱處理20 d,8月20日對干旱組實施復(fù)水處理,澆一遍透水。于干旱13 d(8月13日)、20 d(8月20日)及復(fù)水后2 d(8月22日)分別采集各處理材料的葉片,進行相關(guān)生理指標(biāo)的測定。收獲植株時進行菌根侵染率、土壤酶活性及礦質(zhì)元素含量測定。
1.3分析方法
1.4數(shù)據(jù)處理
采用Excel 2007進行數(shù)據(jù)處理,利用SPSS 20.0軟件的單向方差分析(one-way ANOVA)進行不同處理間的差異顯著性檢驗,采用鄧肯法進行多重比較。
2.1AM真菌對藍莓菌根侵染率、相對含水量、葉綠素和可溶性糖含量的影響
摩西球囊霉、地表球囊霉、根內(nèi)球囊霉和幼套球囊霉接種處理均不同程度地提高了藍莓菌根侵染率,干旱脅迫對菌根侵染率影響較小,4種AM真菌中以摩西球囊霉和根內(nèi)球囊霉的侵染率相對較高(圖1)。
CK:未接種AM真菌;Gm:接種摩西球囊霉;Gv:接種地表球囊霉;Gi:接種根內(nèi)球囊霉;Ge:接種幼套球囊霉。WW:水分充足;DS:干旱脅迫。短柵上的不同小寫母表示在相同水分條件下不同真菌接種處理間在P<0.05水平差異有統(tǒng)計學(xué)意義。CK, Gm, Gv, Gi and Ge represent non-inoculation, inoculation with Glomus mosseae, G. versiforme, G. intraradices and G. etunicatum, respectively. WW and DS represent well-watered and drought stress, respectively. Different lowercase letters above bars represent statistically significant differences at different inoculation treatments under the same water condition at the 0.05 probability level. 圖1 AM真菌接種對藍莓品種薄霧菌根侵染率的影響Fig.1 Effect of AM fungi inoculation on mycorrhizal colonization of blueberry cultivar Misty plants
干旱脅迫降低了藍莓植株葉片相對含水量與葉綠素含量,增加了葉片可溶性糖含量;干旱13 d時摩西球囊霉接種株及干旱20 d時摩西球囊霉、地表球囊霉和根內(nèi)球囊霉接種株相對含水量均高于對照;干旱13 d時各接種株葉綠素與可溶性糖含量、干旱20 d時摩西球囊霉與地表球囊霉接種株葉綠素含量以及各接種株可溶性糖含量均顯著高于對照,尤以摩西球囊霉接種株明顯;復(fù)水后2 d,摩西球囊霉與地表球囊霉接種株的相對含水量均顯著高于對照,干旱脅迫處理的摩西球囊霉與幼套球囊霉接種株葉綠素含量及各接種株可溶性糖含量高于對照,水分充分處理的各接種株葉綠素含量與對照無顯著差異(幼套球囊霉接種株除外),而摩西球囊霉接種株的可溶性糖含量顯著高于對照(圖2)。
各處理符號表示的含義詳見圖1注。13 d、20 d、RW 2 d分別表示停止供水后第13天、第20天和復(fù)水后2 d。短柵上的不同小寫母表示不同真菌接種處理間在P<0.05水平差異有統(tǒng)計學(xué)意義。Please see footnote of Fig.1 for details of each treatment. 13 d, 20 d and RW 2 d represent the cutoff of water supply for 13 d, 20 d and rewatering for 2 d, respectively. Different lowercase letters above bars represent statistically significant differences at different inoculation treatments at the 0.05 probability level. 圖2 AM真菌接種對藍莓品種薄霧葉片相對含水量、葉綠素和可溶性糖含量的影響Fig.2 Effect of AM fungi inoculation on relative water content, chlorophyll and soluble sugar contents in the leaves of blueberry cultivar Misty plants
2.2AM真菌對藍莓SOD活性和MDA含量的影響
干旱脅迫提高了藍莓植株葉片SOD活性與MDA含量。干旱13 d時摩西球囊霉接種株及干旱20 d時摩西球囊霉與地表球囊霉接種株葉片SOD活性均顯著高于對照;各接種株葉片在干旱脅迫下MDA含量均顯著低于對照(干旱13 d時幼套球囊霉接種株除外);復(fù)水2 d后,水分充分與干旱脅迫處理的各接種株葉片MDA含量均顯著低于對照,而SOD活性在接種株與對照間差異無統(tǒng)計學(xué)意義(P>0.05)(圖3)。
各處理符號表示的含義詳見圖1注。13 d、20 d、RW 2 d分別表示停止供水后第13天、第20天和復(fù)水后2 d。短柵上的不同小寫母表示不同真菌接種處理間在P<0.05水平差異有統(tǒng)計學(xué)意義。Please see footnote of Fig.1 for details of each treatment. 13 d, 20 d and RW 2 d represent the cutoff of water supply for 13 d, 20 d and rewatering for 2 d, respectively. Different lowercase letters above bars represent statistically significant differences at different inoculation treatments at the 0.05 probability level. 圖3 AM真菌接種對藍莓品種薄霧葉片超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的影響Fig.3 Effect of AM fungi inoculation on SOD activity and MDA content in the leaves of blueberry cultivar Misty plants
2.3AM真菌對藍莓P、K含量和根圍土壤酶活性的影響
在水分充分條件下,各接種株葉片P含量與對照無顯著差異,而摩西球囊霉與根內(nèi)球囊霉接種株根部P含量以及根內(nèi)球囊霉與幼套球囊霉接種株莖部P含量高于對照,各接種株根部K含量、根內(nèi)球囊霉接種株莖部K含量以及摩西球囊霉與地表球囊霉接種株葉片K含量均高于對照;在干旱脅迫下,各接種株根部P、K含量(幼套球囊霉接種株K含量除外)以及摩西球囊霉接種株莖、葉K含量均顯著高于對照,其他處理的莖、葉K含量以及各接種株莖、葉P含量與對照間差異無統(tǒng)計學(xué)意義(P>0.05)(圖4)。
無論水分充分還是干旱脅迫,摩西球囊霉與根內(nèi)球囊霉接種株根圍酸性磷酸酶、土壤過氧化氫酶與脲酶活性(根內(nèi)球囊霉除外)均顯著高于對照(圖5)。
在本研究中4種AM真菌接種提高了藍莓的菌根侵染率,其中摩西球囊霉和根內(nèi)球囊霉的菌根侵染率相對較高,而在對照中未發(fā)現(xiàn)菌根侵染。這與已有研究結(jié)果[4-6]相一致。說明AM真菌不僅可以侵染藍莓植株,而且其侵染程度與AM真菌種類及侵染時間長短密切相關(guān)。
相對含水量是反映植物水分盈虧程度的最直觀指標(biāo)。在干旱脅迫下,植物葉片相對含水量越高,表明持水力越強,脅迫對細胞膜的傷害程度越小,細胞能更好地維持正常生命活動,抗旱性也就越強[12]。在本研究中,干旱脅迫20 d時摩西球囊霉、地表球囊霉和根內(nèi)球囊霉接種株尤其是摩西球囊霉接種株相對含水量顯著高于對照,復(fù)水后可恢復(fù)到未脅迫水平??梢姡珹M真菌尤其是摩西球囊霉接種處理可提高藍莓品種薄霧在干旱條件下的保水能力。另外,干旱脅迫雖降低了藍莓葉片葉綠素含量,但AM真菌接種尤其是摩西球囊霉和地表球囊霉接種處理抑制了葉綠素含量的降低。葉綠素是參與光合作用最重要的色素,維持其相對較高含量有利于光合作用的順利進行。4種AM真菌尤其是摩西球囊霉接種株的可溶性糖含量均顯著高于對照。光合產(chǎn)物可溶性糖還是植物體內(nèi)的一種重要的滲透調(diào)節(jié)物質(zhì),AM真菌接種處理有利于藍莓在干旱脅迫下積累可溶性糖等滲透調(diào)節(jié)物質(zhì),以維持細胞的滲透勢,進而增強細胞的保水能力[13-16]。
各處理符號表示的含義詳見圖1注。短柵上的不同小寫母表示不同真菌接種處理間在P<0.05水平差異有統(tǒng)計學(xué)意義。Please see footnote of Fig.1 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at different inoculation treatments at the 0.05 probability level. 圖4 AM真菌接種對藍莓品種薄霧根、莖及葉片中磷鉀元素含量的影響Fig.4 Effect of AM fungi inoculation on P and K contents in the roots, stems and leaves of blueberry cultivar Misty plants
各處理符號表示的含義詳見圖1注。短柵上的不同小寫母表示不同真菌接種處理間在P<0.05水平差異有統(tǒng)計學(xué)意義。
Please see footnote of Fig.1 for details of each treatment. Different lowercase letters above bars represent statistically significant differences at different inoculation treatments at the 0.05 probability level.
圖5AM真菌接種對藍莓品種薄霧根圍土壤酸性磷酸酶、過氧化氫酶和脲酶活性的影響
Fig.5Effect of AM fungi inoculation on acid phosphatase (ACP), catalase (CAT) and urease activities in rhizosphere soils of blueberry cultivar Misty plants
在干旱脅迫下植物會積累活性氧,而SOD的主要功能是清除生物體內(nèi)超氧陰離子,防御活性氧對細胞膜的傷害。MDA是膜脂過氧化的終產(chǎn)物,其含量高低可以反映膜脂過氧化的程度[17-19]。本研究結(jié)果顯示,干旱脅迫處理的摩西球囊霉和地表球囊霉接種株的SOD活性顯著高于對照,而各AM接種株MDA含量均顯著低于對照,復(fù)水后各接種株MDA含量也均低于對照。說明在干旱脅迫下接種AM真菌能夠增強藍莓品種薄霧對活性氧的清除能力,減少活性氧的傷害,從而增強藍莓植株對干旱脅迫的耐受性。
研究表明,在干旱脅迫下AM真菌能夠促進植物對P、K等礦質(zhì)元素的吸收,改善植物的營養(yǎng)環(huán)境[20-23]。本研究結(jié)果顯示,在干旱脅迫下AM真菌接種株P(guān)、K含量相對高于對照。說明AM真菌尤其是摩西球囊霉接種提高了藍莓對P、K的吸收。P是核酸和磷脂的組分,直接參與細胞內(nèi)能量代謝和糖的運輸,并能維持細胞的滲透勢[24];K是影響細胞滲透勢的主要因素,它能維持細胞水勢、氣孔開張和光合作用等一系列生理過程,同時還是許多酶的輔酶[14]。在干旱脅迫條件下,AM真菌接種后藍莓體內(nèi)P、K水平的提高,有利于進一步提高植株體內(nèi)的滲透調(diào)節(jié)能力,進而增強抗旱性。當(dāng)然,P、K營養(yǎng)的改善,與土壤環(huán)境的改良是分不開的。
本研究顯示,無論是水分充足還是干旱脅迫,摩西球囊霉和根內(nèi)球囊霉接種株根圍土壤的酸性磷酸酶、過氧化氫酶及脲酶活性均顯著高于其他處理組和未接種株。土壤酸性磷酸酶能促進有機磷向無機磷轉(zhuǎn)化,有利于植物體對P的吸收;脲酶能促進尿素水解,使之轉(zhuǎn)化為可利用的有效態(tài),提高氮素利用率[25];過氧化氫酶的作用是水解土壤中的過氧化氫,減少對生物體的毒害作用??梢?,摩西球囊霉和根內(nèi)球囊霉接種株根圍土壤酶活性的提高與上述AM接種株P(guān)、K含量相對較高的結(jié)果相吻合.說明AM真菌接種處理能夠改善寄主根際土壤環(huán)境,提高根際土壤酶活性[4,8,20,26],進而促進寄主對養(yǎng)分與水分的吸收。
[1]李亞東,吳林,張志東.越橘(藍莓)栽培與加工利用.長春:吉林科學(xué)技術(shù)出版社,2001:5-21.
LI Y D, WU L, ZHANG Z D.Cultivation,ProcessingandUtilizationofBlueberry. Changchun: Jilin Science & Technology Publishing House, 2005:5-21. (in Chinese)
[2]陳文榮,曾瑋瑋,李云霞,等.高叢藍莓對干旱脅迫的生理響應(yīng)及其抗旱性綜合評價.園藝學(xué)報,2012,39(4):637-646.
CHEN W R, ZENG W W, LI Y X,etal. The physiological responds of highbush blueberry to drought stress and the comprehensive evaluation on their drought resistance capacity.ActaHorticulturaeSinica, 2012,39(4):637-646. (in Chinese with English abstract)
[3]HAYNES R J, SWIFT R S. Growth and nutrient uptake by highbush blueberry plants in a peat medium as influenced by pH, applied micronutrients and mycorrhizal inoculation.ScientiaHorticulturae, 1985,27(3):285-294.
[4]ARRIAGADA C, MANQUEL D, CORNEJO P,etal. Effects of the co-inoculation with saprobe and mycorrhizal fungi onVacciniumcorymbosumgrowth and some soil enzymatic activities.JournalofSoilScienceandPlantNutrition, 2012,12(2):283-294.
[5]VEGA A, GARCIGA M, RODRIGUEZ A,etal. Blueberries mycorrhizal symbiosis outside of the boundaries of natural dispersion for ericaceous plants in Chile//ProceedingsoftheⅨInternationalVacciniumSymposium. Korbeek-Lo, Belgium, 2009:665-672.
[6]高麗霞,李森,莫愛瓊,等.叢枝菌根真菌接種對兔眼藍莓在華南地區(qū)生長的影響.生態(tài)環(huán)境學(xué)報,2012,21(8):1413-1417.
GAO L X, LI S, MO A Q,etal. Effects of inoculation of arbuscular mycorrhizal fungi on growth of rabbiteye blueberry (VacciniumasheiReade) in South China.EcologyandEnvironmentalSciences, 2012,21(8):1413-1417. (in Chinese with English abstract)
[7]GHOLAMHOSEINI M, GHALAVAND A, DOLATABADIAN A,etal. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress.AgriculturalWaterManagement, 2013,117:106-114.
[8]ABBASPOUR H, SAEIDI-SAR S, AFSHARI H,etal. Tolerance of mycorrhiza infected pistachio (PistaciaveraL.) seedling to drought stress under glasshouse conditions.JournalofPlantPhysiology, 2012,169(7):704-709.
[9]OMIROU M, IOANNIDES I M, EHALIOTIS C. Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only.AppliedSoilEcology, 2013,63:112-119.
[10]PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.TransactionsoftheBritishMycologicalSociety, 1970,55(1):158-161.
[11]周禮愷.土壤酶學(xué).北京:科學(xué)出版社,1987:267-276.
ZHOU L K.SoilEnzymology. Beijing: Science Press, 1987:267-276. (in Chinese)
[12]ABRAHAM E M, HUANG B, BONOS S A,etal. Evaluation of drought resistance for Texas bluegrass, Kentucky bluegrass, and their hybrids.CropScience, 2004,44(5):1746-1753.
[13]HOEKSTRA F A, GOLOVINA E A, BUITINK J. Mechanisms of plant desiccation tolerance.TrendsinPlantScience, 2001,6(9):431-438.
[14]RUIZ-LOZANO J M, PORCEL R, AZCN C,etal. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies.JournalofExperimentalBotany, 2012,63(11):4033-4044.
[15]WU Q S, XIA R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.JournalofPlantPhysiology, 2006,163(4):417-425.
[16]曲濤,南志標(biāo).作物和牧草對干旱脅迫的響應(yīng)及機理研究進展.草業(yè)學(xué)報,2008,17(2):126-135.
QU T, NAN Z B. Research progress on responses and mechanisms of crop and grass under drought stress.ActaPrataculturaeSinica, 2008,17(2):126-135. (in Chinese with English abstract)
[17]秦子嫻,朱敏,郭濤.干旱脅迫下叢枝菌根真菌對玉米生理生化特性的影響.植物營養(yǎng)與肥料學(xué)報,2012,19(2):510-516.
QIN Z X, ZHU M, GUO T. Influence of mycorrhizal inoculation on physiological and biochemical characteristics of maize (Zeamays) under water stress.PlantNutritionandFertilizerScience, 2012,19(2):510-516. (in Chinese with English abstract)
[18]趙平娟,安鋒,唐明.叢枝菌根真菌對連翹幼苗抗旱性的影響.西北植物學(xué)報,2007,27(2):396-399.
ZHAO P J, AN F, TANG M. Effects of arbuscular mycorrhiza fungi on drought resistance ofForsythiasuspense.ActaBotanicaBoreali-OccidentaliaSinica, 2007,27(2):396-399. (in Chinese with English abstract)
[19]WU Q S, ZOU Y N, XIA R X. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrustangerine) roots.EuropeanJournalofSoilBiology, 2006,42(3):166-172.
[20]WU Q S, ZOU Y N, HE X H. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirustrifoliata) seedlings.ScientiaHorticulturae, 2011,129(2):294-298.
[21]XIAO J X, REN Q, WU X J,etal. Effects of arbuscular mycorrhizal fungi on physiological character of Bahia grass (Paspalumnotatum, Poaceae).PlantDiversityandResources, 2011,33(5):521-528.
[22]ASRAR A, ABDEL-FATTAH G, ELHINDI K. Improving growth, flower yield, and water relations of snapdragon (AntirhinummajusL.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi.Photosynthetica, 2012,50(2):305-316.
[23]張燕,李娟,姚青,等.叢枝菌根真菌對水分脅迫下枇杷實生苗生長和養(yǎng)分吸收的影響.園藝學(xué)報,2012,39(4):757-762.
ZHANG Y, LI J, YAO Q,etal. Effects of arbuscular mycorrhizal fungi on growth and nutrient uptake ofEriobotryajaponicaplants under different water regimes.ActaHorticulturaeSinica, 2012,39(4):757-762. (in Chinese with English abstract)
[24]張立軍,梁宗鎖.植物生理學(xué).北京:科學(xué)出版社,2007:73-103.
ZHANG L J, LIANG Z S.PlantPhysiology. Beijing: Science Press, 2007:73-103. (in Chinese)
[25]PANT H, WARMAN P. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases.BiologyandFertilityofSoils, 2000,30(4):306-311.
[26]WU Q S, XIA R X, ZOU Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress.EuropeanJournalofSoilBiology, 2008,44(1):122-128.
Effects of four arbuscular mycorrhizal fungi on tolerance of Vaccinium corymbosum to drought stress.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):427-434
XU Qinglong, LIU Xiaomin, XU Xiaobing, LI Qingqing, ZHANG Hong, XIAO Jiaxin*
(KeyLaboratoryfortheConservationandUtilizationofImportantBiologicalResourcesinAnhuiProvince,CollegeofLifeSciences,AnhuiNormalUniversity,Wuhu241000,Anhui,China)
Glomus;Vacciniumcorymbosum; drought stress; pot experiment
國家自然科學(xué)基金(31372014);安徽省高等學(xué)校自然科學(xué)研究項目(KJ2016SD24).
Corresponding author):肖家欣(http://orcid.org/0000-0002-8427-6551),E-mail:xjx0930@163.com
聯(lián)系方式:許慶龍(http://orcid.org/0000-0003-3912-0299),E-mail:hebau2010@sina.com
2015-09-06;接受日期(Accepted):2015-11-27;網(wǎng)絡(luò)出版日期(Published online):2016-07-19
S 663; Q 945
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160719.1836.004.html