朱盼, 應(yīng)介官, 彭抒昂, 姜存?zhèn)}*
(1.華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070;2.華中農(nóng)業(yè)大學(xué)園藝與林學(xué)學(xué)院,武漢 430070)
?
淋溶條件下生物質(zhì)炭對(duì)紅壤中鉀和磷含量及其淋出率的影響
朱盼1, 應(yīng)介官1, 彭抒昂2, 姜存?zhèn)}1*
(1.華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070;2.華中農(nóng)業(yè)大學(xué)園藝與林學(xué)學(xué)院,武漢 430070)
采用室內(nèi)模擬降水的方法,在未施肥紅壤和施肥紅壤中添加不同用量的生物質(zhì)炭(0%、1%、2%和3%),分析在淋溶條件下生物質(zhì)炭對(duì)土壤速效鉀、速效磷含量及其淋出量的影響。結(jié)果表明:隨著生物質(zhì)炭用量的增加,紅壤中速效鉀和速效磷含量均顯著提高,但淋洗液中總鉀量和總磷量并沒(méi)有顯著增加;在未施肥土壤中,0%、1%、2%和3%生物質(zhì)炭處理的鉀淋出率分別為53.6%、14.3%、9.1%和7.5%,磷淋出率分別為88.8%、23.5%、16.3%和7.8%;在施肥土壤中,磷的淋出率隨生物質(zhì)炭用量的增加而減少,由24.1%降至7.2%;而鉀淋出率受生物質(zhì)炭用量的影響相對(duì)較小。在淋溶條件下,添加3%生物質(zhì)炭可使未施肥土壤速效鉀降幅由9.8%減少至0.3%,使施肥土壤速效鉀降幅由10.8%減少至0.5%,但經(jīng)生物質(zhì)炭處理的未施肥和施肥土壤的速效磷含量在淋溶后下降更為明顯。上述結(jié)果表明,生物質(zhì)炭不僅能使土壤中速效鉀和速效磷含量提高,且生物質(zhì)炭有較強(qiáng)的養(yǎng)分保持能力,能夠減少土壤中鉀和磷的淋出率。
生物質(zhì)炭; 紅壤; 淋溶; 鉀; 磷
Summary Phosphorus (P) and potassium (K) are the major essential macronutrients required for the biological growth and development of crop. As the mineral resource reserve declined for both P and K, the increasing demand for phosphorus-potassium fertilizer from global food production caused imbalance between supply and demand. As a result, the cost of agricultural production increased, and economic benefits reduced, along with increasing environmental risks. In China, synchronization between rainfall and temperature is common in red soil area, with strong soil leaching, and phosphorus and potassium nutrients are easy to lose, thus excessive application of fertilizer is necessary. Therefore, investigation on improvement of use efficiency and reduction of leaching rate for K and P will have great economic significance on agricultural production, help maintaining good ecological function.
In this study, to investigate the effects of different biochar additions on available potassium and phosphorus and their leaching rates in red soil, a simulated rainfall experiment was conducted in laboratory. Biochar was prepared from peanut shell. Different biochar dosages (0%, 1%, 2% and 3%) were added to fertilization and non-fertilization soils, and the contents and leaching variation of available K and P were further analyzed to measure the influence of biochar on soil K and P availabilities and their leaching loss.
The results showed that the available K and P in red soil were substantially improved with increasing addition of biochar, but the total amount of K and P increased little in the leachate. Among the non-fertilization treatments, the leaching rates of K were 53.6%, 14.3%, 9.1% and 7.5%, and the leaching rates of P were 88.8%, 23.5%, 16.3% and 7.8%, for different biochar additions (0%, 1%, 2% and 3%), respectively. Among the fertilization soil treatments, the leaching rate of P decreased from 24.1% to 7.2% with the biochar addition; while the leaching rate of K was less affected by the biochar addition. Under the simulated leaching condition, the 3% biochar addition could reduce the leaching rate of available K from 9.8% to 0.3% for non-fertilization soil, and from 10.8% to 0.5% for fertilization soil. The influence of biochar on K leaching was associated with the leaching time. In the first ten days, the K leaching induced by biochar application increased in the order of 3% > 2% > 1%>0%, and the order was opposite after the 10th day. However, biochar had no significant effects on the P leaching with different rates, and the available P contents declined for both non-fertilization and fertilization soils under the simulated leaching condition.
It is concluded that biochar addition can increase the contents of available P and K in red soil. Under the simulated leaching condition, biochar also can maintain soil available K in higher level, and it is propitious to decline the leaching rate of K and P in red soil.
磷和鉀是作物生長(zhǎng)必需的大量元素,其含量高低對(duì)作物生長(zhǎng)和產(chǎn)量有直接影響。隨著這2種礦質(zhì)資源儲(chǔ)量的減少以及全球糧食生產(chǎn)對(duì)磷鉀肥需求的增加,導(dǎo)致供需矛盾日益加劇,使農(nóng)業(yè)生產(chǎn)成本提高,經(jīng)濟(jì)效益降低,并增加了環(huán)境風(fēng)險(xiǎn)。我國(guó)紅壤地區(qū)雨熱同季,淋溶作用強(qiáng)烈,土壤磷鉀等養(yǎng)分易流失,需要大量化肥投入;因此,提高磷鉀的利用效率和減少其淋失,對(duì)于農(nóng)業(yè)生產(chǎn)有重要的經(jīng)濟(jì)意義,并有助于保持良好的生態(tài)效應(yīng)。
由生物殘留物在高溫、缺氧條件下熱解產(chǎn)生的生物質(zhì)炭,對(duì)土壤體積質(zhì)量(容重)、團(tuán)粒結(jié)構(gòu)和持水性等物理性質(zhì)具有較好的改良效果[1-2],同時(shí),能夠提高土壤pH、陽(yáng)離子交換量和土壤養(yǎng)分含量等[3-4]。生物質(zhì)炭是一種良好的土壤改良劑,可顯著提高土壤肥力和作物產(chǎn)量[5-6]。自20世紀(jì)60年代起,研究發(fā)現(xiàn)秸稈生物質(zhì)炭具有強(qiáng)吸附能力,可以有效吸附除草劑非草隆,降低其生物有效性[7];骨炭對(duì)土壤重金屬也有良好的吸附效果,能夠降低其生物有效性[8]。近年來(lái),生物質(zhì)炭對(duì)土壤養(yǎng)分持留效應(yīng)的研究也取得了不少成果。CLOUGH等[9]報(bào)道稱生物質(zhì)炭保持養(yǎng)分的能力比有機(jī)質(zhì)更強(qiáng)。周志紅等[10]研究表明,施用10 t/hm2生物質(zhì)炭增加了紫色土中氮的淋失,而施用100 t/hm2生物質(zhì)炭減少了氮的淋失。也有研究表明,生物質(zhì)炭增加了砂土的氮淋失,減少了粉砂土的氮淋失[11]。NOVAK等[12]發(fā)現(xiàn),添加生物質(zhì)炭增加了土壤鉀的淋失量。此外,生物質(zhì)炭還可影響土壤中磷的吸附和解吸[13],以及磷的固定[11]。綜上,利用生物質(zhì)炭改良土壤理化性狀以及保肥保水等方面已做了較多的研究,而有關(guān)淋溶條件下生物質(zhì)炭對(duì)紅壤中有效養(yǎng)分及淋洗液中養(yǎng)分的實(shí)際變化影響仍不是十分清楚。為此,本試驗(yàn)通過(guò)探討淋溶條件下生物質(zhì)炭對(duì)紅壤速效鉀、速效磷及其淋出量的影響,以期為生物質(zhì)炭改良土壤和改善生態(tài)狀況提供科學(xué)依據(jù)。
1.1試驗(yàn)材料
試驗(yàn)用紅壤取自江西省贛州市,黏性較強(qiáng)(砂粒12%,粉粒60%,黏粒28%),含速效鉀26.6 mg/kg、速效磷0.8 mg/kg、堿解氮20.1 mg/kg、有機(jī)質(zhì)5.4 g/kg,pH 4.55。生物質(zhì)炭以花生殼為原料制備,熱解溫度300 ℃,其養(yǎng)分組成為全鉀8.5 g/kg、全磷2.6 g/kg、全氮18.8 g/kg、全碳400.9 g/kg,pH 8.49。
1.2試驗(yàn)設(shè)計(jì)
對(duì)試驗(yàn)紅壤進(jìn)行未施肥和施肥處理,并分別設(shè)4個(gè)生物質(zhì)炭水平(0%、1%、2%和3%),共8個(gè)處理:未施肥+0%生物質(zhì)炭(CK:未施肥),未施肥+1%生物質(zhì)炭(C1),未施肥+2%生物質(zhì)炭(C2),未施肥+3%生物質(zhì)炭(C3);施肥+0%生物質(zhì)炭(F:施肥),施肥+1%生物質(zhì)炭(FC1),施肥+2%生物質(zhì)炭(FC2),施肥+3%生物質(zhì)炭(FC3)。每處理4次重復(fù)。每千克土施用0.14 g KH2PO4,0.51 g KNO3,0.80 g NH4NO3和0.95 g Ca(NO3)2。把過(guò)20目篩的生物質(zhì)炭和土壤混勻,裝入底部帶孔并鋪有雙層濾紙的聚氯乙烯杯(r=25 mm)中,搖勻,壓實(shí);緩慢注水,土壤水分達(dá)到飽和后停止加水;2 d后加入相當(dāng)于20 mm降水量的蒸餾水,收集淋洗液;此后每2 d加水1次,試驗(yàn)期間共加水9次,累計(jì)加水量180 mm,相當(dāng)于江西省贛州市當(dāng)?shù)?月份的降水量[14]。
1.3樣品采集與測(cè)定
將收集的淋洗液離心、冷凍保存。試驗(yàn)結(jié)束后,將土樣風(fēng)干至恒量,碾碎后分別過(guò)20目和100目篩。樣品測(cè)定參照鮑士旦的《土壤農(nóng)化分析》[15]。用火焰光度法測(cè)定土壤速效鉀和淋洗液中水溶性鉀含量;用鉬銻抗比色法測(cè)定土壤速效磷含量;用過(guò)硫酸鉀消解-鉬藍(lán)比色法測(cè)定淋洗液中水溶性磷含量。
qi=ci·Vi/m,
Q=q1+q2+…+qn,
淋出率=Q/Y。式中:qi為1 kg土壤在第i天的淋出量,mg/kg;ci為第i天淋洗液中鉀(磷)的質(zhì)量濃度,μg/mL;Vi為第i天淋洗液體積,mL;m為每個(gè)處理的土壤質(zhì)量,kg;Q為1 kg土壤n天的淋出總量,mg/kg;n為取樣時(shí)間;Y為1 kg土壤的速效鉀(磷)質(zhì)量分?jǐn)?shù),mg/kg。
1.4數(shù)據(jù)分析
采用Excel 2010進(jìn)行數(shù)據(jù)整理和t檢驗(yàn)(P<0.05),用SPSS 20.0進(jìn)行單因素方差分析和相關(guān)分析,不同處理間的對(duì)比采用鄧肯新復(fù)極差法。
2.1生物質(zhì)炭對(duì)土壤淋洗液中鉀和磷的動(dòng)態(tài)影響
生物質(zhì)炭對(duì)淋洗液中鉀含量的動(dòng)態(tài)變化有較大影響(圖1)。在淋溶的前10 d,淋洗液中的鉀含量隨著生物質(zhì)炭用量的增加而增加;與未施肥土壤相比,生物質(zhì)炭對(duì)施肥土壤鉀淋洗的影響更為明顯,F(xiàn)C3處理的鉀淋出量比F處理高2.18~3.92 mg/kg。然而,淋溶10 d后生物質(zhì)炭處理的淋洗液中鉀含量比對(duì)照少,且隨著淋溶時(shí)間的延長(zhǎng),不同生物質(zhì)炭處理間的差異減少。
CK:未施肥+0%生物質(zhì)炭;C1:未施肥+1%生物質(zhì)炭;C2:未施肥+2%生物質(zhì)炭;C3:未施肥+3%生物質(zhì)炭;F:施肥+0%生物質(zhì)炭;FC1:施肥+1%生物質(zhì)炭;FC2:施肥+2%生物質(zhì)炭;FC3:施肥+3%生物質(zhì)炭。CK: Non-fertilization+0% biochar; C1: Non-fertilization+1% biochar; C2: Non-fertilization+2% biochar; C3: Non-fertilization+3% biochar; F: Fertilization+0% biochar; FC1: Fertilization+1% biochar; FC2: Fertilization+2% biochar; FC3: Fertilization+3% biochar.圖1 在不同處理下土壤淋洗液中鉀含量的變化動(dòng)態(tài)Fig.1 Variation dynamic of potassium contents in soil leacheate under different treatments
由圖2可知:在淋溶的前10 d內(nèi),添加生物質(zhì)炭對(duì)未施肥和施肥土壤淋洗液的磷含量沒(méi)有明顯影響;磷的淋失峰值均出現(xiàn)在第10天后。說(shuō)明添加生物質(zhì)炭延緩了土壤磷的淋出時(shí)間。
各處理符號(hào)表示的含義詳見(jiàn)圖1注。Please see footnote of Fig.1 for details of each treatment.圖2 在不同處理下土壤淋洗液中磷含量的變化動(dòng)態(tài)Fig.2 Variation dynamic of phosphorus contents in soil leacheate under different treatments
2.2生物質(zhì)炭對(duì)土壤-淋洗液體系中速效鉀和速效磷的影響
在淋溶條件下,生物質(zhì)炭對(duì)未施肥土壤和施肥土壤中速效鉀的影響有所差異(表1)。在相同的生物質(zhì)炭施用量條件下,淋溶后施肥土壤比未施肥土壤的速效鉀含量下降更為明顯。從表1可以看出:添加生物質(zhì)炭使土壤中速效鉀含量大幅度增加;未施肥土壤的速效鉀含量在淋溶前后均沒(méi)有出現(xiàn)明顯的下降,隨著生物質(zhì)炭用量的增加其速效鉀的下降幅度反而有所減少;施肥土壤淋溶后,F(xiàn)、FC1、FC2和FC3處理的速效鉀含量下降了10.8%、19.8%、12.9%和0.5%,即當(dāng)用量達(dá)到一定水平時(shí),生物質(zhì)炭也可減少淋溶條件下施肥紅壤中速效鉀的下降幅度;添加生物質(zhì)炭還有效地降低了未施肥土壤中速效鉀的淋出率,CK、C1、C2和C3處理的速效鉀淋出率依次為53.6%、14.3%、9.1%和7.5%。
表1 土壤-淋洗液體系中速效鉀的變化
各處理符號(hào)表示的含義詳見(jiàn)圖1注。同列數(shù)據(jù)后的不同小寫(xiě)字母表示在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義.
Please see footnote of Fig.1 for details of each treatment. The values within a column followed by different lowercase letters show statistically significant differences at the 0.05 probability level.
從表2可以看出:未添加生物質(zhì)炭處理的未施肥(CK)和施肥(F)土壤淋溶后速效磷含量均有所下降,兩者降幅分別為14.3%和5.0%;添加生物質(zhì)炭后,未施肥和施肥土壤淋溶后的速效磷含量下降加劇,其中,C1、C2和C3處理的速效磷含量分別下降了36.6%、50.3%和45.1%,F(xiàn)C1、FC2和FC3處理的速效磷含量分別下降了15.2%、28.5%和28.8%;然而,添加生物質(zhì)炭處理明顯降低了土壤速效磷的淋出率,當(dāng)施用3%生物質(zhì)炭時(shí),C3處理和FC3處理中速效磷的淋出率分別下降至7.8%和7.2%。
表2 土壤-淋洗液體系中速效磷的變化
各處理符號(hào)表示的含義詳見(jiàn)圖1注。同列數(shù)據(jù)后的不同小寫(xiě)字母表示在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義.
Please see footnote of Fig.1 for details of each treatment. The values within a column followed by different lowercase letters show statistically significant differences at the 0.05 probability level.
3.1降水對(duì)土壤-淋洗液體系中鉀的影響
土壤中的鉀易因降水而淋失[16],使得土壤有效鉀含量降低,導(dǎo)致土壤缺鉀。在本試驗(yàn)中,用生物質(zhì)炭處理的土壤養(yǎng)分離子濃度較高[17],在淋溶初期黏粒表面吸附的鉀離子占土壤陽(yáng)離子總量的比例較小[18],鉀離子的淋出總量增加。但是,隨著淋溶時(shí)間的延長(zhǎng),生物質(zhì)炭可吸附的鉀離子比例增加,所以在淋溶后期土壤鉀淋失減少。LEHMANN等[19]發(fā)現(xiàn),施用生物質(zhì)炭增加了砂土和棕壤中鉀的淋洗量,本試驗(yàn)淋溶初期的試驗(yàn)結(jié)果與其一致。添加生物質(zhì)炭顯著提高了土壤交換性鉀含量[20],可能是生物質(zhì)炭增加土壤鉀淋失的主要原因[21]。本試驗(yàn)結(jié)果表明,添加生物質(zhì)炭雖會(huì)導(dǎo)致土壤淋洗液中總鉀量稍有增加,但生物質(zhì)炭對(duì)土壤速效鉀含量的提升幅度更加明顯,因此,研究生物質(zhì)炭對(duì)土壤鉀淋溶的影響以鉀的淋出率作為標(biāo)準(zhǔn)更有意義。本試驗(yàn)表明,添加生物質(zhì)炭對(duì)于降低土壤中鉀的淋出率、提高肥料利用率具有一定的作用。此外,未施肥和施肥土壤添加生物質(zhì)炭后速效鉀含量在淋溶條件下降幅均減少,使土壤能夠保持較高的速效鉀含量。DELUCA等[22]認(rèn)為,生物質(zhì)炭可以通過(guò)改變土壤pH、陽(yáng)離子交換量和有機(jī)質(zhì)等含量來(lái)影響土壤中鉀的形態(tài)。在本試驗(yàn)中生物質(zhì)炭對(duì)未施肥和施肥土壤鉀形態(tài)的作用效果有所不同,可能與2種土壤的速效鉀含量不同有關(guān)。
3.2降水對(duì)土壤-淋洗液體系中磷的影響
在本試驗(yàn)中添加生物質(zhì)炭大幅度提高了土壤速效磷含量,但淋洗液中總磷量并沒(méi)有相應(yīng)增加。說(shuō)明添加生物質(zhì)炭具有減少紅壤磷淋失的效果。李際會(huì)等[23]發(fā)現(xiàn),添加2.5%改性生物質(zhì)炭后,土壤有效磷淋出量減少了45%。RAAVE等[21]研究認(rèn)為,磷淋失減少的主要原因是施用生物質(zhì)炭后增加了土壤的持水量。
施入生物質(zhì)炭可大幅度提高紅壤的速效磷含量,但經(jīng)過(guò)一段時(shí)間淋溶后紅壤的速效磷含量會(huì)出現(xiàn)明顯下降,這與酸性紅壤對(duì)磷的固定機(jī)制有關(guān)。在酸性紅壤中,磷主要通過(guò)鐵鋁氧化物、礦質(zhì)膠體表面被吸附,以及與鐵鋁化物反應(yīng)生成難溶性的磷酸鹽,從而使土壤磷從可溶態(tài)向難溶態(tài)轉(zhuǎn)變[24]。洪順山等[25]認(rèn)為,在強(qiáng)酸條件下磷肥可能主要以無(wú)定形磷酸鋁被固定下來(lái),且通過(guò)試驗(yàn)證實(shí)了活性鋁對(duì)酸性紅壤固磷的貢獻(xiàn)率可達(dá)40%以上。已有研究表明,生物質(zhì)炭能夠有效地提高紅壤pH,減少其活性鋁含量[26]。因此,添加生物質(zhì)炭的初期會(huì)大幅度減少紅壤對(duì)磷的固定,顯著增加土壤有效態(tài)磷;但隨著淋溶時(shí)間的延長(zhǎng),在酸性紅壤中最初被吸附、固定的磷鹽具有向磷鋁石及粉紅磷鐵礦轉(zhuǎn)化的趨勢(shì),且它們的溶解度極低[25],使土壤有效態(tài)磷又出現(xiàn)下降。本試驗(yàn)添加生物質(zhì)炭后,紅壤速效磷的下降量明顯大于淋洗液中的總磷量.說(shuō)明生物質(zhì)炭能夠增加土壤對(duì)磷的吸附或固定能力。這與UZOMA等[27]的研究結(jié)果類似。但也有報(bào)道表明,生物質(zhì)炭對(duì)磷的固定作用極小[28]??傊镔|(zhì)炭對(duì)土壤磷形態(tài)的影響較為復(fù)雜,可能與土壤類型和性質(zhì)有關(guān)。
施入生物質(zhì)炭后,紅壤的速效鉀和速效磷含量大幅度提高,且添加生物質(zhì)炭可減少淋溶條件下未施肥和施肥紅壤中速效鉀的下降幅度,使紅壤能夠保持較高的速效鉀含量。添加生物質(zhì)炭后,土壤速效磷含量雖有大幅度提高,但淋洗液中磷的總量并沒(méi)有相應(yīng)增加。說(shuō)明添加生物質(zhì)炭可顯著減少紅壤中磷的淋出率。
[1]LAIRD D A, FLEMING P, DAVIS D D,etal. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil.Geoderma, 2010,158(3):443-449.
[2]VERHEIJEN F G A, JEFFERY S, BASTOS A C,etal.BiocharApplicationtoSoils:ACriticalScientificReviewofEffectsonSoilProperties,ProcessesandFunctions. Luxembourg: EUR 24099 EN, Office for the Official Publications of the European Communities, 2009:149.
[3]LIANG B, LEHMANN J, SOLOMON D,etal. Black carbon increases cation exchange capacity in soils.SoilScienceSocietyofAmericaJournal, 2006,70(5):1719-1730.
[4]WARNOCK D D, LEHMANN J, KUYPER T W,etal. Mycorrhizal responses to biochar in soil: Concepts and mechanisms.PlantandSoil, 2007,300:9-20.
[5]STEINER C, TEIXEIRA W G, LEHMANN J,etal. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil.PlantandSoil, 2007,291:275-290.
[6]VAN ZWIETEN L, KIMBER S, MORRIS S,etal. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility.PlantandSoil, 2010,327:235-246.
[7]HILTON H W, YUEN Q H. Soil adsorption of herbicides, adsorption of serveral pre-emergence herbicides by Hawaiian sugar cane soils.JournalofAgriculturalandFoodChemistry, 1963,11(3):230-234.
[8]林愛(ài)軍,張旭紅,蘇玉紅,等.骨炭修復(fù)重金屬污染土壤和降低基因毒性的研究.環(huán)境科學(xué),2007,28(2):232-237.
LIN A J, ZHANG X H, SU Y H,etal. Chemical fixation of metals in soil using bone char and assessment of the soil genotoxicity.EnvironmentalScience, 2007,28(2):232-237. (in Chinese with English abstract)
[9]CLOUGH T J, CONDRON L M. Biochar and the nitrogen cycle: Introduction.JournalofEnvironmentalQuality, 2010,39:1218-1223.
[10]周志紅,李心清,邢英,等.生物炭對(duì)土壤氮素的抑制作用.地球與環(huán)境,2011,39(2):278-284.
ZHOU Z H, LI X Q, XING Y,etal. Effect of biochar amendment on nitrogen leaching in soil.EarthandEnvironment, 2011,39(2):278-284. (in Chinese with English abstract)
[11]BORCHARD A, WOLF A, LAABS V,etal. Physical activation of biochar and its meaning for soil fertility and nutrient leaching: A greenhouse experiment.SoilUseandManagement, 2012,28:177-184.
[12]NOVAK J M, BUSSCHER W J, LAIRD D L,etal. Impact of biochar amendment on fertility of a Southeastern coastal plain soil.SoilScience, 2009,174:105-112.
[13]XU G, SUN J N, SHAO H B,etal. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity.EcologicalEngineering, 2014,62:54-60.
[14]廖紅玲,張智勇,謝遠(yuǎn)玉.近48年贛州市降水量變化特征分析.江西農(nóng)業(yè)學(xué)報(bào),2010,22(10):97-100.
LIAO H L, ZHANG Z Y, XIE Y Y. Analysis of characteristics of Ganzhou precipitation changes nearly 48 years.ActaAgriculturaeJiangxi, 2010,22(10):97-100. (in Chinese)
[15]鮑士旦.土壤農(nóng)化分析.北京:中國(guó)農(nóng)業(yè)出版社,2005:25-38,70-114.
BAO S D.SoilAgro-ChemicalAnalysis. Beijing: China Agriculture Press, 2005:25-38,70-114. (in Chinese)
[16]BROSCHAT T K. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods.HortScience, 1995,30:74-77.
[17]CRAVO M S, GREENWOOD J, NEHLS T,etal. Slash-and-char: A feasible alternative for soil fertility management in the central Amazon//Proceedingsofthe7thWorldCongressofSoilScience. 2002:449.
[18]占麗平,李小坤,魯劍巍,等.土壤鉀素運(yùn)移的影響因素研究進(jìn)展.土壤,2012,44(4):548-553.
ZHAN L P, LI X K, LU J W,etal. Research advances on influence factors of soil potassium movement.Soils, 2012,44(4):548-553. (in Chinese with English abstract)
[19]LEHMANN J, DA SILVA J P, STEINER C,etal. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments.PlantandSoil, 2003,249:343-357.
[20]GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review.BiologyFertilityofSoils, 2002,35:219-230.
[21]RAAVE H, KERES I, KAUER K,etal. The impact of activated carbon on NO3--N, NH4+-N, P and K leaching in relation to fertilizer use.EuropeanJournalofSoilScience, 2014,65(1):120-127.
[22]DELUCA T H, MACKENZIE M D, GUNDALE M J. Effects on soil nutrient transformation//JOSEPH S, LEHMANN J.BiocharforEnvironmentalManagementScienceandTechnology. London: Earthscan, 2009:25-280.
[23]李際會(huì),呂國(guó)華,白文波,等.改性生物炭的吸附作用及其對(duì)土壤硝態(tài)氮和有效磷的影響.中國(guó)農(nóng)業(yè)氣象,2012,33(2):220-225.
LI J H, Lü G H, BAI W B,etal. Effect of modified biochar on soil nitrate nitrogen and available phosphorus leaching.ChineseJournalofAgrometeorology, 2012,33(2):220-225. (in Chinese with English abstract)
[24]STEVENSON F J, Cole M A.CyclesofSoil:Carbon,Nitrogen,Phosphorus,Sulfur,andMicronutrients. New York: John Willey & Sons, 1985:231-284.
[25]洪順山,朱祖祥.從磷酸鹽位探討土坡中磷的固定機(jī)制及其有效度問(wèn)題.土壤學(xué)報(bào),1979,16(2):94-109.
HONG S S, ZHU Z X. The mechanism of phosphate fixation and availability of phosphorus as interpreted by phosphate potentials of soils.ActaPedologicaSinica, 1979,16(2):94-109. (in Chinese with English abstract)
[26]TOPOLIANTZ S, PONGE J F, BALLOF S. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics.Biology&FertilityofSoils, 2005,41:15-21.
[27]UZOMA K C, INOUE M, ANDRY H,etal. Influence of biochar application on sandy soil hydraulic properties and nutrient retention.JournalofFoodAgricultureandEnvironment, 2011,9(3/4):1137-1143.
[28]YAO Y, GAO B, INYANG M,etal. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings.JournalofHazardousMaterials, 2011,190:501-507.
Effects of biochar on the contents of potassium and phosphorus, and their leaching rates in red soil under simulated leaching condition.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):478-484
ZHU Pan1, YING Jieguan1, PENG Shu’ang2, JIANG Cuncang1*
(1.CollegeofResourcesandEnvironment,HuazhongAgriculturalUniversity,Wuhan430070,China; 2.CollegeofHorticultureandForestrySciences,HuazhongAgriculturalUniversity,Wuhan430070,China)
biochar; red soil; leaching; potassium; phosphorus
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201303095);國(guó)家現(xiàn)代柑橘產(chǎn)業(yè)技術(shù)體系崗位資助項(xiàng)目.
Corresponding author):姜存?zhèn)}(http://orcid.org/0000-0003-4742-003X),E-mail:jcc2000@mail.hzau.edu.cn
聯(lián)系方式:朱盼(http://orcid.org/0000-0001-8609-3102),E-mail:zhupanss@foxmail.com
2015-12-15;接受日期(Accepted):2016-05-30;網(wǎng)絡(luò)出版日期(Published online):2016-07-18
S-3; S 156
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160718.2026.008.html