桂嵐嵐, 彭 亮, 彭導(dǎo)靈, 顧鳳龍
(華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,環(huán)境理論化學(xué)教育部重點實驗室,廣州 510006)
?
密度泛函理論研究CO、CO+H在Ni(111)表面的吸附
桂嵐嵐, 彭亮, 彭導(dǎo)靈, 顧鳳龍*
(華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,環(huán)境理論化學(xué)教育部重點實驗室,廣州 510006)
摘要:采用密度泛函理論(DFT)研究了CO以及CO+H體系在金屬Ni(111)表面的吸附行為.采用二維平板周期性結(jié)構(gòu)模型來模擬金屬Ni(111)表面,消除了團簇結(jié)構(gòu)模型不能考慮體系邊界效應(yīng)的影響,更接近于真實金屬表面. 對CO在Ni(111)表面的吸附過程進行探究,結(jié)果表明:CO在不同的表面活性位吸附后C—O鍵不同程度被削弱;通過對吸附能以及吸附后C—O鍵長和C—O伸縮振動頻率分析,發(fā)現(xiàn)頂位(top)、橋位(bridge)、六方密堆積三重穴位(hcp)和面心立方三重穴位(fcc)都以C端靠近表面的垂直吸附為穩(wěn)定狀態(tài),均為非解離吸附,其中fcc與hcp兩空穴位吸附性質(zhì)幾乎相同,為CO的最佳活性位. 研究CO與氫(H)在Ni(111)表面的吸附過程的結(jié)果表明:部分CO通過雙基端加H生成中間物種—OCH和—COH, C—O鍵很大程度被削弱,較不加H吸附時的C—O鍵更容易在活性位斷裂,因而以金屬Ni(111)表面做催化劑的情況下H的加入有助于CO的解離.
關(guān)鍵詞:密度泛函; Ni(111); CO+H; 費托合成; 吸附
CO是具有三重鍵的異核雙原子分子,其中最高占據(jù)分子軌道(HOMO)軌道主要由C原子的孤對電子占據(jù),表現(xiàn)出較強的配位能力.金屬鎳作為一種3d過渡金屬具有3d84s2的電子結(jié)構(gòu),特殊的d殼層結(jié)構(gòu)使其具有豐富的物理和化學(xué)性質(zhì).1902年首次發(fā)現(xiàn)CO和H2在鎳的催化作用下可以生成甲烷,合成氣甲烷化技術(shù)[1-4].目前,鎳基催化劑在合成氣甲烷化反應(yīng)中應(yīng)用前景大[5-7].純鎳晶體具有面心立方結(jié)構(gòu),其(111)面是1個原子密排面,一般情況下不發(fā)生再構(gòu),開展研究也相對簡單,被廣泛關(guān)注[8-17].
盡管有很多實驗方法提出CO加H2在 Ni表面的催化活化機理,但受實驗條件的限制尚未達成共識.ARAKI和PONEC[15]從實驗中得出甲烷化反應(yīng)始于CO在多核活性位上的解離化學(xué)吸附,金屬表面與C原子成鍵,C—O鍵斷裂,即生成金屬表面Cs和O(a),CO的這種解離化學(xué)吸附快速,無需幫助,甲烷化的速率決定步驟是表面Cs連續(xù)加氫過程中的某一步;MORI等[16]發(fā)現(xiàn)Ni催化劑上甲烷生成速率并非取決于Cs或CHx(a)加氫的速率,并被C≡O(shè)鍵斷裂控制,無論是氫助還是非氫助的斷裂;MITCHELL等研究[17]表明,Ni(111)表面CO的分子振動頻率與H原子的吸附關(guān)系不大,在混合吸附情況下,CO分子與 H原子之間的作用不強,在一定意義上,可將CO分子和H原子分開考慮,即看成2個單吸附系統(tǒng)的疊加.因此弄清楚Ni催化劑上CO加氫反應(yīng)的主要途徑,反應(yīng)中CO是否解離?CO是直接解離還是加氫解離顯得十分必要.基于此,本文運用量子化學(xué)計算方法研究CO加氫在金屬Ni(111)表面的催化活化機理.
1計算模型和方法
純鎳在常溫下是面心立方晶格(fcc),晶胞參數(shù)a=b=c=0.352 nm,α=β=γ=90°, Ni—Ni鍵長0.248 9 nm.本文模擬Ni(111)表面(圖1中陰影部分)周期性超胞,圖2為Ni(111)2×2×2的雙層薄片(slab)模型中的1個超胞及其4種吸附活性,分別為頂位(top)、橋位(bridge)、六方密堆積三重穴位(hcp)、面心立方三重穴位(fcc).
圖1 陰影部分表示Ni (111)表面
圖2 Ni(111)2×2×2超胞及4種吸附活性位
Figure 2Ni (111) 2×2×2 super cell and four active adsorption sites
注:1-頂位;2-橋位;3-hcp位;4-fcc位.
采用密度泛函理論(Density Functional Theory,DFT),選擇廣義梯度近似(Generalized Gradient Approximation,GGA),利用ADF(Amsterdam Density Functional)程序中能帶結(jié)構(gòu)模塊(BAND)來計算模擬CO在具有周期性結(jié)構(gòu)的Ni(111)表面的吸附過程.首先對體系的結(jié)構(gòu)模型進行測試,選用CO頂位(top)吸附在Ni(111)的2×2表面,對層數(shù)設(shè)計從1遞增加至4層結(jié)構(gòu)體系,方法上采用交換關(guān)聯(lián)相互作用GGA-PW91,基組選擇芯層雙zeta,價層三zeta的雙極化 (TZ2P)基組,凍芯部分選用程序中的small參數(shù),且不考慮鎳元素的相對論相應(yīng),所有的收斂標準均采用程序默認標準.通過計算發(fā)現(xiàn)層數(shù)對Ni—Ni鍵長的影響幾乎可以忽略(表1).本文選用了Ni(111)的2×2×2表面模型進行計算.
本文測試了3種常用的密度泛函方法B3LYP,PBE和PW91,分別讓其在3種不同基組DZ、TZP、TZ2P情況下選擇凍芯large或者small進行組合,測試結(jié)果見表2,數(shù)據(jù)顯示采用PW91方法和TZ2P基組的計算結(jié)果與其他方法相比更接近實驗值,在凍芯small時得到同一層Ni—Ni鍵長是0.248 9 nm,層間相鄰Ni—Ni鍵長是0.248 7 nm,層間距離為0.219 4 nm,C—O鍵長0.113 6 nm;凍芯large時得到同一層Ni—Ni鍵長是0.248 9 nm,層間相鄰Ni—Ni鍵長是0.248 5 nm,層間距離為0.219 4 nm,C—O鍵長0.113 6 nm,而同層和層間相鄰Ni—Ni鍵長實驗值都為0.248 9 nm,C—O鍵長實驗值為0.112 8 nm.不同凍芯參數(shù)的選擇對結(jié)果影響很小,所以本文選用PW91方法TZ2P基組,以及凍芯為small來節(jié)省計算時間.
表11-4相鄰層Ni—Ni、Ni—C及C—O鍵長
Table 1Bond lengths of Ni—Ni, Ni—C and C—O bonds in different layer (1-4) models
nm
表2 BLYP、PBE及PW91方法與基組的組合測試
2結(jié)果與討論
2.1CO在Ni(111)表面的吸附
分別對CO在Ni(111) 表面上的頂位(top)、橋位(bridge)、六方密堆積三重穴位(hcp)、面心立方三重穴位(fcc)4種活性位的C端接近垂直吸附,O端接近垂直吸附與平躺吸附的12種不同初始結(jié)構(gòu)進行幾何優(yōu)化(圖3),圖中標記(1)、(2)分別表示表面結(jié)構(gòu)的平視圖與俯視圖.
經(jīng)過對初始的12種結(jié)構(gòu)進行優(yōu)化,得到CO分子在Ni(111) 表面的4種不同吸附活性位置的穩(wěn)定結(jié)構(gòu)(圖4),從成鍵角度分析,top位吸附穩(wěn)定狀態(tài)鍵角O—C—Ni1為180°,則C、O與Ni(111)表面Ni1原子恰成直線,且O、C、Ni1原子(x,y)坐標相同,可見CO垂直吸附于Ni1頂位(top);bridge位吸附穩(wěn)定狀態(tài)中C、O原子(x,y)坐標相同,鍵角O—C—Ni1與角O—C—Ni3相等(139.1°),則CO恰為垂直吸附于bridge位活性位;而hcp位、fcc位2種吸附狀態(tài)非常相似,C、O兩原子(x,y)坐標仍然相同,且與之形成相應(yīng)穴位的表面的3個Ni原子形成的三鍵角相等,六方密堆積三重穴位(hcp)中三鍵角O—C—Ni3、O—C—Ni5、O—C—Ni7均為132.9°,fcc位中三鍵角O—C—Ni1、O—C—Ni3、O—C—Ni5均為132.6°,即CO同樣是垂直吸附于hcp和fcc位.綜上所述,4種穩(wěn)定狀態(tài)均是CO以碳原子接近Ni(111)表面的垂直吸附(圖4).
圖3 4種活性位置12種初始結(jié)構(gòu)
圖4 4種吸附活性位的穩(wěn)定結(jié)構(gòu)
表3顯示CO分子在Ni(111) 表面吸附時的吸附能、鍵長和吸附后C—O振動頻率計算值.吸附能是指吸附后體系的總能量與未產(chǎn)生吸附的潔凈金屬表面和CO自由分子的能量之差Eads=E(surface+CO)-E(surface)-E(CO).吸附能為負值表明吸附過程為自發(fā),其絕對值越大,則吸附結(jié)構(gòu)越穩(wěn)定,吸附位的活化性能越高.從表3看出,4種吸附結(jié)構(gòu)的吸附能值接近,表明CO在Ni(111)金屬表面的擴散能量壁壘很低,尤其是bridge位、hcp位、fcc位3種結(jié)構(gòu)吸附能接近,但同時,hcp位和fcc位2種吸附體系無論是吸附能、Ni—C鍵長、C—O鍵長與C—O振動頻率大小都非常接近,為2種極其相似的穩(wěn)定吸附狀態(tài).氣體CO分子中C—O鍵長計算值為0.113 6 nm,與實驗值0.112 8 nm相差僅為1.1%,CO在鎳金屬表面top位吸附后C—Ni鍵長為0.173 1 nm,在bridge位吸附后C—Ni 鍵長為0.186 8 nm,hcp位吸附后C—Ni鍵長為0.194 1 nm,fcc位吸附后C—Ni鍵長為0.194 3 nm,Ni—C鍵的計算結(jié)果與Ni—CO原子簇模型采用UHF/STO-3G方法[18-19]的計算值(0.184 0)、HF/大基組方法[20]的計算值(0.207 0)以及GVB(2/4)/DZ方法[21]的計算值(0.194 0)等結(jié)果基本吻合(表3).
表3 4種穩(wěn)定結(jié)構(gòu)吸附能、Ni—C和C—O鍵長以及C—O頻率
從表3看出,hcp位和fcc位吸附時,C—O鍵長分別為0.118 0 nm和0.118 2 nm,較頂位(0.115 3 nm)和橋位(0.117 0 nm)分別高出0.003 nm和0.001 nm,表明hcp位和fcc位的吸附位活化性能比頂位和橋位高.同時通過吸附前后C—O振動頻率分析可知,氣相CO的振動頻率為2 179 cm-1,這比實驗值2 143 cm-1略大.計算結(jié)果表明,吸附后CO的振動頻率與氣相值相比均發(fā)生不同程度的紅移,且結(jié)構(gòu)越穩(wěn)定紅移程度越大,這與吸附后C—O鍵長的增加相一致.fcc位C—O的振動頻率(1 821 cm-1)最小,從而進一步證實了fcc位的活化CO分子的性能最好.
對于活化性能最好的fcc位,為尋找其可能的過渡態(tài)結(jié)構(gòu),采用固定C—O鍵長分別為0.11、0.12和0.13 nm,Ni—C鍵長從0.175 nm到0.500 nm的變化過程作一系列的單點,計算得到曲線如圖5所示.隨著Ni—C鍵長增至0.300 nm以后,各結(jié)構(gòu)的單點能保持平穩(wěn),說明fcc活性位置吸附無過渡態(tài),只是單純的吸附過程.
對CO與Ni(111)表面的成鍵過程進行態(tài)密度(DOS)分析(圖6),其中發(fā)揮作用的主要是5σ和2π*軌道,形成了 5σ成鍵和Ni-2π*反鍵.CO的5σ軌道上的電子轉(zhuǎn)移至Ni的d軌道,使5σ軌道發(fā)生左移,Ni的d軌道上的電子轉(zhuǎn)移到CO的2π*軌道,使2π*軌道發(fā)生分裂,部分進入成鍵軌道.
圖5在fcc吸附位固定C—O鏈長時不同Ni—C鍵長單點能曲線
Figure 5Energies of different Ni-C bonds in fcc adsorption site with the fixed C—O bond lengths
2.2CO+H在Ni(111)表面的吸附
在本節(jié)中初始結(jié)構(gòu)設(shè)計基于上一節(jié)CO單吸附于Ni(111) 表面上的頂位、橋位、hcp位、fcc位的以C端接近垂直吸附,O端接近垂直吸附,與平躺吸附的12種位置上C端或O端各加上1個H,圖7顯示,頂位的6種構(gòu)造,4種活性位置共構(gòu)造出24種不同的初始結(jié)構(gòu).
圖6 CO在Ni(111)表面的分波態(tài)密度
優(yōu)化24種初始結(jié)構(gòu)得到CO+H在Ni(111) 表面的8種不同穩(wěn)定結(jié)構(gòu)(圖8).其中Ⅳ、Ⅴ、Ⅶ、Ⅷ 4種結(jié)構(gòu)有相同的特點,CO分子與H之間不成鍵,而是相互遠離地吸附在Ni(111)表面的三重活性穴位fcc或者hcp上.結(jié)構(gòu)Ⅳ中CO吸附于fcc位,同時,H吸附于其對頂?shù)膆cp位上;結(jié)構(gòu)Ⅴ中CO吸附于fcc
圖7 CO+H在Ni(111) 表面頂位的6種初始結(jié)構(gòu)
Figure 7Initial structures of CO+H on Ni (111) surface at top site
圖8 CO+H在Ni(111) 表面的8種穩(wěn)定結(jié)構(gòu)
位,而H吸附于其同單元相鄰的hcp位上;結(jié)構(gòu)Ⅶ中CO吸附于hcp位,而H吸附于其同單元相鄰的fcc位上;結(jié)構(gòu)Ⅷ中CO與H分別處在相間的hcp位上.這4種穩(wěn)定結(jié)構(gòu)不但能量相當,其C—O鍵、Ni—C鍵、Ni—H鍵以及C—O振動頻率與CO和H分別單吸附在Ni(111)表面相同活性位的吸附構(gòu)型幾乎保持一致(表4),研究得出的CO分子與 H原
表48種穩(wěn)定態(tài)能、C—O鍵長、Ni—C距離、Ni—H距離、C—O頻率及CHO夾角
Table 4Stabilization energies, C—O bond lengths, distances of Ni—C, distances of Ni—H, vibrational frequencies of C—O and angles of CHO in different stable structures
結(jié)構(gòu)E/eVRC—O/nmdC—Ni/nmdH—Ni/nm∠COH或∠OCH/(°)VC—O/cm-1Ⅰ-55.6880.12110.1853—120.61647Ⅱ-56.4420.13450.1137—107.01239Ⅲ-53.4020.12480.1378—112.51427Ⅳ-57.5910.11800.12970.0893—1834Ⅴ-57.3470.11780.12830.0833—1861Ⅵ-56.4450.13340.1151—107.81269Ⅶ-57.2330.11780.12920.0825—1851Ⅷ-57.5530.11810.13360.0861—1832
子之間的作用不強,這與MITCHELL等[17]176提出的將共吸附系統(tǒng)看成2個單吸附系統(tǒng)疊加的結(jié)論一致.
結(jié)構(gòu)Ⅰ為以碳原子一端靠近Ni 原子頂位的垂直吸附,O原子和H原子分別位于C原子的兩邊成一定的夾角,與CO單吸附在Ni(111)表面時的頂位吸附穩(wěn)定結(jié)構(gòu)比較, C—O鍵長由單吸附時0.115 3 nm增長到0.121 1 nm,C—O伸縮振動頻率由單吸附的2 070 cm-1降到1 647 cm-1,顯然C—O鍵有所削弱,此時的C、H、O 3原子與活性位Ni原子4點共面,這也是計算結(jié)果中唯一的以頂位為活性位的穩(wěn)定結(jié)構(gòu);結(jié)構(gòu)Ⅱ與Ⅵ相似,前者活性位為fcc位,后者活性位為hcp位,分別與CO單吸附在Ni(111)表面上的fcc位與hcp位的穩(wěn)定結(jié)構(gòu)相比較,都以C端垂直吸附在各自活性位上,不同之處在于,在H與O形成O—H鍵的同時C—O鍵明顯增長,fcc位由之前的0.118 2 nm增長到0.134 5 nm,C—O伸縮振動頻率由單吸附的1 821 cm-1降到1 239 cm-1,hcp位由之前的0.118 0 nm增長到0.133 4 nm,C—O伸縮振動頻率由單吸附的1 833 cm-1降到1 269 cm-1,這使C—O鍵受到了較大程度的削弱.
結(jié)構(gòu)Ⅲ是計算結(jié)果中唯一的以O(shè)端靠近活性位的穩(wěn)定結(jié)構(gòu),C—O鍵長(0.124 8 nm)與CO單吸附時的C—O鍵一樣有所削弱,方向上與Ni表面垂直方向偏差5.8°,而在CO單吸附于Ni(111)表面的4種穩(wěn)定結(jié)構(gòu)中均為C端垂直吸附,由此說明,CO在Ni(111)表面上的催化活性在加氫前后有較大差異,表現(xiàn)為加氫有助于C—O鍵的削弱,可以推斷—OCH或—COH斷裂為—CH和—O或—OH和—C的過程比在相同Ni(111)表面活性位上CO分子斷裂為—C和—O的過程容易.
3結(jié)論
采用密度泛函理論研究CO,CO+H在金屬Ni(111)-2×2×2表面催化反應(yīng)中C—O鍵的活化機理,根據(jù)計算結(jié)果得出以下結(jié)論:
(1)CO單吸附于Ni(111) -2×2×2表面體系中,CO均以C端靠近且垂直吸附于Ni(111)表面的頂位(top)、橋位(bridge)、六方密堆積三重穴位(hcp)、面心立方三重穴位(fcc)4種活性位上,C—O鍵各有不同程度的削弱,且削弱強度top (2)CO加H吸附于Ni(111) -2×2×2表面體系中,一是CO和H直接被Ni(111)表面的活性位hcp或fcc吸附,CO和H之間相鄰、對頂或相間但互不成鍵,可視為CO與H各自單吸附于Ni(111)同活性位系統(tǒng)的疊加;二是H原子通過與CO分子的雙基端C或O成鍵生成中間物種—OCH和—COH,此時C—O鍵已成為單鍵,與CO單吸附于Ni(111)過程相比很大程度被削弱.綜上所述,H的加入有助于C—O鍵在Ni(111)表面的活化. 參考文獻: [1]RABOU L P, BOS L. High efficiency production of substitute natural gas from bio-mass[J]. Applied Catalysis B:Environmental, 2012,111(2):456-460. [2]GR?BL T, WALTER H, HAIDER M. Biomass steam gasification for production of SNG-process design and sensitivity analysis[J]. Applied Energy, 2012,97(3):451-461. [3]MEIJDAN C M V D, VERINGA H J, RABOU L P M. The production of synthetic natural gas(SNG):a comparison of three wood gasification systems for energy balance and overall efficiency[J]. Biomass & Bioenergy, 2010,34(3):302-311. [4]SCHILDHAUER T J, SEEMANN M C, BIOLLAZ S M A. Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas[J]. Industrial & Engineering Chemistry Research, 2010,49(15):7034-7038. [5]KUSTOV A L, FREY A M, LARSEN K E, et al. CO methanation over supported bimetallic Ni-Fe catalysts:from computational studies towards catalyst optimization[J].Applied Catalysis A General, 2007,320:98-104. [6]PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Selective methanation of CO over supported noble metal catalysts:effects of the nature of the metallic phase on catalytic performance[J]. Applied Catalysis A: General, 2008,344(1):45-54. [7]TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. International Journal of Hydrogen Energy, 2004,29(10):1065-1073. [8]MORIKAWA Y, MORTENSEN J J, HAMMER B, et al. CO adsorption and dissociation on Pt(111) and Ni(111) surfaces[J]. Surface Science, 1997,386(1):67-72. [9]DAVIS R, WOODRUFF D P, HOFMANN P, et al. Local structure determination for low-coverage CO on Ni(111)[J]. Journal of Physics: Condensed Matter, 1996,8(10):1367-1379. [10]ERLEY W, WAGNER H, IBACH H. Adsorption sites and long range order-vibrational spectra for CO on Ni(111)[J]. Surface Science, 1979,80(79):612-619. [11]SCHAFF O, FERNANDEZ V, HOFMANN P, et al. Coverage-dependent changes in the adsorption geometry of benzene on Ni{111}[J]. Surface Science, 1996,348(95): 89-99. [12]FERNANDEZ V, SCHINDLER K M, SCHAFF O, et al. Structure determination of a CO/O coadsorption phase on Ni(111)[J]. Surface Science, 1996,351(1): 1-12. [13]BECKER L, AMINPIROOZ S, HILLERT B, et al. Threefold-coordinated hollow adsorption site for Ni(111)- c(4×2)-CO: a surface-extended X-ray-absorption fine-structure study[J]. Physical Review B: Condensed Matter, 1993,47(15):9710-9714. [14]CAMPUZANO J C, GREENLER R G. The adsorption sites of CO on Ni (111) as determined by infrared reflection-absorption spectroscopy[J]. Surface Science, 1979,83(1):301-312. [15]ARAKI M, PONEC V. Methanation of carbon monoxide on nickel and nickel-copper alloys[J]. Catalysis, 1976, 44(3): 439-448. [16]MORI T, MASUDA H, IMAI H, et al. Kinetics, isotope effects, and mechanism for the hydrogenation of car bon monoxide on supported nickel catalysts[J]. Physical Chemistry, 1982,86(14): 2753-2760 [17]MITCHELL G E, GLAND J L, WHITE J M. Vibrational spectra of coadsorbed CO and H on Ni(100) and Ni(111)[J]. Surface Science, 1983,131(1):167-178. [18]XU X, WANG N Q, ZHANG Q. Chemisorption on metal surfaces: cluster model studies[J].Bulletin of the Chemical Society of Japan, 1996,69(3):529-534. [19]XU X, WANG N Q, ZHANG Q. Chemisorption on metal surfaces: cluster model studies[J]. Surface Science, 1992,274(3):378-385. [20]GODDARD W A, WALCH S P, RAPPE A K, et al. Methanation of CO over Ni catalyst: a theoretical study[J]. Vacuum Science and Technology, 1977,14(1):416-418. [21]AVOURIS P, BAGUS P S, ROSSI A R. Excitation and ionization at surfaces: CO on metals[J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1985,3(5):1484-1489. [22]BERTOLINI J C, DALMAI-IMELIK G, ROUSSEAU J. Benzene adsorption on nickel (100) and (111) faces studied by LEED and high resolution electron energy loss spectroscopy[J]. Surface Science, 1977,67(2):478-480. [23]DAVILA M E, ASENSIO M C, WOODRUFF D P, et al. Structure determination of Ni(111)c(4×2)-CO and its implications for the interpretation of vibrational spectroscopic data[J]. Surface Science, 1994,311(3):337-348. [24]STEININGER H, LEHWALD S, IBACH H. On the adsorption of CO on Pt(111)[J]. Surface Science, 1982,123(2):264-282. [25]SURMEV L, XU Z, YATES J T. IRAS study of the adsorption of CO on Ni(111): interrelation between various bonding modes of chemisorbed CO[J]. Surface Science, 1988,201(1):1-13. 【中文責(zé)編:譚春林英文責(zé)編:李海航】 Density Functional Theory Study of CO, CO+H Adsorption on Ni(111) Surface GUI Lanlan, PENG Liang, PENG Daoling, GU Fenglong* (School of Chemistry and Environment, South China Normal University,Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China) Abstract:A density functional theory (DFT) study of CO, CO+H adsorption processes on Ni(111) surface is reported in this article. A two-dimensional periodic slab structure model is employed to simulate the Ni (111) surface and to eliminate the influence of the cluster model on system boundary effects, making the model closer to the true metal surface. This article is divided into two parts. The adsorption process of CO on Ni (111) surface is studied first, and the results showed that the C—O bonds are weakened in different surface active adsorption sites. According to the analysis of adsorption energies, C—O bond lengths and the C—O stretching vibration frequencies, it is found that there exist 4 adsorption sites which are the top, bridge, hexagonal close packing (hcp), and face centered cubic (fcc) sites. C—O bond is perpendicular to the metal surface and the C atom is in the near-metal position in the stable state of all adsorption sites. All of the stable states are non-dissociative adsorption states. The properties of CO adsorbed on the fcc and hcp sites are almost the same. The adsorption process of CO and H on Ni (111) surface is studied next, and the results showed that CO combined with H to generate the intermediate species —OCH and —COH. By analyzing the C—O bond length and the stretching vibration frequency, it is found that the C—O bond is largely weakened. The C—O bond can be broken down more easily in the active site comparing with CO adsorption without H. Therefore, with metal Ni (111) surface as catalyst, the added hydrogen is helpful for the dissociation of CO. Key words:density functional theory; Ni(111); CO+H; Fischer-Tropsch synthesis; adsorption 收稿日期:2015-03-08《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n 基金項目:國家自然科學(xué)基金項目(21273081) *通訊作者:顧鳳龍,教授,Email:gu@scnu.edu.cn. 中圖分類號:O621 文獻標志碼:A 文章編號:1000-5463(2016)01-0067-07