• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral Analysis of Interaction between Human Telomeric G-Quadruplex and Liliflorin A, the First Lignan Derivative Interacted with G-Quadruplex DNA

    2016-06-15 16:39:04LIUTingtingZHOUShuangJIAQianlanWANGWenshuYANXiaoqianZHANGWenhaoWANGShuaiqiJIAOYuguo
    光譜學(xué)與光譜分析 2016年3期
    關(guān)鍵詞:紫玉蘭中央民族大學(xué)端粒

    LIU Ting-ting, ZHOU Shuang, JIA Qian-lan, WANG Wen-shu,2*,YAN Xiao-qian, ZHANG Wen-hao, WANG Shuai-qi, JIAO Yu-guo

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing 100081, China

    3. Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China

    Spectral Analysis of Interaction between Human Telomeric G-Quadruplex and Liliflorin A, the First Lignan Derivative Interacted with G-Quadruplex DNA

    LIU Ting-ting1, ZHOU Shuang1, JIA Qian-lan1, WANG Wen-shu1,2*,YAN Xiao-qian1, ZHANG Wen-hao3, WANG Shuai-qi1, JIAO Yu-guo1

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing 100081, China

    3. Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China

    Human telomeric G-quadruplex is a four-stranded structure folded by guanines (G) via Hoogsteen hydrogen bonding. The ligands which stabilize the G-quadruplex are often telomerase inhibitors and may become antitumor agents. Here, the interaction between a lignan derivative liliflorin A and human telomeric sequence dGGG(TTAGGG)3G-quadruplex HTG21 were examined by CD, FRET, and NMR spectroscopic methods. In addition, Molecular Docking was used to study the binding of liliflorin A to dTAGGG(TTAGGG)3G-quadruplex HTG23. The CD data showed that liliflorin A enhanced HTG21Tm. TheTmvalue of G-quadruplex was enhanced 3.2 ℃ by 4.0 μmol·L-1liliflorin A in FRET. The NMR spectra of HTG21 showed vivid alteration after reacting with liliflorin A in 3 hours. Molecular Docking suggested liliflorin A bound to the wide groove of HTG23 at G9, G10, G16 and G17. Liliflorin A was the first lignan derivative that could stabilize HTG21 selectively and provided a new candidate for antitumor drug design targeting on human telomeric G-quadruplex.

    Liliflorin A; G-quadruplex; Human telomere; Spectral analysis; Interaction

    Introduction

    In the process of screening bioactive compounds, spectral analysis could give straightforward, vivid and sensitive information for chemical reactions between ligand and biomacromolecule which makes the screening fast and efficiently. Guanine-rich DNA sequencesinvivo, such as telomeric DNA sequence Tel21, Tel26 and oncogene promoter regions (c-myc,bcl-2, or c-kit), can form G-quadruplex via Hoogsteen hydrogen bonding, which plays an important role in many significant bioprocesses[1]. Telomerase is a cancer-specific reverse transcriptase activated in 80%~90% of tumors, and expressed in very low levels or almost undetectable in normal cells[2]. It is reported that when telomeric DNA sequence formed G-quadruplex, it becomes insensitive to the elongation by the telomerase, which is a significant biological process for cells to proliferate[3]. Thus, ligands binding to and stabilizing telomeric G-quadruplex could inhibit the activity of telomerase and induce apoptosis of tumors[4].

    However, the low selectivity of the reported ligands over duplex DNA and other DNA folded structures lead to their various bioactivities and inevitable side effects, when they were evaluated as antitumor leads. Accordingly, screening new ligands with high selectivity on human telomeric G-quadruplex is deemed to be an attractive tactic for developing effective antitumor leads[5].

    In our previous research, a new lignan named liliflorin A was extracted fromMagnolialilifloraDesr. (Magnoliaceae), and it relieved DNA damages induced by UVB irradiation in rat lymphocyte cells in SCGE assay[6]. It is reported that UVB-irradiation may cause a selective excitation of guanine followed by its oxidative decomposition in the telomeric structure[7]. Thus, it is deduced by us that liliflorin A might interact with G-quadruplex in the telomeric structure, leading to its protective effect in SCGE, which is the motivation of our present study. Herein, due to their sensitivity and efficiency, CD spectra were carried out to investigate whether liliflorin A could stabilize human telomeric G-quadruplex: HTG21 {dGGG(TTAGGG)3}. Furthermore, a series of FRET were recorded to examine the selective binding toward HTG21, the results of which were confirmed by NMR experiments. Finally, Docking was performed to check how and where liliflorin A could interact with HTG23 {dTAGGG(TTAGGG)3} as a confirmation of the spectral analysis. As a result, liliflorin A is the first lignan isolated from plants which can stabilize HTG21 selectively, compared with not only the hairpin loop structure nucleotide F10T, but also the two G-quadruplex formed by oncogene promoter regions sequences c-mycand c-kit. It is a good candidate for antitumor drug design targeting human telomeric G-quadruplex.

    1 Materials and methods

    1.1 Reagents

    DNA (HTG21: 5’-G3(T2AG3)3-3’; F21T: 5’-FAM-G3(T2AG3)3-TAMRA-3’; c-myc2345: 5’-TGAG3TG4-AG3TG4A2-3’; F-myc-T: 5’-FAM-GAG3TG4AG3TG4A2G-TAMRA-3’; c-kit: 5’-AG3AG3CGCTG3AG2AG3-3’; F-kit1: 5’-FAM-G3AG3CGCTG3AG2AG3-TAMRA-3’; ds26: 5’-CA2TCG2ATCGA2T2CGATC2GAT2G-3’; F10T: 5’-FAM-TATAGCTATA-HEG-TATAGCTATA-TAMRA-3’) were purchased from Shanghai Sangon Biotechnology Co. (Shanghai, China), purified by PAGE.

    Liliflorin A was abstracted fromMagnolialiliifloraDesr. in our laboratory[6]. Berberine and Quercetin were obtained from National Institute for Food and Drug Control (Beijing, China) and were used without further purification. Deuteriumoxide (D2O) was obtained from Sigma-Aldrich Chemical Co. (Germany). Dimethyl sulfoxide (DMSO) was purchased from Sigma Co. (USA). KCl, NaCl, KH2PO4and K2HPO4were of all analytical reagent grades purchased from Beijing Chem. Co. Tris was purchased from Cambridge Isotope Laboratories, Inc.

    1.2 Sample preparation

    Liliflorin A, Berberine and Quercetin were initially dissolved as a 50.0 μmol·L-1stock solution in DMSO. The oligomer DNA was heated at 95.0 ℃ for 5 minutes, then slowly cooled to room temperature, and incubated at 4.0 ℃ for 6 hours at least. The ligand-DNA complex were formed by adding small aliquots of compound from 50.0 μmol·L-1solution into the DNA samples in CD and FRET experiments. The solution was equilibrated at room temperature for 24.0 hours before measurements. Final analysis of the CD and FRET data were carried out by Origin 8.0 (OriginLab Corp.).

    1.3 CD experiments

    The oligomer DNA (HTG21) at a final concentration of 5.0 μmol·L-1was diluted in 10.0 mmol·L-1Tris-HCl buffer (containing 100.0 mmol·L-1NaCl, pH 7.4) to be tested by CD experiments. Experiment was performed at 25.0 ℃ using a Pistar π-180 spectropolarimeter. The scan of the buffer alone was used as the background, which was subtracted from the average scan for each sample. A quartz cuvette with 4 mm path length was used for the spectra recorded over a wavelength range of 230~450 at 1 nm bandwidth, 1 nm step size, and 0.5 s time per point. The CD spectrum data were obtained from 230 to 450 nm[8]. CD-melting experiments were taken at 295 nm and at intervals of 5.0 ℃ over the range 10.0~90.0 ℃, with a constant temperature being maintained for 1s prior to each reading to ensure a stable value[9]. The final data were the average of three measurements.

    1.4 FRET experiments

    Fluorescence melting curves were determined using a real-time PCR machine (MYIQ2, Bio-rad, USA), with 0.2 μmol·L-1of labeled oligomer DNA (F21T, F10T, F-myc-T, F-kit1) in the 10.0 mmol·L-1Tris-HCl buffer (pH 7.4) containing 60.0 mmol·L-1KCl of a total reaction volume of 20 μL. Fluorescence readings with excitation at 470 nm and detection at 530 nm were taken at intervals of 1.0 ℃ over the range 37.0~99.0 ℃, with a constant temperature being maintained for 30 s prior to each reading to ensure a stable value[9]. As the competitor, a series of double-stranded (ds26) concentration was used by a competitive FRET-melting experiment.

    1.5 NMR experiments

    The oligonucleotides (HTG21, c-myc2345 and c-kit) were dissolved in 80% phosphate buffer solution (20.0 mmol·L-1KH2PO4/K2HPO4, 70.0 mmol·L-1KCl, 90%H2O/10% D2O, pH 7.4) and 20% DMSO-d6. The known concentration of (0.01 mmol·L-1) Dimethyl-2-silapentane-5-sulfonate (DSS) was used as internal reference. The concentrations of each G-quadruplex recorded in the NMR samples were 1.0 mmol·L-1. As the NMR experiments required relatively high concentration of compounds (1.0 mmol·L-1), but the compounds were insoluble in water at such high concentration, thus, 20% DMSO has been added to enhance the solubility of the compound. Liliflorin A was first dissolved in DMSO-d6 as 200.0 mmol·L-1stock solution. The ligand-quadruplex complex was formed by adding small aliquots of compound from 200.0 mmol·L-1solution into the G-quadruplex samples (HTG21, c-myc2345 and c-kit). The molar ratio of [ligand]/[G-quadruplex] was 1∶1 in the NMR experiments. The solution was equilibrated at room temperature for 24 hours before measurements.1H-NMR spectra of the ligand-quadruplex complex were recorded every one hour.

    NMR experiments were performed on a Bruker AVANCE 600 spectrometer equipped with a 5 mm BBI probe capable of delivering z-field gradients. The1H-NMR spectra were recorded by the standard Bruker pulse program p3919gp that applies 3-9-19 pulses with gradients for water suppression, 2.0 s relaxation delay, 64 K data points, 16 ppm spectrum width, 128 scans. All NMR experiments were carried out at 298 K.

    1.6 Docking experiments

    Calculations were carried out using DockingServer (http://www.dockingserver.com). Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined. Docking calculations were carried out on untitled protein model. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools[10]. The crystal structure of the telomeric G-quadruplex (PDB ID 2JSM) HTG23 was used as an initial model to study the interaction between the liliflorin A and telomeric DNA. Ligand structures were constructed in Chemdraw.

    2 Results and discussion

    2.1 Liliflorin A stable human telomeric G-quadruplex HTG21: dGGG(TTAGGG)3in Na+solution

    Circular dichroism, CD, is a useful technique to gain information about G-quadruplex DNA. It is also used to monitor the thermal melting and the kinetics of the formation of G-quadruplex[11]. The temperature, at which the G-quadruplex folded structure decomposed into the DNA unfold strand is called the melting temperature (Tm) that can be used to judge the stability of G-quadruplex structure. If ligands bind to and strengthen G-quadruplex structure, theTmvalue of G-quadruplex will be enhanced. By analyzing the melting curves shifts at the sensitive wavelength in the CD spectrum, G-quadruplexTmcan be calculated and used to estimate the stability of complex of ligand binding to G-quadruplex.

    HTG21 is reported to form different topological structures in different monovalent cation buffers. In Na+solution, a basket-type structure is formed[12], whereas a mixture of hybrid-1 and hybrid-2 type structures are formed in K+solution[13]. Due to its simplicity, a basket-ball structure was firstly chosen by us to observe if liliflorin A could stabilize HTG21 by CD spectrum. Berberine and Quercetin[14]were used as positive controls. The change of the absorption at 295 nm in the CD spectrum, a typical signal corresponding to HTG21 in Na+was recorded. The concentration of all the compounds was changed gradually from 0.0 to 200.0 μmol·L-1respectively. The data showed that theTmvalue of HTG21 was enhanced in accordance to the incensement of Liliflorin A concentration. The highestTmwas observed at 72.53 ℃ under the concentration of 75.0 μmol·L-1liliflorin A. Compared with theTmvalue of HTG21 only in Na+solution, the ΔTmwas 1.94 ℃. In addition, liliflorin A showed comparative ability on enhancing HTG21Tm, compared to berberine and quercetin at the same concentration (Table 1).

    Table 1 The melting temperatures of treated HTG21 (5.0 μmol·L-1strand concentration) after reacting with compounds in a series of concentrations in 10.0 mmol·L-1Tris-HCl buffer and 100 mmol·L-1NaCl at 25.0 ℃

    concentrations/(μmol·L-1)TmvalueofHTG21/℃aLiliflorinABerberineQuercetin070 5970 5970 5925 069 8071 0770 3650 070 1071 8671 0575 072 5372 4772 17100 072 3772 5272 79200 072 5371 7073 90

    a: All results are expressed as mean ±SE for all groups (n=3)

    Due to the higher potassium concentration within the cell, G-quadruplex structures in the presence of K+is more relevant biologically than those topological structures in Na+[15]. Thus, K+solution was used in all the later experiments.

    2.2 Liliflorin A selectively stabilize human telomeric G-quadruplex in FRET-melting

    Because of its sensitivity and flexibility, fluorescence resonance energy transfer (FRET) is widely used to investigate conformational changes of G-quadruplexes, and also becomes very popular to study the interaction between ligands and G-quadruplex[16]. The melting curve could be described through the normalized fluorescent quenching vs temperature plotting though FRET-melting experiment, due to a large difference between the fluorescence properties of the folded and unfolded doubly labeled oligonucleotides. By the analysis of the fluctuation of the melting curve under the heating process, theTmcan be given to evaluate the stability of complex of ligand binding to G-quadruplex. In the experiment, HTG21 is labeled with a FAM (fluorescent donor) on the 5’ end and a TAMRA (fluorescent acceptor) on the 3’ end. This doubly labeled oligomer was called F21T.

    2.2.1 Concentration-dependent experiment of interaction between Liliflorin A and F21T

    The melting temperature of F21T in Tris-HCl buffer containing of 60.0 mmol·L-1K+was deeply studied under a series of Liliflorin A concentration. Under the concentration ranging from 1.0 to 4.0 μmol·L-1, the melting curve of F21T indicated a high temperature shift gradually [Fig.1(a)], and the calculated ΔTmwas 0.26, 1.07, 1.61 and 3.22 ℃ respectively. The enhancement ofTmstopped as Liliflorin A concentration increased to 5.0 and 6.0 μmol·L-1[Fig.1(b)]. The data showed that Liliflorin A interacted with F21T, and stabilized the G-quadruplex in a concentration-dependent manner. The highestTm69.93 ℃ appeared at 4.0 μmol·L-1.

    Fig.1 FRET experiment was carried in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    (a): Melting curves of F21T (0.2 μmol·L-1) in the presence of liliflorin A in various concentrations. Curves with normalized FAM fluorescence to a 0-1 range; (b): ΔTmof F21T in the presence of liliflorin A in 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1respectively

    2.2.2 Competitive FRET-melting experiment

    To further prove the binding ability of liliflorin A to F21T, a competitive FRET-melting experiment was studied, in which the excess of unlabeled 26-bp duplex-DNA (ds26) was added to the mixture system of 0.2 μmol·L-1F21T and 4.0 μmol·L-1liliflorin A. As a result, little change of the ΔTmcould be recorded (Fig.2), even when the concentration of ds26 reached 10.0 μmol·L-1, indicating that the duplex-DNA ds26 had no influence on the interaction between F21T and liliflorin A.

    Fig.2 Melting curves of the mixture of 0.2 μmol·L-1F21T and 4.0 μmol·L-1liliflorin A in 3.0 and 10.0 μmol·L-1ds26 respectively in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    2.2.3 Interaction between liliflorin A and F10T by FRET-melting experiment

    F10T, was another folded structure of nucleic acids which differed from G-quadruplex in having the hairpin loop structure. In FRET-melting experiment, although liliflorin A with concentration at 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1was added into the mixture of F10T respectively, ΔTmof F10T remained unchanged, indicating that no interaction between liliflorin A and the hairpin loop F10T [Fig.3(a)].

    2.2.4 Interaction of liliflorin A between F-myc-T and F-kit1 G-quadruplex by FRET-melting experiment

    The other two G-quadruplexes found in the promoter regions ofmycandkitgenes were also studied by FRET-melting experiment[17]. F-myc-T and F-kit1, corresponding to the doubly labeled sequences were used respectively. ΔTmof both of the G-quadruplex were almost 0 in all the experiments, showing that the thermal stabilization of the G-quadruplex formed by c-kitsequence and c-mycsequence were not influenced, due to little interaction between liliflorin A and G-quadruplex [Fig.3(b) and (c)].

    2.3 Interactions between liliflorin A and HTG21, c-myc2345 and c-kitG-quadruplex in the NMR experiments

    Nuclear magnetic resonance spectroscopy (NMR) is an essential tool in the study of G-quadruplex nucleic acids. Imino protons atδ10~12 ppm in1H-NMR spectrum corresponding to guanine imino protons in G-tetrad formation[18]were characteristic signals for G-quadrplex. Changes in the chemical shift values of the relevant imino protons could be observed upon interaction between ligand and G-quadruplex. Depending on the types of the changes, the binding mode and the strength of the binding between the ligand and G-quadruplex can be proposed[5, 19].

    Fig.3 Melting curves of 0.2 μmol·L-1(a) F10T, (b) F-myc-T, (c) F-kit1 in the presence of liliflorin A at 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1respectively in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    To verify the selective interaction between liliflorin A and HTG21 observed in FRET,1H-NMR experiments were performed. There were more than 12 guanine imino protons signals atδ10~12 ppm in the1H-NMR of HTG21 G-quadruplex, indicating a mixture of conformations in K+solution[13]. After the addition of liliflorin A into HTG21 solution, the1H-NMR spectra of the mixture was recorded every one hour. It can be observed that five peaks became broad and shifted upfield [Fig.4(a) and Fig.5] gradually from 1 to 3 hours, whereas, no more changes appeared after 3 hours, showing that liliflorin A bound to HTG21 in 3 hours. Moreover, there were not any changes in1H-NMR spectra of the mixture of liliflorin A and c-myc2345 or c-kitG-quadruplex [Fig.4(b) and (c)], suggesting no interaction between liliflorin A and c-myc2345 or c-kitG-quadruplex.

    Fig.41H-NMR spectra of 1.0 mmol·L-1(a) HTG21, (b) c-myc2345, (c) c-kitG-quadruplex after reacting with 1 mmol·L-1liliflorin A ina: 0 h,b: 1 h,c: 2 h,d: 3 h, ande: 4 h in 80% phosphate buffer (20.0 mmol·L-1KH2PO4/K2HPO4, 70.0 mmol·L-1KCl, 90%H2O/10% D2O, pH 7.4) and 20% DMSO at 298 K

    2.4 Molecular Docking

    There has been an increasing interest in using docking method to carry out efficient and robust docking calculations of promising drug candidates[20]. Docking Server is a website that handles all aspects of molecular docking from ligand and bio-macromolecules set-up, provides full control on the setting of specific parameters of ligand and bio-macromolecules set up and docking calculations. Here, human telomere sequence dTAGGG(TTAGGG)3Tel23 was chosen as the G-quadruplex model[21](2JSM in PDB). The two more bases than Tel21 reinforce the G-quadruplex of Tel23, thus its structure model of HTG23 can be found in PDB.

    Fig.5 The chemical shifts’ changes of the five guanine imino protons in HTG21 after reacting with liliflorin A for 3 hours

    According to the results from Docking, liliflorin A binds to HTG23 in 1∶1 binding stoichiometry (Fig.6). The inhibi-

    Fig.6 Hypothetical molecular models showing the interactions of liliflorin A with human telemoric G-quadruplex Tel23 (PDB ID: 2JSM). The loop of G-quadruplex is shown in cartoon, and G-tetrad is shown in sticks, while liliflorin A was represented with the red sticks

    tion constant (Ki) is 387.40 μmol·L-1and the free energy of binding is -4.65 kcal·mol-1(Table 2). Moreover, the docking results indicated that liliflorin A binds to HTG23 at G9, G10, G16 and G17 (Fig.6). The calculation results confirmed the interaction between liliflorin A and HTG21 observed by spectroscopic experiments.

    Table 2 Binding energies obtained from docking of liliflorin A to HTG23 in the rank of five calculating

    3 Conclusions

    Here, an efficient screening of natural products which can interact with G-quadruplex by spectroscopic methods was reported. The results of CD, FRET and NMR spectra, as well as the results of Molecular Docking were summarized, and the following conclusions can be drawn:

    (1) In CD experiments, compared with berberine and quecertin, the melting temperature of HTG21 in sodium salt buffers was enhanced, indicating liliflorin A interacted with HTG21 and stabilized the G-quadruplex.

    (2) In FRET experiments, HTG21Tmpresented variation with the same trend of liliflorin A concentration, the highest ΔTmwas 3.2 ℃ at 4.0 μmol·L-1. In the competitive circumstance, double strings DNA ds26 had no influence on the ΔTmof HTG21. Furthermore, theTmof F10T and G-quadruplex formed by c-mycand c-kitsequence presented little fluctuation regardless of liliflorin A’s existence, indicating the selectivity of liliflorin A toward HTG21.

    (3) In NMR experiments, the spectra of HTG21 showed vivid alteration after reacting with liliflorin A in 3 hours. No changes were observed in those spectra of c-myc2345 and c-kitsequence in 3 hours. This phenomenon verified the better selectivity of liliflorin A toward HTG21.

    (4) In Molecular Docking, the results suggested liliflorin A binds to HTG23 at G9, G10, G16 and G17,which were located on wide groove at the first and second G-tetrad planes.

    Collectively, liliflorin A, isolated fromM.lilifloraby us, was reported here as the first lignan derivative, which presented a new type of ligand of G-quadruplex, and may generate a new candidate for antitumor drug design targeting on human telomeric G-quadruplex.

    [1] Maizels N. Nat. Struct. Mol. Bio., 2006, 13: 1055.

    [2] Shay J W, Bacchetti S. Eur. J. Cancer, 1997, 33: 787.

    [3] Healy K C. Oncol. Res., 1995, 7: 121.

    [4] Cosconati S, Marinelli L, Trotta R, et al. J. Am. Chem. Soc., 2009, 131: 16336.

    [5] Haudecoeur R, Stefan L, Denat F, et al. J. Am. Chem. Soc., 2013, 135: 550.

    [6] Wang W S, Lan X C, Wu H B, et al. Planta. Med., 2012, 78: 141.

    [7] Kawai K, Fujitsuka M, Majima T. Chem. Commun., 2005, 1476.

    [8] Li Z, Tan J H, He J H, et al. Eur. J. Med. Chem., 2012, 47: 299.

    [9] Ma Y, Ou T M, Hou J Q, et al. Bioorg. Med. Chem., 2008, 16: 7582.

    [10] Morris G M, Goodsell D S, Halliday R S, et al. J. Comput. Chem., 1998, 19: 1639.

    [11] Paramasivan S, Rujan I, Bolton P H. Methods, 2007, 43(4): 324.

    [12] Ambrus A, Chen D, Dai J X, et al. Nucleic Acids Res., 2006, 34(9): 2723.

    [13] Dai J X, Carver M, Punchihewa C, et al. Nucleic Acids Res., 2007, 35(15): 4927.

    [14] Bhadra K, Kumar G S. Biochim. Biophys. Acta, 2011, 1810: 485.

    [15] Redon S, Bombard S, Elizondo-Riojas M A, et al. Nucleic. Acids. Res., 2003, 31: 1605.

    [17] Dash J, Shirude P S, Hsu S D, et al. J. Am. Chem. Soc., 2008, 130(47): 15950.

    [18] Da Silva M W. Methods, 2007, 43: 264.

    [19] Mita H, Ohyama T, Tanaka Y, et al. Biochem., 2006, 45(22): 67652.

    [20] Sponer J, Spackova N. Methods, 2007, 43: 278.

    [21] Phan A T, Kuryavyi V, Luu K N, et al. Nucleic. Acids. Res., 2007, 35(19): 6517.

    O657.3

    A

    紫玉蘭素A與人端粒G-四鏈體相互作用的光譜學(xué)研究,第一個(gè)木脂素類衍生物與G-四鏈體相互作用

    劉婷婷1, 周 爽1, 賈千瀾1, 王文蜀1,2*, 閆曉倩1, 張文浩3, 王帥旗1, 焦玉國(guó)1

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院, 北京 100081

    2. 中央民族大學(xué), 北京市食品環(huán)境與健康工程研究中心, 北京 100081

    3. 清華大學(xué), 生物醫(yī)學(xué)測(cè)試中心, 北京 100084

    人端粒G-四鏈體結(jié)構(gòu)是指端粒末端富含鳥嘌呤(G)的DNA 序列在一價(jià)陽(yáng)離子(如K+和Na+)誘導(dǎo)下通過(guò)G堿基間Hoogsteen氫鍵連接形成的DNA二級(jí)結(jié)構(gòu)。 能夠穩(wěn)定端粒G-四鏈體的配體通常為端粒酶抑制劑, 其可能成為抗腫瘤藥物。 應(yīng)用CD, FRET, NMR光譜方法第一次較全面地研究了一種木脂素衍生物, 紫玉蘭素A (liliflorin A)與人端粒序列dGGG(TTAGGG)3G-四鏈體HTG21的相互作用, 采用分子對(duì)接技術(shù)進(jìn)一步研究紫玉蘭素A與人端粒序列dTAGGG(TTAGGG)3G-四鏈體HTG23的結(jié)合位點(diǎn)。 CD實(shí)驗(yàn)數(shù)據(jù)表明紫玉蘭素A提高HTG21解鏈溫度, FRET實(shí)驗(yàn)測(cè)得4.0 μmol·L-1紫玉蘭素A可以將HTG21穩(wěn)定溫度提高3.2 ℃。 NMR實(shí)驗(yàn)結(jié)果表明, 加入紫玉蘭素A三小時(shí)后HTG21核磁譜圖出現(xiàn)明顯變化。 分子對(duì)接結(jié)果表明紫玉蘭素A結(jié)合到HTG23較寬溝槽上, 結(jié)合位點(diǎn)為G9, G10, G16和G17。 紫玉蘭素A是第一個(gè)能夠選擇性穩(wěn)定人端粒G-四鏈體HTG21的木脂素類衍生物配體。 實(shí)驗(yàn)結(jié)果為以人端粒G-四鏈體為靶點(diǎn)的抗腫瘤藥物設(shè)計(jì)提供了新型候選化合物。

    紫玉蘭素A; G-四鏈體; 人端粒; 光譜分析; 相互作用

    2015-05-08,

    2015-11-02)

    2015-05-08; accepted: 2015-11-02

    The National Natural Science Foundation of China (31200260), The First-class University and the First-rate Discipline Construction Projects of Minzu University of China (YLDX01013, 2015MDTD08C), together with 111 Project (B08044), The National College Students’ innovation and entrepreneurship training program (GCCX 2014110017, GCCX 2015110012)

    10.3964/j.issn.1000-0593(2016)03-0896-07

    Biography: LIU Ting-ting, (1987—), Doctoral Candidate of College Life and Environmental Sciences, Minzu University of China e-mail: liutingting1204@163.com *Corresponding author e-mail: wangws@muc.edu.cn

    *通訊聯(lián)系人

    猜你喜歡
    紫玉蘭中央民族大學(xué)端粒
    中央民族大學(xué)
    玉蘭初開
    紫玉蘭
    西湖(2019年6期)2019-06-11 03:03:08
    端粒蛋白復(fù)合物shelterin的結(jié)構(gòu)及功能研究進(jìn)展
    紫玉蘭和二喬玉蘭花部形態(tài)的變異研究
    我讀懂了紫玉蘭
    ??? ?? ??? ??? ‘? ??’?????? ????
    抑癌基因P53新解讀:可保護(hù)端粒
    健康管理(2016年2期)2016-05-30 21:36:03
    40—65歲是健身黃金期
    鹽酸阿霉素與人端粒DNA相互作用的電化學(xué)研究
    一级爰片在线观看| 免费日韩欧美在线观看| 国产亚洲欧美精品永久| 边亲边吃奶的免费视频| 在线天堂中文资源库| 日韩欧美一区视频在线观看| 国产成人aa在线观看| 久久午夜综合久久蜜桃| 久久久久视频综合| 精品一区二区三区四区五区乱码 | 久久久欧美国产精品| 涩涩av久久男人的天堂| 久久久久久久大尺度免费视频| 美女福利国产在线| 久久久久久久精品精品| 菩萨蛮人人尽说江南好唐韦庄| 大香蕉久久成人网| 亚洲av日韩在线播放| 国产精品av久久久久免费| 国产探花极品一区二区| 一级爰片在线观看| 久久久欧美国产精品| 亚洲精品美女久久av网站| 日韩视频在线欧美| 国产日韩欧美亚洲二区| 老熟女久久久| 极品少妇高潮喷水抽搐| 日本91视频免费播放| av在线app专区| 久久精品国产a三级三级三级| 久久久久久人人人人人| 日韩欧美精品免费久久| 在线观看免费高清a一片| 在线观看国产h片| 亚洲一级一片aⅴ在线观看| 久久这里只有精品19| 一区二区三区精品91| 纵有疾风起免费观看全集完整版| 国产熟女欧美一区二区| 亚洲av电影在线进入| 波野结衣二区三区在线| 亚洲国产日韩一区二区| 一区二区日韩欧美中文字幕| 欧美精品高潮呻吟av久久| 欧美 日韩 精品 国产| 亚洲精品在线美女| 日韩一区二区三区影片| 男人爽女人下面视频在线观看| 国产精品成人在线| 极品少妇高潮喷水抽搐| 天天躁夜夜躁狠狠躁躁| 丰满饥渴人妻一区二区三| 日韩一区二区三区影片| 国产乱来视频区| 久久人人爽人人片av| 热99国产精品久久久久久7| 国产老妇伦熟女老妇高清| 在现免费观看毛片| 人妻人人澡人人爽人人| 91在线精品国自产拍蜜月| 久久午夜综合久久蜜桃| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av激情在线播放| 国产男人的电影天堂91| 国产视频首页在线观看| 国产高清国产精品国产三级| 我的亚洲天堂| 久久99热这里只频精品6学生| 黄色怎么调成土黄色| 我的亚洲天堂| 大片免费播放器 马上看| av不卡在线播放| 在线 av 中文字幕| 最近2019中文字幕mv第一页| 久久精品夜色国产| 最近的中文字幕免费完整| 亚洲欧美精品综合一区二区三区 | 欧美精品高潮呻吟av久久| 国产在线一区二区三区精| 亚洲国产精品国产精品| 婷婷成人精品国产| 久久人人97超碰香蕉20202| 久久久久久久国产电影| 十八禁高潮呻吟视频| 十八禁高潮呻吟视频| 波多野结衣av一区二区av| 青春草视频在线免费观看| 美女午夜性视频免费| 国产xxxxx性猛交| 久热这里只有精品99| 人妻一区二区av| 波多野结衣av一区二区av| 国产精品久久久av美女十八| 国产片特级美女逼逼视频| 久久久久精品性色| 一边摸一边做爽爽视频免费| 欧美成人午夜免费资源| av网站免费在线观看视频| 成年美女黄网站色视频大全免费| 日本免费在线观看一区| 亚洲激情五月婷婷啪啪| 一区二区av电影网| 亚洲av福利一区| 成人影院久久| 免费观看无遮挡的男女| 99久久精品国产国产毛片| 久久人人爽人人片av| 自线自在国产av| 亚洲欧美色中文字幕在线| 久久av网站| 亚洲第一区二区三区不卡| 亚洲欧美精品自产自拍| 亚洲成av片中文字幕在线观看 | 波多野结衣一区麻豆| 少妇的丰满在线观看| 激情五月婷婷亚洲| 91午夜精品亚洲一区二区三区| 国产一区二区三区综合在线观看| 国产av精品麻豆| 亚洲一区二区三区欧美精品| 国产一区二区三区av在线| 亚洲综合色惰| av一本久久久久| 丝袜美足系列| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 国产精品麻豆人妻色哟哟久久| 免费看不卡的av| 亚洲人成77777在线视频| 男女啪啪激烈高潮av片| 日韩中字成人| 女人精品久久久久毛片| 免费av中文字幕在线| 久久国产亚洲av麻豆专区| 亚洲av免费高清在线观看| 久久久精品区二区三区| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 99国产精品免费福利视频| 成年人免费黄色播放视频| 寂寞人妻少妇视频99o| 亚洲天堂av无毛| 最近最新中文字幕免费大全7| 国产激情久久老熟女| 国精品久久久久久国模美| 国产精品99久久99久久久不卡 | 在线观看美女被高潮喷水网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品成人av观看孕妇| 亚洲精品一区蜜桃| 精品人妻在线不人妻| 90打野战视频偷拍视频| 久久免费观看电影| 亚洲伊人久久精品综合| 欧美日韩亚洲国产一区二区在线观看 | 欧美最新免费一区二区三区| 成年美女黄网站色视频大全免费| 这个男人来自地球电影免费观看 | 成人国产av品久久久| 秋霞伦理黄片| 91精品三级在线观看| 久久99一区二区三区| 久久精品亚洲av国产电影网| 久久久久久伊人网av| 国产精品一区二区在线不卡| 9191精品国产免费久久| 少妇 在线观看| 国产一区有黄有色的免费视频| 亚洲,欧美,日韩| 亚洲精品自拍成人| 久久这里只有精品19| 国产亚洲最大av| 性色avwww在线观看| 国产精品国产三级国产专区5o| 亚洲av在线观看美女高潮| 国产伦理片在线播放av一区| 国产av码专区亚洲av| 汤姆久久久久久久影院中文字幕| 免费不卡的大黄色大毛片视频在线观看| 亚洲情色 制服丝袜| 婷婷色综合www| 国产精品国产三级国产专区5o| 丝袜喷水一区| 欧美人与善性xxx| 肉色欧美久久久久久久蜜桃| 99香蕉大伊视频| 亚洲国产欧美在线一区| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件| 久久久久久久大尺度免费视频| 亚洲国产看品久久| 亚洲成人av在线免费| freevideosex欧美| 免费不卡的大黄色大毛片视频在线观看| 中文字幕最新亚洲高清| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 欧美激情 高清一区二区三区| 你懂的网址亚洲精品在线观看| 1024视频免费在线观看| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 精品国产国语对白av| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 美女脱内裤让男人舔精品视频| 国产精品一国产av| 国产男女内射视频| 男人爽女人下面视频在线观看| 在线观看人妻少妇| 久久久欧美国产精品| 亚洲经典国产精华液单| 1024视频免费在线观看| 国产一区二区在线观看av| 久久影院123| 下体分泌物呈黄色| 精品人妻一区二区三区麻豆| 亚洲第一青青草原| 丝袜美腿诱惑在线| 欧美日韩精品成人综合77777| 久久午夜综合久久蜜桃| 久久久久精品性色| 在线观看人妻少妇| 亚洲成人av在线免费| 搡女人真爽免费视频火全软件| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的| 国产淫语在线视频| 高清黄色对白视频在线免费看| 99久久中文字幕三级久久日本| 亚洲,一卡二卡三卡| 香蕉精品网在线| 欧美+日韩+精品| 久久韩国三级中文字幕| 亚洲成人一二三区av| 亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 少妇人妻久久综合中文| 在线观看免费高清a一片| 久久精品国产亚洲av天美| 日本黄色日本黄色录像| 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久 | 26uuu在线亚洲综合色| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 日韩精品有码人妻一区| 午夜福利视频精品| 久久久久久人人人人人| 久久av网站| 汤姆久久久久久久影院中文字幕| 久久热在线av| 免费看av在线观看网站| 欧美黄色片欧美黄色片| 91国产中文字幕| 人人澡人人妻人| 天堂俺去俺来也www色官网| 午夜免费男女啪啪视频观看| 电影成人av| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人久久小说| 国产免费又黄又爽又色| 亚洲第一区二区三区不卡| xxx大片免费视频| 亚洲av免费高清在线观看| 国产xxxxx性猛交| 精品福利永久在线观看| 日本猛色少妇xxxxx猛交久久| 欧美日韩精品网址| 久久精品aⅴ一区二区三区四区 | 一级片'在线观看视频| 久久久久网色| 午夜福利乱码中文字幕| 母亲3免费完整高清在线观看 | 在线 av 中文字幕| 国产一区有黄有色的免费视频| 国产福利在线免费观看视频| 啦啦啦在线观看免费高清www| 99久久精品国产国产毛片| 欧美在线黄色| 黄频高清免费视频| 久久久久视频综合| 成年人午夜在线观看视频| 亚洲精品久久成人aⅴ小说| 久久久久久久久久久久大奶| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 亚洲成av片中文字幕在线观看 | 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 久久亚洲国产成人精品v| 91国产中文字幕| 久久久久久久精品精品| 性色av一级| 亚洲在久久综合| 国产极品粉嫩免费观看在线| 99久久综合免费| tube8黄色片| 男女免费视频国产| 有码 亚洲区| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 超色免费av| av天堂久久9| 丝袜在线中文字幕| 波野结衣二区三区在线| 成人国产av品久久久| 亚洲av欧美aⅴ国产| 国产人伦9x9x在线观看 | 丝袜人妻中文字幕| 国产成人av激情在线播放| 欧美 日韩 精品 国产| www.av在线官网国产| 国产麻豆69| 久久国内精品自在自线图片| 在线观看人妻少妇| 精品人妻偷拍中文字幕| 久久热在线av| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | 国产在线视频一区二区| 国产精品无大码| 久久久久人妻精品一区果冻| 飞空精品影院首页| 亚洲经典国产精华液单| 成人国产av品久久久| 制服丝袜香蕉在线| 亚洲综合色惰| 国产成人aa在线观看| 十八禁网站网址无遮挡| 搡女人真爽免费视频火全软件| 亚洲国产最新在线播放| 亚洲第一av免费看| 精品福利永久在线观看| av国产精品久久久久影院| 乱人伦中国视频| 满18在线观看网站| 黑人欧美特级aaaaaa片| 日韩制服丝袜自拍偷拍| 免费女性裸体啪啪无遮挡网站| 午夜激情久久久久久久| 国产乱来视频区| 亚洲中文av在线| 精品久久久久久电影网| www日本在线高清视频| 精品人妻熟女毛片av久久网站| 99久久中文字幕三级久久日本| 侵犯人妻中文字幕一二三四区| 尾随美女入室| 免费在线观看黄色视频的| 亚洲综合精品二区| 亚洲精品久久成人aⅴ小说| 街头女战士在线观看网站| av国产精品久久久久影院| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 国产片内射在线| 国产精品久久久久久精品古装| 大香蕉久久网| 午夜激情久久久久久久| 婷婷色av中文字幕| 日本vs欧美在线观看视频| 亚洲,一卡二卡三卡| 亚洲国产看品久久| 少妇被粗大猛烈的视频| 一本大道久久a久久精品| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 美女国产视频在线观看| 水蜜桃什么品种好| 亚洲中文av在线| 欧美中文综合在线视频| 另类精品久久| 最近中文字幕2019免费版| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃| 纵有疾风起免费观看全集完整版| 两个人看的免费小视频| 国产深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 9色porny在线观看| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 毛片一级片免费看久久久久| 美女午夜性视频免费| 日韩中字成人| 久久国内精品自在自线图片| 精品人妻熟女毛片av久久网站| 免费不卡的大黄色大毛片视频在线观看| 一级黄片播放器| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 伊人久久大香线蕉亚洲五| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 日韩精品免费视频一区二区三区| 欧美精品一区二区免费开放| 人妻人人澡人人爽人人| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| 久久精品人人爽人人爽视色| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 伊人亚洲综合成人网| 精品卡一卡二卡四卡免费| 少妇被粗大的猛进出69影院| 久久精品久久久久久噜噜老黄| 欧美精品亚洲一区二区| 伦理电影大哥的女人| 亚洲精品乱久久久久久| 999精品在线视频| 亚洲欧美一区二区三区黑人 | 欧美av亚洲av综合av国产av | av免费观看日本| 国产 精品1| 老司机影院毛片| 青春草亚洲视频在线观看| 极品少妇高潮喷水抽搐| 两性夫妻黄色片| www日本在线高清视频| 看十八女毛片水多多多| 免费久久久久久久精品成人欧美视频| 18禁动态无遮挡网站| 国产成人精品久久久久久| 成人漫画全彩无遮挡| 在线观看一区二区三区激情| 男人操女人黄网站| 亚洲欧美中文字幕日韩二区| 免费高清在线观看日韩| 久久ye,这里只有精品| tube8黄色片| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 久久影院123| 久久婷婷青草| 精品久久久久久电影网| 久久人人爽人人片av| 国产成人精品久久二区二区91 | 亚洲av.av天堂| 飞空精品影院首页| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| 国产精品久久久av美女十八| 久久精品久久久久久噜噜老黄| 男女国产视频网站| av在线老鸭窝| av免费观看日本| 丝袜脚勾引网站| 捣出白浆h1v1| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 99香蕉大伊视频| 一边摸一边做爽爽视频免费| 久久99一区二区三区| 午夜老司机福利剧场| 国产在线视频一区二区| 伦理电影免费视频| 国产一区有黄有色的免费视频| 亚洲国产av影院在线观看| 999精品在线视频| 日韩av在线免费看完整版不卡| 丰满少妇做爰视频| 亚洲,欧美,日韩| 97在线视频观看| 欧美在线黄色| 亚洲综合色惰| 狠狠精品人妻久久久久久综合| 成人手机av| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 国产成人免费无遮挡视频| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| 精品视频人人做人人爽| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 久久精品亚洲av国产电影网| 久久久久精品性色| 成年美女黄网站色视频大全免费| 热re99久久国产66热| 国产一区二区三区综合在线观看| 丰满乱子伦码专区| 精品视频人人做人人爽| 女人精品久久久久毛片| 999久久久国产精品视频| 香蕉国产在线看| 少妇熟女欧美另类| 人成视频在线观看免费观看| 又黄又粗又硬又大视频| 久久久久久久久久久免费av| av国产精品久久久久影院| 免费在线观看完整版高清| 丰满乱子伦码专区| 男人添女人高潮全过程视频| 国产成人91sexporn| 丝瓜视频免费看黄片| 日本午夜av视频| 欧美亚洲日本最大视频资源| 亚洲av中文av极速乱| 亚洲精品日本国产第一区| 久久精品国产鲁丝片午夜精品| 国产黄色免费在线视频| 亚洲欧美精品综合一区二区三区 | 在线观看三级黄色| 久久精品国产鲁丝片午夜精品| 日韩精品有码人妻一区| 18禁观看日本| 欧美日韩视频精品一区| 日韩一区二区三区影片| 超色免费av| 一区二区三区激情视频| 日产精品乱码卡一卡2卡三| 午夜激情av网站| 天天操日日干夜夜撸| 2021少妇久久久久久久久久久| 美女脱内裤让男人舔精品视频| 亚洲欧美一区二区三区久久| 亚洲人成77777在线视频| 丝袜美足系列| 久久女婷五月综合色啪小说| 嫩草影院入口| 欧美最新免费一区二区三区| 久久 成人 亚洲| 成人免费观看视频高清| 日日摸夜夜添夜夜爱| 免费大片黄手机在线观看| 啦啦啦中文免费视频观看日本| 国产在线视频一区二区| 久久热在线av| 91精品三级在线观看| 久久青草综合色| 国产伦理片在线播放av一区| 精品第一国产精品| 欧美人与善性xxx| 久久久久久久精品精品| 国产欧美亚洲国产| 午夜福利视频精品| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 成人亚洲精品一区在线观看| 色播在线永久视频| 亚洲人成77777在线视频| 日韩欧美精品免费久久| 叶爱在线成人免费视频播放| 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线| 一本久久精品| 欧美xxⅹ黑人| 久久久久精品性色| av在线观看视频网站免费| 婷婷色av中文字幕| 少妇被粗大猛烈的视频| 极品少妇高潮喷水抽搐| 一边亲一边摸免费视频| 久久久欧美国产精品| 制服人妻中文乱码| 高清视频免费观看一区二区| av在线播放精品| 国产一区二区激情短视频 | 国产精品99久久99久久久不卡 | 国产精品国产三级专区第一集| 久久精品久久久久久久性| 美女主播在线视频| 纯流量卡能插随身wifi吗| 国产麻豆69| 国产亚洲av片在线观看秒播厂| 在线观看三级黄色| 成年动漫av网址| 中国国产av一级| 久久久久国产网址| 午夜日韩欧美国产| av.在线天堂| av女优亚洲男人天堂| av在线观看视频网站免费| 啦啦啦啦在线视频资源| 中文字幕人妻熟女乱码| 高清在线视频一区二区三区| av又黄又爽大尺度在线免费看| 日韩一区二区视频免费看| 97在线视频观看| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 免费大片黄手机在线观看| 久久精品国产综合久久久| 亚洲av日韩在线播放| 99热全是精品| 又大又黄又爽视频免费| 在线观看人妻少妇| 欧美中文综合在线视频| 尾随美女入室| av国产精品久久久久影院| 久久国产精品大桥未久av| 老司机影院成人| 亚洲av国产av综合av卡| 久久久久久免费高清国产稀缺| 制服诱惑二区| 国产在线一区二区三区精| 2018国产大陆天天弄谢| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 纵有疾风起免费观看全集完整版| 一区二区三区激情视频|