• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibrational Spectroscopic Study of N-[4-[1-Hydroxy-2-[(1-Methyl Ethyl) Amino] Ethyl] Phenyl] Methane Sulfonamide

    2016-06-15 16:39:51BalamuruganSampathkrishnanCharanya
    光譜學與光譜分析 2016年3期

    N. Balamurugan, S. Sampathkrishnan, C. Charanya

    1. Department of Physics, Sri Lakshmi Ammaal Engineering College, Chennai, Tamilnadu, India

    2. Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur 602105, Tamil Nadu, India

    3. Research Scholar, Department of Physics, Sri Venkateshwara College of Engineering, Sriperumbudur 602105, Tamilnadu, India

    Vibrational Spectroscopic Study of N-[4-[1-Hydroxy-2-[(1-Methyl Ethyl) Amino] Ethyl] Phenyl] Methane Sulfonamide

    N. Balamurugan1*, S. Sampathkrishnan2, C. Charanya3

    1. Department of Physics, Sri Lakshmi Ammaal Engineering College, Chennai, Tamilnadu, India

    2. Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur 602105, Tamil Nadu, India

    3. Research Scholar, Department of Physics, Sri Venkateshwara College of Engineering, Sriperumbudur 602105, Tamilnadu, India

    The vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4 000~400 and 4 000~400 cm-1respectively, for N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide (HPAEPMS) molecule. Theoretical calculations were performed by ab initio Density Functional Theory (DFT) method using 6-31G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement.

    FT-IR; FT-Raman; DFT; Vibrational analysis

    Introduction

    Generic name for N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide (HPAEPMS) is sotalol. Amides, sulfonamides and their derivatives has been the subject of investigation for many reasons. The Molecular formula for HPAEPMS is C12H20N2O3S. It belongs to C1 point group symmetry and soluble in water. The amides are important constituent of many biologically significant compounds. The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. The sulfonamide derivatives are known for their numerous pharmacological activities, antibacterial, antitumor, insulin-release stimulation and antithyroid properties[1]. In addition, the unsubstituted aromatic/heterocyclic sulfonamides act as carbonic anhydrase inhibitors[2-3]whereas other types of derivatives show diuretic activity (high-ceiling diuretics or thiadiazinediuretics), hypoglycemic activity and anticancer properties[4]. Although sulfonamides are best known as bacteriostatic[5]and anti-malarial agents[6], there is now a range of drugs, possessing very different pharmacological activities, in which the sulfonamide group is present[7]. Several of these drugs suffer from bioavailability problems or adverse secondary effects[8-9]. Infrared, vibrational, NMR, and DFT investigation of N-[4-[2-[2-[4-(methanesulfonamido) phenoxy] ethyl-methyl-amino] ethyl] phenyl] methanesulfonamide[10].

    In recent years, among the computational methods calculating the electronic structure of molecular systems, DFT methods has been favorite one due to its great accuracy in reproducing the experimental values of molecular geometry, vibrational frequencies, atomic charges, dipole moment, thermodynamical properties etc.[11-15]. DFT calculations are reported to provide excellent vibrational frequencies of organic compounds if the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, for basis set deficiencies and for the anharmooicity[16-19].

    Literature survey reveals that to the best of our knowledge, no experimental and computational vibrational spectroscopic study free HPAEPMS is published in the literature yet. This inadequacy observed in the literature encouraged us to make this theoretical and experimental vibrational spectroscopic research based on the molecule to give a correct assignment of the fundamental bands experimental FT-IR and FT-Raman spectra on the basis of calculated Total Energy Distribution (TED). Therefore, the present study aims to give a complete description of the molecular geometry, molecular vibrations and electronic features of the present molecule. Besides, frontier molecular orbitals (FMOs) and thermodynamic properties were performed. Thermodynamic properties of the title compound at different temperatures were calculated.

    1 Experimental details

    The compound under investigation namely HPAEPMS is purchased from Sigma-Aldrich chemicals, USA with spectroscopic grade and it was used as such without further purification. The FT-IR spectrum of the compound has been recorded in Perkin-Elmer 180 spectrometer in the range 4 000~400 cm-1. The spectral resolution is ±2 cm-1. The FT-Raman spectrum was also recorded in the same instrument with FRA 106 Raman module equipped with Nd∶YAG laser source operating in the region 100~4 000 cm-1at 1.064 μm line widths with 200 mW powers. The spectra were recorded with scanning speed of 30 cm-1·min-1of spectral width 2 cm-1. The frequencies of all bands are accurate to ±1 cm-1.

    2 Computational details

    The entire calculations were performed at DFT (B3LYP) levels on a Pentium Ⅳ/1.6 GHz personal computer using Gaussian 03W[20]program package, invoking gradient geometry optimization[21]. This geometry was then optimized at DFT level, using basis set constraint 6-31G (d,p). The optimized structural parameters were using in the vibrational frequencies calculations resulting in IR and Raman frequencies together with Intensities and Raman depolarization ratios. The harmonic vibrational frequencies were calculated at the same level the optimized structures and obtained frequencies were scaled by 0.961[22]. It should be noted that Gaussian 03W package does not calculate the Raman intensity. The Raman activities were transformed into Raman intensities using RaInt program[23]by the expression:

    WhereIiis the Raman intensity,Sis the Raman scattering activities,νiis the wave number of normal modes and denotes the wave number of the excitation laser[24].

    3 Results and discussions

    3.1 Molecular geometry

    The molecular structure along with numbering of atoms of HPAEPMS is obtained from Gaussian 03 and GAUSSVIEW programs and is shown in Figure.1. The most optimized structural parameters (bond length and bond angle) calculated by DFT/B3LYP with 6-31G(d,p) are compared with X-ray and electron diffraction experimental data[25]in accordance with the atom numbering scheme given in Figure 1.

    Fig.1 Numbering system adopted in the molecular structure of HPAEPMS

    3.2 Vibrational assignments

    The maximum number of potentially active observable fundamentals of a non-linear molecule, which contains N atoms, is equal to (3N-6) apart from three translational and three rotational degrees of freedom[26]. The present molecule HPAEPMS with 33 atoms and 93 normal modes of vibrations has C1 point group symmetry. The observed and simulated FT-IR and FT-Raman spectra of HPAEPMS are shown in Figures. 2 and 3, respectively. The observed and scaled theoretical frequencies using DFT/B3LYP with 6-31G(d,p) basis set with TED are listed in Table 1. Calculations were made for a free molecule in vacuum, while experiments were performed for solid phase. The vibrational analysis obtained for HPAEPMS with the unscaled B3LYP/6-31G(d,p) force field are generally somewhat greater than the experimental values due to neglect of anharmonicity in real system. These discrepancies can be corrected either by computing anharmonic corrections explicitly or by introducing a scaled field or directly

    Fig.2 Comparative representation of FT-IR spectra for HPAEPMS

    Table 1 The experimental FT-IR, FT-Raman and calculated frequencies using B3LYP/6-31G(p,d),) force field along with their relative intensities, probable assignments and Potential Energy Distribution (PED) of 1-N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide

    ModesNoObservedfrequencies/cmFT?IRFT?RamanB3LYP/6?31G(d,p)UnscaledScaledIRRamanAssignments(PED)a13450(w)-3522347414 6493 61νNH(98)23444(w)-3588345037 2977 62νNH(98)33371(w)-351933833 6750 88νNH(97)43209(s)-323631111 21142 19νCH(97)5-3080(vw)323431091 0526 14νCH(94)63060(vw)3065(w)318830650 8753 01νCH(92)7--318330610 2970 11νCH(96)83055(w)3051(w)317730555 79117 22νCH(63)93050(w)3050(w)3174305121 2329 62νCH(97)10--3126300554 81113 84νasymCH3(100)113002(w)-3123300229 7650 89νasymCH3(96)12--3117299717 1126 76νasymCH2ofCH3(100)13--3107298731 5449 71νasymCH2ofCH3(100)14--3083296422 2841 54νasymCH2ofCH3(100)15--307729580 37121 68νasymCH2ofCH3(100)162928(m)2930(m)3047293011 69148 67νasymCH2ofCH3(100)172920(m)-3039292125 8461 45νasymCH2ofCH3(100)182850(w)-2987287269 7289 41νsymCH3(100)192800(w)2810(w)2932281993 08163 19Overtone+combination202796(w)-2909279771 1585 87Overtone+combination21--1666160143 50171 54νCC(55)+Ring2symd(16)22-1530(w)163115682 953 22νCC(42)+βCH(30)231490(m)-1552149290 432 19νCC(40)+βNH(16)24-1470(vw)152914702 912 29βCH(78)251460(s)-1525146626 807 35ρCH3(98)261458(w)1458(w)151514570 9721 12ρCH3(98)27--151014527 9011 57ρCH3(98)281440(s)1440150314451 1120 94δdefCH3(110)29--1490143219 806 4δdefCH3(100)301430(vw)1435(w)1488143023 644 86δdefCH3(100)31--147214154 5114 97βCH(64)+νCC(27)32-1410(w)146814121 6612 85ωCH3(75)331396(vs)-1430137518 872 22βCH(74)+νCN(26)34-1365(vs)14241369116 1035 99νasym(SO2)351360(m)-1421136627 609 28νs(SO2)36--1415136059 853 88δdefCH3(100)371345(vs)1340(w)1404134921 158 43νsymSO2(80)38--139013362 396 89Rind def (86)391332(vs)1337(vs)1384133027 328 63νsymSO2(66)+νCC(12)40--1359130711 490 95νasymSO2(66)+νCC(12)41--1358130518 357 71νasymSO2(66)+νCC(12)421300(vs)-13571304112 111 74βCH(12)+νsymSO2(66)43-1285(s)1337128520 192 74βCH(81)+νCN(19)44-1248(m)1303125363 2855 55νCC451222(m)1225(m)1279122965 9033 3νCC46--1247119928 1214 9βCH(47)+νCC(23)471195(w)-1246119823 1230 21βCH(47)+νCC(23)48-1185(vw)121911724 792 53γCH3(89)491160(vs)1211116427 3425 73νsymSO2(44)+νCC(21)501153(vs)1154(m)1208116119 0226 23βCH(45)+νCC(23)

    To Table 1

    511127(m)-1181113612 883 26νCC(28)+νsymSO2(15)+νCS(12)+νCN(11)52--116411199 282 82γCH3(66)53--1148110445 841 43γCH3(60)541092(m)1082(m)11341090262 683 75νasymSO2(50)+βCH(16)55--1117107451 415 7νasymSO2(79)561045(w)1015(m)1088104638 850 97Ringbreathing(630)57995(w)982(m)10379978 960 44γCH(92)58--100796831 245 34γCH(72)59-954(m)99095254 696 88γCH(79)60945(m)98594752 8311 74γCH(83)61--98094211 747 05γCH(80)62935(m)-9749362 240 37γCH(62)63--9649271 574 57γCH(83)64--9539170 423 51γCH(80)65906(m)904(m)94891212 585 71γCH(39)66-9358991 551 29ρSO2(49)+νC?SO2(16)67--88685198 539 24νCO(35)68837(w)-86583231 314 02γCH(33)69-817(m)85682319 066 97γCH(48)70800(m)804(m)83780588 4411 57γCH(45)71--83380110 552 75γCH(45)72779(m)780(m)82178919 1117 27βCCC(19)+τCCCH(14)73740(m)-76974028 146 18βCCC(19)+ρSO2(26)+νCS(15)74--7437149 732 5γCCC(87)+βCN(13)75698(m)-72169376 3210 53γNH(85)+βCN(10)76-665(w)69466811 546 75γNH(26)77-615(w)6466212 525 82τCCCC(23)+νCC(2)78575(vw)576(w)60057658 408 4τRing1asymd(38)79520(w)518(w)54152010 738 97βring(61)+νCC(21)80--50949054 745 03γCCC(44)+ρSO2(26)81475(w)479(w)49347475 219 03γCCC(44)+ρSO2(26)82--4864676 001 2τring(46)83466(w)-48246414 793 48τring(48)84-445(w)4564391 131 45γCCC(64)+ρSO2(27)85420(w)-4384213 540 92βCCC(47)+βCCO(16)86-403(w)4194032 520 18τCCCC(43)87--3883735 450 5βCCN(62)+rSO2(38)88-365(m)36635212 062 53βCCN(60)+rSO2(40)89--3363237 681 46βCCO(47)+βCCC(21)90--3213087 812 55βCOC(28)+βCCC(22)91--301290107 335 62βCOC(38)+βCCC(22)92-280(w)2972862 182 54τCCCC(45)93--2722622 281 11βCSN(16)+νCS(11)+rSO2(39)94--2572470 300 78βCSN(26)+νCS(10)+rSO2(40)95--2472372 852 32βCSN(25)+βCSO(17)96--2292201 540 05βCSN(35)+βCSO(27)97-206(w)2142061 471 14γ(ring?SA+ringSO2)(92)98--2011941 200 56νCS(36)+βCCC((14)+νCN(10)99-186(w)1931861 000 76γ(ring?SA+ringSO2)(80)100--1631560 640 47γ(ring?SA+ringSO2)(82)101-124(vw)1331282 460 57Ringbutterfly(84)102-103(w)1101061 090 84Ringbutterfly(88)103-78(m)92884 520 75τSO2(67)+τC?SA(17)104--50481 562 54τCH3(38)+τRing1symd(10)105--46441 920 72τCH3(74)+τRing1symd(15)

    To Table 1

    106--36351 321 95τSO2(85)107--27261 352 47τSA(93)108--14141 930 74τ(ring+SO2)(99)

    aνsym: symmetric stretching;νasym: asymmetric stretching; symd: symmetric deformation; asymd: asymmetric deformation;β: in-plane-bending;γ: out-of-plane bending;ρ: scissoring;ω: wagging;r: rocking;τ: torsion; SA: sulfonamide; TED: Total energy distribution

    scaling the wavenumbers by proper factor. A tentative assignment is often made on the basis of the unscaled frequencies by assuming the observed frequencies so that they are in the same order as the calculated ones. A better agreement between the computed and experimental frequencies can be obtained by using different scale factors for different regions of vibrations.

    Fig.3 Comparative representation of FT-Raman spectra for HPAEPMS

    3.3 N—H vibration

    The high frequency region above 3 000 cm-1is the characteristic region for the ready identification of C—H, O—H and N—H stretching vibrations. In this region, the bands are not affected appreciably by the nature of substituents[26]. The investigated molecules have NH2group. Hence, in NH2group, one symmetric and one asymmetric N—H stretching vibrations are expected. It is stated that the N—H stretching vibrations occur in the region 3 300~3 500 cm-1[27]. Specifically, the asymmetric NH2stretching vibration appears from 3 420 to 3 500 cm-1and the symmetric NH2stretching is observed in the range 3 340~3 420 cm-1[27]. In this study, the FT-IR bands at 3 450, 3 444 and 3 371 cm-1have been assigned to NH2asymmetric stretching vibrations. The scaled vibrations calculated at 3 474, 3 450 and 3 383 cm-1by B3LYP/6-31G(d,p) method (mode nos. 1 and 3) which are listed in Table 4.2 correspond to asymmetric stretching mode of N—H units with the PED contribution of 98% and 97%, respectively. The N—H out-of-plane bending vibrations are observed at 698 cm-1in FTIR spectra. The bands observed at 665 cm-1in FT-Raman spectra have been assigned to N—H out-of-plane bending vibrations. The experimental values are found to be in good agreement with the theoretical values.

    3.4 C—H vibrations

    The aromatic structures show the presence of C—H stretching vibrations in the region 3 100~3 000 cm-1which is the characteristic region for the ready identification of C—H stretching vibrations. In this region, the bands are not affected appreciably by the nature of substituents[28-29]. The modes (4~9) are due to C—H stretching of hydrogen bonded carbon atoms of phenyl rings. These modes are pure C—H stretching vibrations with a PED contribution nearly 97%. In this study, the CH stretching modes of studied compounds were recorded in both FT-IR and FT-Raman spectra. The corresponding modes were observed at 3 209, 3 060, 3 055 and 3 050 cm-1in FT-IR and FT-Raman spectra were observed 3 080, 3 065, 3 051, and 3 050 cm-1. The scaled vibrations calculated at 3 111, 3 109, 3 065, 3 061, 3 055 and 3 051 cm-1by B3LYP/6-31G(d,p) method. The aromatic C—H in-plane bending modes of benzene and its derivatives are observed in the region 1 300~1 000 cm-1with a weak intensity in the vibrational spectra[29-30]. The C—H out-of-plane bending vibrations occur in the range 1 000~750 cm-1in the aromatic compounds[29-30]. The computations suggest that the expected other bands of C—H in-plane or out-of plane bending vibrations are masked by other strong vibrational modes. The same trend is observed in the title compound.

    3.5 Methyl group vibrations

    The molecule HPAEPMS under consideration possesses one CH3unit which lies in the terminal group of the molecule. For the assignments of CH3group frequencies, nine fundamentals can be associated to CH3group[31]. The C—H stretching in CH3occurs at lower frequencies than those of aromatic ring (3 100~3 000 cm-1). Moreover, the asymmetric stretch is usually at higher wavenumber than the symmetric stretch. Methyl group vibrations are generally referred to as electron-donating substituent in the aromatic ring systems, the antisymmetric C—H stretching mode of CH3is expected around 2 980 cm-1and CH3symmetric stretching is expected at 2 870 cm-1[32]. The first of these results from the antisymmetric stretching of CH3mode in which the two C—H bonds of the methyl group are expanding while the third one is contracting. The second arises from the symmetric stretching in which all the three C—H bonds expand and contract in phase. The CH3symmetric stretching mode is predicted by B3LYP/6-31G(d,p) method at 2 872 cm-1and it shows 100% TED contribution suggesting that it is a pure stretching mode. There is a peak observed at 2 850 cm-1for CH3 stretching vibration in FT-IR.

    For methyl substituted benzene derivatives, the antisymmetric and symmetric deformation vibrations of methyl group normally appear in the region 1 465~1 440 cm-1and 1 390~1 370 cm-1, respectively[33-34]. The band at 1 460, 1 458 and 1 440 cm-1in FT-IR and 1 458 and 1 440 cm-1in FT-Raman are attributed to CH3scissoring vibrations. The wavenumber at 1 410 cm-1in FT-Raman and 1 406 cm-1in FT-IR is assigned to CH3wagging vibration.

    3.6 SO2vibrations

    The asymmetric stretching for the SO2, NH2, NO2, CH2and CH3, etc. has magnitude higher than the symmetric stretching[35-36]. The symmetric and asymmetric SO2stretching vibrations occur in the region 1 125~1 150 cm-1and 1 295~1 360 cm-1, respectively[37]. The intense signals appearing at 1 360, 1 345, 1 332 and 1 300 cm-1(IR) and 1 365, 1 340 and 1 337 cm-1. In the present study, the symmetric SO2stretching vibrations were obtained at 1 127 and 1 092 cm-1in FTIR spectra. The bands observed 1 082 cm-1in FT-Raman spectra were assigned to antisymmetric SO2stretching vibrations. A major coincidence of experimental values with that of literature[38-39]and theoretical results are found for above conclusions. The bending vibrations of O—S—O are also given in Table 1.

    3.7 Ring vibrations

    The ring stretching vibrations are very much important in the spectrum of aromatic compounds and are highly characteristic of the aromatic ring itself. However, empirical assignments of vibrational modes for peaks in the fingerprint region are difficult. Bands between 1 400 and 1 650 cm-1in benzene derivatives are assigned to ring vibrations. In general, the bands are of variable intensity and observed at 1 625~1 590, 1 590~1 575, 1 540~1 470, 1 460~1 430 and 1 380~1 280 cm-1from the frequency ranges given by Varsanyi[40]for the five bands in the fingerprint region. In the present work, the bands with are of different intensity and observed at 1 490, 1 332, 1 222, 1 195, 1 160, 1 153, 1 127 and 520 cm-1in FTIR and 1 530, 1 337, 1 248, 1 225, 1 154, 615 aand 518 cm-1in FT-Raman have been assigned to C—C stretching vibrations. The theoretically calculated values at 1 601, 1 631, 1 492, 1 415, 1 330, 1 307, 1 305, 1 253, 1 229, 1 199, 1 198, 1 164, 1 161 and 621 cm-1by B3LYP/6-31G(d,p) method shows excellent agreement with experimental data. The C—C in-plane and out-of-plane bending vibrations are the modes associated with smaller force constants than the stretching ones, and hence assigned to lower frequencies. The in plane deformations are at higher frequencies than the out-of-plane vibrations. Shimanouchi et al.[41]gave the frequency data for these vibrations for different benzene derivatives as a result of normal coordinate analysis. Although some modes are missing in experimental spectra, however, the calculated CCC in-plane and out-of-plane bending modes are found to be consistent with the recorded spectral values, as can be seen in Table 2.

    4 Conclusion

    FTIR, FT-Raman and DFT quantum chemical calculations studies were performed on HPAEPMS, in order to identify their structural and vibrational features. Several properties were carried out using experimental techniques and tools derived from density functional theory. On the basis of experimental results and TED calculations, assignments of all the fundamental vibrational frequencies were done. A good correlation between the observed and scaled wave number was obtained for the title compound. Scaled results seemed to be in good agreement with experimental ones. We hope our results will be of assistance in the quest of the experimental and theoretical evidence for the HPAEPMS molecule in reaction intermediates, nonlinear optical and photoelectric materials and will also be helpful for the design and synthesis of new materials.

    [1] Maren T H. Ann. Rev. Pharmacol. Toxicol., 1976, 16: 309.

    [2] Supuran C T, Scozzafava A. Curr. Med. Chem. Immunol. Endocrine Metabolic Agents 1, 2001. 61.

    [3] Supuran C T, Scozzafava A, Casini A. Med. Res. Rev., 2003, 23: 146.

    [4] Supuran C T, Scozzafava A. Expert Opin. Ther. Patents, 2002, 12: 217.

    [5] Silverman R B. The Organic Chemistry of Drug Design and Drug Action, Academic, London, 1992.

    [6] Albala D M, Prien E L, Galal H A. J. Endourol., 1994, 8: 401.

    [7] Reynolds J E F(Ed.). Martindale: The Extra Pharmacopoeia, 31st ed., The Royal Pharmaceutical Society, London, 1996.

    [8] Kaur I P, Singh M, Kanwar M. Int. J. Pharm. 2000, 199: 119.

    [9] Famaey J P. Inflamm. Res., 1997, 46: 437.

    [10] OnucCozar, LászlóSzabó, Vasile Chi? , et al. Annals of the Academy of Romanian Scientists Physics Series, 2010, 2: 17.

    [11] Nagabalasubramanian P B, Periandy S. Spectrochim. Acta A, 2010, 77: 1099.

    [12] Govindarajan M, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta A, 2012, 89: 137.

    [13] Govindarajan M, Karabacak M, Periandy S, et al. Spectrochim. Acta A, 2012, 97: 231.

    [14] Karabacak M, Kurt M, Atac A. J. Phys. Org. Chem., 2009, 22: 321.

    [15] Mehmet Karabacak, Dilek Karag?z, Mustafa Kurt. Spectrochim. Acta A, 2009, 72: 1076.

    [16] Palafox M A, Tardajos G, Martines A G, et al. Chem. Phys., 2007, 340: 17.

    [17] Stephens P J, Devlin F J, Chavalowski C F, et al. J. Phys. Chem., 1994, 98: 11623.

    [18] Devlin F J, Finley J W, Stephens P J, et al. J. Phys. Chem., 1995, 99: 16883.

    [19] Lee S Y, Boo B H. Bull. Korean Chem. Soc., 1996, 17: 754.

    [20] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision A.I, Gaussian, Inc., Pittsburgh, PA, 2003.

    [21] Schlegel H B. J. Comput. Chem., 1982, 3: 214.

    [22] Foresman J B, Frisch A. Exploring Chemistry with Electronic Structure Methods,Gaussian Inc., Pittsburgh, 1996.

    [23] Michalska D. Raint Program, Wroclaw University of Technology, 2003.

    [24] Michalska D, Wyokinski R. Chem. Phys. Lett., 2005, 403: 211.

    [25] Sanchez-Camazano M, Sanchez-Martin M J, Vicente M T, et al. Clay Minerals, 1987, 22: 121.

    [26] Silverstein M, Bassler G C, Morril C. Spectroscopic Identification of Organic Compounds, John Wiley, Newyork, 1981.

    [27] Bellamy L J. The Infrared Spectra of Complex Molecules, Vol. 2, Chapman and Hall, London, 1980.

    [28] Chandran A, Mary Y S, Varghese H T, et al. Spectrochim. Acta A, 2011, 79: 1584.

    [29] Rastogi V K, Palafox M A, Tanwar R P, et al. Spectrochim. Acta, 2002, 58A: 1987.

    [30] Roges N P G. A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures, Wiley, New York, 1994.

    [31] Kalsi P S. Spectroscopy of Organic Compounds, Wiley Eastern Limited, New Delhi, 1993.

    [32] Sajan D, Joe I H, Jayakumar V S. J. Raman Spectrosc., 2005, 37: 508.

    [33] Reddy B V, Rao G R. Vib. Spectrosc., 1994, 6: 231.

    [34] Areanas J F, Tocn I L, Otero J C, et al. J. Mol. Struct., 1997, 410: 443.

    [35] Sebastian S, Sundaraganesan N. Spectrochim. Acta A, 2010, 75: 941.

    [36] Sekino H, Bartlett R J. J. Chem. Phys., 1986, 84: 2726.

    [37] Henriksson J, Saue T, Norman P. J. Chem. Phys., 2008, 128: 105.

    [38] Sun Y X, Hao Q L, Yu Z X, et al. Mol. Phys., 2009, 107: 217.

    [39] Ahmed A B, Feki H, Abid Y, et al. J. Mol. Struct., 2009, 920: 1.

    [40] Varsanyi G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. 1/2, Academic Kiado, Budapset, 1973.

    [41] Shimanouchi T, Kakiuti Y, Gamo I. J. Chem. Phys., 1956, 25: 1245.

    O657.3

    A

    2015-08-29; accepted: 2016-01-11

    10.3964/j.issn.1000-0593(2016)03-0880-07

    *Corresponding author email: n_rishibalaa@yahoo.co.in

    午夜福利在线观看吧| 男女下面进入的视频免费午夜| 国产一区二区在线观看日韩| 一级片'在线观看视频| 亚洲最大成人av| 免费看美女性在线毛片视频| 亚洲最大成人手机在线| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 国产精品熟女久久久久浪| 久99久视频精品免费| 一二三四中文在线观看免费高清| 日本wwww免费看| 免费不卡的大黄色大毛片视频在线观看 | 最新中文字幕久久久久| 一级毛片 在线播放| 日韩伦理黄色片| 久久久久久伊人网av| 亚洲国产欧美在线一区| 91久久精品国产一区二区三区| 亚洲精品久久午夜乱码| 男插女下体视频免费在线播放| 熟妇人妻不卡中文字幕| .国产精品久久| 黄片wwwwww| 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 日韩电影二区| 久久精品人妻少妇| 色综合站精品国产| 国产淫片久久久久久久久| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线观看日韩| 成人无遮挡网站| 国产91av在线免费观看| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| videossex国产| 99热这里只有精品一区| 大陆偷拍与自拍| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 国产精品伦人一区二区| 看十八女毛片水多多多| 99热网站在线观看| 2021少妇久久久久久久久久久| 中文在线观看免费www的网站| 亚洲av二区三区四区| 热99在线观看视频| 国语对白做爰xxxⅹ性视频网站| 精品亚洲乱码少妇综合久久| 国产白丝娇喘喷水9色精品| 美女主播在线视频| 免费观看无遮挡的男女| 欧美极品一区二区三区四区| 精品国产一区二区三区久久久樱花 | 又爽又黄a免费视频| 久久久久久久久久久免费av| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 毛片女人毛片| 水蜜桃什么品种好| 女的被弄到高潮叫床怎么办| 亚洲不卡免费看| 日韩一区二区视频免费看| 日韩国内少妇激情av| 免费观看在线日韩| 国产成人精品久久久久久| 亚洲欧美日韩无卡精品| 亚洲av.av天堂| 一级毛片久久久久久久久女| 亚洲综合精品二区| 国产色婷婷99| 久久久午夜欧美精品| 淫秽高清视频在线观看| 久久久久久久大尺度免费视频| 日本熟妇午夜| 成人国产麻豆网| 亚洲精品影视一区二区三区av| 国产久久久一区二区三区| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| 国产片特级美女逼逼视频| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费| 欧美一区二区亚洲| 欧美极品一区二区三区四区| 全区人妻精品视频| 夫妻午夜视频| 免费看日本二区| 免费大片黄手机在线观看| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| av在线老鸭窝| 九九在线视频观看精品| 人妻夜夜爽99麻豆av| 精品一区二区三区人妻视频| 国产精品国产三级专区第一集| 国产一区二区在线观看日韩| 高清av免费在线| 国产av国产精品国产| 亚洲欧美中文字幕日韩二区| 亚洲国产成人一精品久久久| 波多野结衣巨乳人妻| 插逼视频在线观看| 日韩伦理黄色片| 97在线视频观看| 成人无遮挡网站| 国产精品伦人一区二区| 国产激情偷乱视频一区二区| 亚洲成人av在线免费| 亚洲综合色惰| 国产精品美女特级片免费视频播放器| 亚洲最大成人中文| 国产亚洲91精品色在线| 美女高潮的动态| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 国产精品久久久久久精品电影小说 | 欧美xxxx黑人xx丫x性爽| 国产综合懂色| 午夜日本视频在线| 久久韩国三级中文字幕| 老女人水多毛片| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 成人亚洲精品av一区二区| 人人妻人人澡人人爽人人夜夜 | 九九爱精品视频在线观看| 最近中文字幕2019免费版| 亚洲av福利一区| 在线免费观看不下载黄p国产| 久久久久免费精品人妻一区二区| 日韩精品有码人妻一区| 一级毛片我不卡| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 午夜免费观看性视频| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 直男gayav资源| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 亚洲精品456在线播放app| 波野结衣二区三区在线| 久久久久久国产a免费观看| 国产单亲对白刺激| 免费观看在线日韩| 综合色丁香网| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 成人午夜高清在线视频| 午夜精品一区二区三区免费看| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 亚洲成人精品中文字幕电影| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 亚洲欧美精品专区久久| 最近手机中文字幕大全| 人妻一区二区av| 亚洲国产av新网站| 青春草国产在线视频| 少妇高潮的动态图| 国产黄a三级三级三级人| 天堂俺去俺来也www色官网 | 好男人视频免费观看在线| 青春草视频在线免费观看| 国产精品无大码| videossex国产| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 中文乱码字字幕精品一区二区三区 | 黑人高潮一二区| 三级国产精品片| 白带黄色成豆腐渣| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 免费观看在线日韩| 69av精品久久久久久| 亚洲三级黄色毛片| 最新中文字幕久久久久| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看 | 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 看非洲黑人一级黄片| 久久久色成人| .国产精品久久| 色综合站精品国产| 亚洲国产精品国产精品| 国产一区二区三区av在线| 婷婷色综合www| kizo精华| 国产av不卡久久| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版 | 欧美日韩国产mv在线观看视频 | 亚洲人成网站高清观看| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 久久久久久久久久人人人人人人| 夫妻午夜视频| 直男gayav资源| 男女边摸边吃奶| av卡一久久| 99热这里只有是精品50| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 国产91av在线免费观看| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 国产成人精品福利久久| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 亚洲av成人精品一二三区| 欧美xxxx性猛交bbbb| 三级经典国产精品| 色综合站精品国产| 在线观看人妻少妇| 亚洲精品成人久久久久久| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 日本午夜av视频| 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 菩萨蛮人人尽说江南好唐韦庄| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 亚洲伊人久久精品综合| 精品99又大又爽又粗少妇毛片| 中文天堂在线官网| 国内精品宾馆在线| 国产高清不卡午夜福利| 国产免费视频播放在线视频 | 欧美激情在线99| 成人欧美大片| 777米奇影视久久| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 在线 av 中文字幕| 精品国产露脸久久av麻豆 | 亚洲人成网站在线观看播放| 精品午夜福利在线看| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 精品一区二区三区视频在线| 日本免费在线观看一区| 久久午夜福利片| 色5月婷婷丁香| 久久久国产一区二区| 丝瓜视频免费看黄片| 国产av在哪里看| 亚洲av免费高清在线观看| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 亚洲熟妇中文字幕五十中出| 老师上课跳d突然被开到最大视频| 91av网一区二区| 能在线免费观看的黄片| 我的老师免费观看完整版| 好男人视频免费观看在线| 特级一级黄色大片| 噜噜噜噜噜久久久久久91| 亚洲人成网站高清观看| 99久久中文字幕三级久久日本| 91精品国产九色| 日韩人妻高清精品专区| 日本欧美国产在线视频| 国产精品1区2区在线观看.| 欧美性感艳星| 中国美白少妇内射xxxbb| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 男女下面进入的视频免费午夜| 天堂俺去俺来也www色官网 | 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看 | 麻豆精品久久久久久蜜桃| 日韩一区二区视频免费看| 2022亚洲国产成人精品| 国产精品久久久久久av不卡| 九草在线视频观看| 日本av手机在线免费观看| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 天堂av国产一区二区熟女人妻| 日韩欧美三级三区| av在线老鸭窝| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 国产精品熟女久久久久浪| 亚洲成人av在线免费| 亚洲aⅴ乱码一区二区在线播放| 91狼人影院| 国产一区二区亚洲精品在线观看| 国产色婷婷99| 一边亲一边摸免费视频| 日韩电影二区| 色哟哟·www| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 老女人水多毛片| 日韩制服骚丝袜av| 直男gayav资源| 国产不卡一卡二| 国产精品伦人一区二区| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| 亚洲精品日韩av片在线观看| 男人狂女人下面高潮的视频| 97人妻精品一区二区三区麻豆| 99热全是精品| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 亚洲欧美精品专区久久| 婷婷色av中文字幕| 精品人妻视频免费看| 99热这里只有是精品在线观看| 久久热精品热| 少妇人妻精品综合一区二区| 汤姆久久久久久久影院中文字幕 | 亚洲第一区二区三区不卡| 男女视频在线观看网站免费| 国产黄片美女视频| 欧美成人一区二区免费高清观看| 精品国产露脸久久av麻豆 | 日本熟妇午夜| 亚洲欧美日韩卡通动漫| 国产一区二区三区综合在线观看 | 久久精品综合一区二区三区| 人人妻人人看人人澡| 久久久久久国产a免费观看| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 午夜视频国产福利| 亚洲最大成人av| 国产午夜精品一二区理论片| 我要看日韩黄色一级片| 久久久久久久久久成人| 嫩草影院新地址| 欧美人与善性xxx| 国产综合精华液| 日韩成人伦理影院| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 国产av国产精品国产| www.av在线官网国产| 国产高清有码在线观看视频| 国产精品.久久久| av在线播放精品| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品v在线| 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 亚洲久久久久久中文字幕| 欧美bdsm另类| 又爽又黄a免费视频| 亚洲av.av天堂| 国产综合懂色| 国产成人精品婷婷| 秋霞伦理黄片| 国产亚洲最大av| av网站免费在线观看视频 | 尾随美女入室| 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频 | 久久久成人免费电影| 国产久久久一区二区三区| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 日韩三级伦理在线观看| 99久久精品一区二区三区| 精品一区在线观看国产| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 三级经典国产精品| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 人妻少妇偷人精品九色| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 中文字幕久久专区| 搡老乐熟女国产| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| 成年版毛片免费区| 久久久久九九精品影院| 亚洲精品aⅴ在线观看| 乱系列少妇在线播放| 久久久午夜欧美精品| 亚洲一区高清亚洲精品| 在线观看一区二区三区| av黄色大香蕉| 国产男人的电影天堂91| 欧美变态另类bdsm刘玥| 观看美女的网站| 国内精品一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品自产自拍| 亚洲精品第二区| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 最近最新中文字幕免费大全7| 天堂网av新在线| 久久精品综合一区二区三区| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| av女优亚洲男人天堂| 国产黄色免费在线视频| 中文字幕制服av| 国产成人91sexporn| 免费黄频网站在线观看国产| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 国产免费福利视频在线观看| 欧美xxxx性猛交bbbb| 中文欧美无线码| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 国产老妇女一区| 成年人午夜在线观看视频 | 久久久色成人| 免费看a级黄色片| 久久久久久久国产电影| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 国产高清国产精品国产三级 | 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 人体艺术视频欧美日本| 水蜜桃什么品种好| 亚洲精品成人久久久久久| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 国产一区二区三区综合在线观看 | 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 国产乱人视频| 中文字幕亚洲精品专区| 黑人高潮一二区| 人人妻人人看人人澡| 日日干狠狠操夜夜爽| 精品国产一区二区三区久久久樱花 | 亚洲精品久久久久久婷婷小说| 免费看日本二区| 久久久久久伊人网av| 美女被艹到高潮喷水动态| 午夜亚洲福利在线播放| 久久久久久久久久人人人人人人| 国产精品美女特级片免费视频播放器| 婷婷色综合大香蕉| 丝袜喷水一区| 欧美性猛交╳xxx乱大交人| 国产白丝娇喘喷水9色精品| 日韩亚洲欧美综合| 免费看a级黄色片| 亚洲图色成人| 97在线视频观看| 看免费成人av毛片| 99久久精品国产国产毛片| 日日啪夜夜撸| 亚洲精品一区蜜桃| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 最后的刺客免费高清国语| 男女边摸边吃奶| 狠狠精品人妻久久久久久综合| 国产成年人精品一区二区| 久久久欧美国产精品| 91久久精品国产一区二区成人| 国产免费福利视频在线观看| 免费看av在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美人与善性xxx| 一级毛片我不卡| 亚洲精品亚洲一区二区| 欧美高清性xxxxhd video| 又粗又硬又长又爽又黄的视频| 久久久久久久久久成人| 春色校园在线视频观看| 国产精品福利在线免费观看| 日日啪夜夜爽| 淫秽高清视频在线观看| 欧美最新免费一区二区三区| 三级毛片av免费| 26uuu在线亚洲综合色| 国产成人a区在线观看| 搡老乐熟女国产| 国产高清不卡午夜福利| 99热全是精品| 日日撸夜夜添| 97超碰精品成人国产| 欧美成人a在线观看| 欧美精品一区二区大全| 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 免费看光身美女| 毛片女人毛片| 91av网一区二区| 欧美一级a爱片免费观看看| 日韩成人av中文字幕在线观看| 成年女人看的毛片在线观看| 成年免费大片在线观看| 亚洲精品乱久久久久久| 色5月婷婷丁香| 午夜免费激情av| 国产极品天堂在线| 国产亚洲av片在线观看秒播厂 | 啦啦啦韩国在线观看视频| 一区二区三区四区激情视频| 1000部很黄的大片| 国产91av在线免费观看| 成人特级av手机在线观看| 国产精品一区二区在线观看99 | 精品熟女少妇av免费看| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件| 天堂av国产一区二区熟女人妻| 欧美成人a在线观看| 日韩精品青青久久久久久| 精品亚洲乱码少妇综合久久| 亚洲av电影在线观看一区二区三区 | 欧美日韩精品成人综合77777| 亚洲在线观看片| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 国产美女午夜福利| 国产伦精品一区二区三区视频9| 人人妻人人看人人澡| 午夜老司机福利剧场| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 欧美日韩视频高清一区二区三区二| 亚洲第一区二区三区不卡| 久久草成人影院| 2018国产大陆天天弄谢| 国产精品一区二区三区四区免费观看| 亚洲欧美中文字幕日韩二区| 国产伦精品一区二区三区视频9| kizo精华| 2021少妇久久久久久久久久久| 免费观看a级毛片全部| 国产 一区 欧美 日韩| 日韩成人av中文字幕在线观看| 国产免费一级a男人的天堂| 国产精品蜜桃在线观看| 国国产精品蜜臀av免费| 波野结衣二区三区在线| 成年免费大片在线观看| 国产男人的电影天堂91| 白带黄色成豆腐渣| 久久精品国产亚洲网站| 国产一区亚洲一区在线观看| 国产成人精品福利久久| 非洲黑人性xxxx精品又粗又长| 丰满人妻一区二区三区视频av| 伊人久久精品亚洲午夜| 国产美女午夜福利| 国产精品一及| 天天一区二区日本电影三级| 日韩 亚洲 欧美在线| 日日撸夜夜添| 伊人久久精品亚洲午夜| 最近2019中文字幕mv第一页| 99久久中文字幕三级久久日本| 不卡视频在线观看欧美| 国产麻豆成人av免费视频| 免费电影在线观看免费观看| 特级一级黄色大片| 熟女人妻精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久久成人| 能在线免费观看的黄片| 高清日韩中文字幕在线| 国产探花极品一区二区| 国产老妇伦熟女老妇高清| 日韩不卡一区二区三区视频在线| 日韩成人伦理影院| 国产淫片久久久久久久久| 精品一区二区免费观看| 一个人看视频在线观看www免费| 国产精品美女特级片免费视频播放器| av免费在线看不卡| 不卡视频在线观看欧美| 少妇人妻精品综合一区二区|