周雙雙 鄭欣 周學(xué)東 徐欣
口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙體牙髓病科(四川大學(xué)) 成都 610041
菌斑生物膜產(chǎn)堿代謝與齲病
周雙雙鄭欣周學(xué)東徐欣
口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室華西口腔醫(yī)院牙體牙髓病科(四川大學(xué)) 成都 610041
口腔微生態(tài)內(nèi)酸堿代謝是調(diào)控口腔微生態(tài)平衡的重要因素,影響著微生物群落組成和菌斑生物膜形成。菌斑生物膜的產(chǎn)堿代謝可能阻礙產(chǎn)酸耐酸菌在低pH值環(huán)境中獲得優(yōu)勢地位,恢復(fù)并維持微生態(tài)平衡;同時(shí)也直接升高微生態(tài)內(nèi)pH值,遏制牙表面脫礦。菌斑生物膜主要的產(chǎn)堿活動包括精氨酸脫亞胺酶系統(tǒng)介導(dǎo)的精氨酸代謝和尿素酶介導(dǎo)的尿素水解反應(yīng)。精氨酸代謝可抑制生物膜中產(chǎn)酸菌生長,促進(jìn)產(chǎn)堿共生菌生長,促進(jìn)齲狀態(tài)下的口腔微生態(tài)恢復(fù)平衡。尿素代謝可抑制齲病發(fā)生,含產(chǎn)堿底物的口腔衛(wèi)生護(hù)理產(chǎn)品具有良好的齲病防治效果。本文就近年來菌斑生物膜的產(chǎn)堿代謝及其與齲病關(guān)系等研究進(jìn)展作一綜述。
齲病;菌斑生物膜;口腔細(xì)菌;產(chǎn)堿代謝
This study was supported by the National Key Technologies R and D Program of China during the 12th Five-Year Plan Period(2012BAI07B03),the National Natural Science Foundation of China(81170959,81200782) and Doctoral Fund of Ministry of Education of China(20120181120002).
[Abstract]Alkali production within oral microecology is necessary to modulate the balance of the microenvironment,which influences the configuration and characteristics of the oral microflora. Alkali production impedes the predominance of acidogenic and aciduric bacteria in a low-pH microenvironment and restores micro-ecological balance. Alkali production directly increases environmental pH,attenuates demineralization,and promotes tooth surface remineralization. Alkali production is mainly attributed to microbial arginine metabolism mediated by the arginine deiminase system and urea hydrolysis. Arginine metabolism prevents the growth of acid-generating bacteria but stimulates the growth of alkaliproducing bacteria;thus,the restoration of microbial disequilibrium in a cariogenic biofilm can be facilitated. Similar caries resistance has been observed in a population with increased urea metabolism. In vivo and in vitro data have indicated that the regulation of microbial alkali production represents a promising ecological approach to caries management. This paper aims to review current studies on the alkali production within oral biofilm,to elucidate the effects of alkali production on microbial ecology,and to describe the onset/progression of dental caries.
[Key words]caries;dental biofilm;oral bacteria;alkali production
口腔微生態(tài)內(nèi)酸堿代謝是調(diào)控口腔微生態(tài)平衡的重要因素,影響著微生物群落組成和菌斑生物膜的形成。細(xì)菌的產(chǎn)酸代謝在齲病發(fā)生過程中的作用已有較多研究,且結(jié)論較為統(tǒng)一[1-4]。近年來一些研究[5-13]還指出:菌斑生物膜內(nèi)產(chǎn)堿活動可促進(jìn)口腔微生態(tài)平衡,有利于齲病的防治;含產(chǎn)堿底物的口腔衛(wèi)生護(hù)理產(chǎn)品具有良好的抗齲效果,在齲病防治領(lǐng)域有一定應(yīng)用前景。本文就近年來口腔微生態(tài)內(nèi)產(chǎn)堿代謝在齲病防治領(lǐng)域的研究作一綜述。
口腔微生態(tài)內(nèi)最重要的產(chǎn)堿活動包括精氨酸脫亞胺酶系統(tǒng)(arginine deiminase system,ADS)介導(dǎo)的精氨酸代謝和尿素酶介導(dǎo)的尿素水解反應(yīng)。精氨酸代謝主要存在于血鏈球菌、副血鏈球菌、格氏鏈球菌和緩癥鏈球菌以及某些乳桿菌屬和放線菌屬中[14-16];尿素水解反應(yīng)則主要存在于唾液鏈球菌、內(nèi)氏放線菌和口腔嗜血菌屬中[17-20]。
1.1精氨酸代謝產(chǎn)堿
口腔中的精氨酸主要來源于唾液中的多肽,游離精氨酸濃度大約為50 μmol·L-1[21]。在口腔中,精氨酸代謝產(chǎn)堿主要通過ADS進(jìn)行,終產(chǎn)物為鳥氨酸、氨、二氧化碳和腺苷三磷酸(adenosine triphosphate,ATP);ADS由一系列酶構(gòu)成,包括精氨酸脫亞胺酶、鳥氨酸氨甲?;D(zhuǎn)移酶和氨基甲酸激酶。編碼ADS的基因通常位于一個(gè)操縱子中,環(huán)境刺激可調(diào)控其表達(dá);在多數(shù)口腔細(xì)菌中,精氨酸及低pH可上調(diào)ADS相關(guān)基因的表達(dá)[22]。
1.2尿素代謝產(chǎn)堿
唾液和齦溝液中皆含有尿素成分,其與血清中的尿素濃度相同,在健康人群中為3~10 mmol·L-1??谇患?xì)菌產(chǎn)生尿素酶,分解代謝尿素,生成氨與二氧化碳[5,7]。尿素酶發(fā)揮功能至少需要7個(gè)基因表達(dá)產(chǎn)物,這些基因通常位于一個(gè)操縱子中;尿素及氮源缺乏,可上調(diào)尿素酶相關(guān)基因;在某些細(xì)菌中,尿素酶的表達(dá)在低pH環(huán)境下被激活[23]。
1.3其他產(chǎn)堿代謝
口腔微生態(tài)內(nèi)還存在著其他的產(chǎn)堿代謝,例如精胺代謝[24-25]??谇晃⑸鷳B(tài)內(nèi)的精胺主要來源于精氨酸代謝的中間產(chǎn)物,也可來自一些食物,例如米飯、牛奶和啤酒等。精胺在牙菌斑生物膜和唾液中的濃度分別為0.75和0.2 μmol·L-1,其代謝主要通過鯡精氨酸脫亞氨酶系統(tǒng)(agmatine deiminase system,AgDS)進(jìn)行,終產(chǎn)物分別為腐胺、氨、二氧化碳和ATP。AgDS與ADS十分相似,主要存在于變異鏈球菌、表兄鏈球菌、汗毛鏈球菌、大鼠鏈球菌、乳房鏈球菌、緩癥鏈球菌、倉鼠鏈球菌、唾液乳桿菌和短乳桿菌中[25]。值得注意的是,其中一些與齲病發(fā)生密切相關(guān)的細(xì)菌中有較高水平的AgDS表達(dá)。由于精胺代謝活性較弱,無法升高菌斑pH;所以,精胺代謝可能系通過升高胞質(zhì)內(nèi)pH來增強(qiáng)細(xì)菌的耐酸能力,使得一些細(xì)菌在低pH環(huán)境下生存。
過量攝入糖類,菌斑生物膜內(nèi)細(xì)菌的產(chǎn)酸代謝增強(qiáng),pH降低,產(chǎn)酸耐酸菌成為優(yōu)勢菌,這一菌群演替可使菌斑內(nèi)pH進(jìn)一步下降,牙表面脫礦形成齲壞[1-4]。Bradshaw等[26]利用9種代表性口腔細(xì)菌在體外構(gòu)建多菌種生物膜,當(dāng)生物膜內(nèi)pH降至5.0以下時(shí),變異鏈球菌屬及乳桿菌屬在數(shù)量上成為優(yōu)勢菌,而非變異鏈球菌屬及放線菌屬數(shù)量急劇下降。一些學(xué)者[5-7]認(rèn)為,牙菌斑生物膜內(nèi)低pH環(huán)境是導(dǎo)致菌群失衡的重要原因,口腔微生態(tài)內(nèi)的產(chǎn)堿代謝將有助于維持生態(tài)平衡。
2.1產(chǎn)堿代謝影響生物膜組成的體外研究
黃雪蓮[27]發(fā)現(xiàn),當(dāng)在液體培養(yǎng)基中加入質(zhì)量分?jǐn)?shù)為1.6%的精氨酸時(shí),體外生物膜中的血鏈球菌和格氏鏈球菌等產(chǎn)堿共生菌的數(shù)量明顯上升,此變化在無糖條件下更為明顯。Shu等[28]構(gòu)建10菌種人工生物膜,當(dāng)此模型中存在尿素代謝時(shí),生物膜菌群可保持多樣性及穩(wěn)定性;當(dāng)此模型中尿素酶功能缺失后,生物膜菌群喪失多樣性,產(chǎn)酸耐酸菌成為優(yōu)勢菌。Zheng等[29]發(fā)現(xiàn)精氨酸與氟化鈉聯(lián)合應(yīng)用:可協(xié)同抑制變異鏈球菌的生長、生物膜的形成及其產(chǎn)胞外多糖的產(chǎn)生,對血鏈球菌沒有協(xié)同抑制作用;在多菌種生物膜中可降低變異鏈球菌的比例,同時(shí)促進(jìn)血鏈球菌獲得競爭優(yōu)勢。精氨酸與氟化鈉聯(lián)合應(yīng)用有望成為齲病生態(tài)防治的新方法。
2.2產(chǎn)堿代謝影響生物膜組成的臨床試驗(yàn)
Nascimento等[30]將19例齲失補(bǔ)牙(decayed missing filled tooth,DMFT)為0者分為無齲組,19例DMFT≥2者分為高齲組,兩組經(jīng)含質(zhì)量分?jǐn)?shù)1.5%的精氨酸無氟牙膏刷牙4周后,高齲組菌斑產(chǎn)氨量明顯增加,菌斑內(nèi)細(xì)菌種類下降;口腔微生物組鑒定芯片分析顯示,高齲組與無齲組在菌群組成上存在明顯差異;使用含質(zhì)量分?jǐn)?shù)1.5%的精氨酸牙膏后,高齲組菌斑組成明顯變化,與無齲組相似。精氨酸牙膏可促進(jìn)齲活躍人群口腔微生態(tài)恢復(fù)平衡。王琳等[31]選擇無齲(DMFT=0)和高齲(DMFT>4)受試者各15名,囑其使用含質(zhì)量分?jǐn)?shù)8%的精氨酸牙膏刷牙2周,采集其齦上、齦下菌斑及其唾液樣本,利用熒光定量聚合酶鏈反應(yīng)技術(shù)檢測樣本中常見的口腔細(xì)菌數(shù)量,結(jié)果顯示,經(jīng)含質(zhì)量分?jǐn)?shù)8%的精氨酸牙膏處理前,高齲組人群齦上、齦下菌斑中變異鏈球菌數(shù)量明顯高于無齲組,齦上、齦下菌斑及其唾液中的血鏈球菌數(shù)量明顯低于無齲組;經(jīng)過處理后,高齲組樣本中的變異鏈球菌數(shù)量明顯降低,血鏈球菌數(shù)量明顯上升,且兩種細(xì)菌組成比例與無齲組間無明顯差異。該試驗(yàn)提示,精氨酸可抑制口腔產(chǎn)酸菌生長,促進(jìn)產(chǎn)堿共生菌生長,促進(jìn)齲病狀態(tài)下的口腔微生態(tài)恢復(fù)平衡。
3.1回顧性研究
有學(xué)者[21,32-37]經(jīng)過回顧性比較無齲人群與齲活躍人群菌斑、唾液等樣本中的產(chǎn)堿代謝相關(guān)指標(biāo)證實(shí),產(chǎn)堿代謝與齲病發(fā)生呈負(fù)相關(guān)性。關(guān)于尿素代謝與齲病發(fā)生的關(guān)系,早期有學(xué)者[33-34]發(fā)現(xiàn),慢性腎功能患者齲病發(fā)生率較低,這些受試者唾液中尿素濃度為健康人群唾液總尿素濃度的10~50倍,菌斑及唾液pH均高于健康人群,提示尿素代謝產(chǎn)堿活性與齲病發(fā)生率呈負(fù)相關(guān)。Shu等[36]發(fā)現(xiàn),無齲人群組齦上菌斑中尿素酶活性明顯高于高齲人群組,即可通過菌斑尿素酶活性來評估個(gè)體的齲易患性。
對于精氨酸代謝與齲病發(fā)生的關(guān)系,van Wuyckhuyse等[21]發(fā)現(xiàn),無齲人群腮腺唾液中游離的精氨酸濃度明顯高于有患齲經(jīng)歷人群;Nascimento等[37]對100名2~14歲兒童進(jìn)行了詳細(xì)的口腔檢查后將其分為無齲組、牙釉質(zhì)齲組和牙本質(zhì)齲組,通過其樣本采集及ADS活性分析發(fā)現(xiàn),無齲組齦上菌斑中的ADS活性明顯高于釉質(zhì)齲組和牙本質(zhì)齲組,但是三組唾液樣本中的ADS活性無明顯差異。Reyes等[38]在檢測分析了23名成年人唾液及其齦上菌斑中尿素酶和ADS活性后發(fā)現(xiàn),無齲人群唾液樣本中尿素酶活性為齲活躍人群6.9倍,ADS活性為4.5倍;菌斑樣本中無齲人群尿素酶活性為齲活躍人群49.0倍,ADS活性為7.3倍。
3.2前瞻性研究
Clancy等[39-40]將唾液鏈球菌57.I中的尿素酶基因(ureABCDEFGD)重組于變異鏈球菌UA159中,此重組產(chǎn)尿素酶變異鏈球菌在體外可利用尿素產(chǎn)氨;將重組變異鏈球菌與野生型變異鏈球菌分別接種于無特定病原體(specific pathogen free,SPF)老鼠中時(shí),接種前者的SPF老鼠在給予致齲性食譜后齲病發(fā)生率明顯低于接種后者的SPF老鼠,表明尿素代謝活動可以抑制齲病發(fā)生。Acevedo等[8-9]給予726名11~12歲齲活躍兒童(DMFT為3~6)含質(zhì)量分?jǐn)?shù)2%的精氨酸與碳酸鈣復(fù)合物的牙膏(CaviStat)刷牙后,DMFT(1年期:5.50± 0.24;2年期:6.99±0.28)明顯低于對照組兒童(1年期:8.00±0.24;2年期:7.92±0.30);他們還給予另200名10歲半至11歲的兒童CaviStat牙膏刷牙6個(gè)月,受試組DMFT較對照組下降75.6%,1年后下降50%。以上研究表明,含產(chǎn)堿底物的口腔衛(wèi)生護(hù)理產(chǎn)品具有良好的齲病防治效果。
Srisilapanan等[10]利用定量光誘導(dǎo)熒光技術(shù)檢測前牙光滑面早期齲損發(fā)現(xiàn),使用含質(zhì)量分?jǐn)?shù)1.5%精氨酸及1 450 mg·L-1氟化物牙膏刷牙3個(gè)月和6個(gè)月后,受試者早期齲損面積及熒光缺失量均明顯低于對照組(使用含1 450 mg·L-1氟化物牙膏)。Kraivaphan等[13]將6 000名6~12歲的兒童隨機(jī)分為3組,分別給予含質(zhì)量分?jǐn)?shù)1.5%的精氨酸、1 450 mg·L-1的氟化物和磷酸二鈣牙膏,含質(zhì)量分?jǐn)?shù)1.5%的精氨酸、1 450 mg·L-1的氟化物和碳酸鈣牙膏,含1 450 mg·L-1的氟化物牙膏刷牙,2年后使用前兩種新型牙膏受試者的DMFT和齲失補(bǔ)牙面均低于對照組,使用新型牙膏的兩組受試者間DMFT及齲失補(bǔ)牙面差異不明顯。Cummins[41]認(rèn)為,精氨酸可能與氟化物存在協(xié)同抗齲效應(yīng)。
增強(qiáng)口腔微生態(tài)內(nèi)的產(chǎn)堿代謝,一方面可阻礙產(chǎn)酸耐酸菌在低pH環(huán)境中獲得優(yōu)勢地位,恢復(fù)并維持微生態(tài)平衡;另一方面可直接升高微生態(tài)內(nèi)pH,遏制牙體表面的脫礦,促進(jìn)其再礦化。目前,臨床已將兼?zhèn)鋸?qiáng)競爭力與強(qiáng)產(chǎn)堿能力的益生菌用于齲病的替代治療。大量研究也表明,含精氨酸的口腔衛(wèi)生產(chǎn)品,如CaviStat和同時(shí)含有精氨酸及氟化物的牙膏具有良好的齲病防治效果;然而,關(guān)于產(chǎn)堿代謝與口腔微生物間相互作用的研究仍處于起步階段,需要更多的體內(nèi)外試驗(yàn)進(jìn)行深入的探究。
[1]Kleinberg I. A mixed-bacteria ecological approachto understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis[J]. Crit Rev Oral Biol Med,2002,13(2):108-125.
[2]Takahashi N,Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res,2011,90(3):294-303.
[3]Marsh PD. Microbial ecology of dental plaque and its significance in health and disease[J]. Adv Dent Res,1994,8(2):263-271.
[4]Marsh PD. Are dental diseases examples of ecological catastrophes[J]. Microbiology,2003,149(Pt 2):279-294.
[5]Burne RA,Marquis RE. Alkali production by oral bacteria and protection against dental caries[J]. FEMS Microbiol Lett,2000,193(1):1-6.
[6]Burne RA,Zeng L,Ahn SJ,et al. Progress dissecting the oral microbiome in caries and health[J]. Adv Dent Res,2012,24(2):77-80.
[7]Liu YL,Nascimento M,Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries[J]. Int J Oral Sci,2012,4(3):135-140.
[8]Acevedo AM,Machado C,Rivera LE,et al. The inhibitory effect of an arginine bicarbonate/calcium carbonate CaviStat-containing dentifrice on the development of dental caries in Venezuelan school children[J]. J Clin Dent,2005,16(3):63-70.
[9]Acevedo AM,Montero M,Rojas-Sanchez F,et al. Clinical evaluation of the ability of CaviStat in a mint confection to inhibit the development of dental caries in children[J]. J Clin Dent,2008,19(1):1-8.
[10]Srisilapanan P,Korwanich N,Yin W,et al. Comparison of the efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride to a dentifrice containing 1 450 ppm fluoride alone in the mana-gement of early coronal caries as assessed using quantitative light-induced fluorescence[J]. J Dent,2013,41 (Suppl 2):S29-S34.
[11]Souza ML,Cury JA,Tenuta LM,et al. Comparing the efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride to a dentifrice containing 1 450 ppm fluoride alone in the management of primary root caries[J]. J Dent,2013,41(Suppl 2):S35-S41.
[12]Yin W,Hu DY,F(xiàn)an X,et al. A clinical investigation using quantitative light-induced fluorescence(QLF)of the anticaries efficacy of a dentifrice containing 1.5% arginine and 1 450 ppm fluoride as sodium monofluorophosphate[J]. J Clin Dent,2013,24:A15-A22.
[13]Kraivaphan P,Amornchat C,Triratana T,et al. Twoyear caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine,an insoluble calcium compound and 1,450 ppm fluoride[J]. Caries Res,2013(6):582-590.
[14]Marqui RE,Bende GR,Murra DR,et al. Arginine deiminase system and bacterial adaptation to acid environments[J]. Appl Environ Microbiol,1987,53 (1): 198-200.
[15]Rogers AH. Utilization of nitrogenous compounds by oral bacteria[J]. Aust Dent J,1990,35(5):468-471.
[16]Liu Y,Nascimento MM,Schulte R,et al. Characterization of the arginolytic microflora of human dental biofilms[J]. J Dent Res,2012,91(A):1262.
[17]Liu Y,Yaling L,Hu T,et al. Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis[J]. Microbiol Res,2006,161(4):304-310.
[18]Liy Y,Yaling L,Dan J,et al. Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate[J]. Oral Microbiol Immunol,2008,23(4):315-319.
[19]Morou-Bermudez E,Burne RA. Analysis of urease expression in Actinomyces naeslundii WVU45[J]. Infect Immun,2000,68(12):6670-6676.
[20]Chen YY,Weaver CA,Burne RA. Dual functions of Streptococcus salivarius urease[J]. J Bacteriol,2000,182(16):4667-4669.
[21]van Wuyckhuyse BC,Perinpanayagam HE,Bevacqua D,et al. Association of free arginine and lysine concentrations in human parotid saliva with caries experience[J]. J Dent Res,1995,74(2):686-690.
[22]Liu Y,Dong Y,Chen YY,et al. Arginine deiminase gene regulation in Streptococcus gordonii[J]. J Dent Res,2008,87(B):714.
[23]Chen YY,Weaver CA,Mendelsohn DR,et al. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon[J]. J Bacteriol,1998,180(21):5769-5775.
[24]Sakakibara Y,Yanagisawa H. Agmatine deiminase from cucumber seedlings is a mono-specific enzyme:purification and characteristics[J]. Protein Expr Purif,2003,30(1):88-93.
[25]Griswold AR,Nascimento MM,Burne RA. Distribution,regulation and role of the agmatine deiminase system in mutans streptococci[J]. Oral Microbiol Immunol,2009,24(1):79-82.
[26]Bradshaw DJ,Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro[J]. Caries Res,1998,32(6):456-462.
[27]黃雪蓮. 精氨酸調(diào)節(jié)牙菌斑生物膜微生態(tài)系的研究[D]. 成都: 四川大學(xué),2012. Huang XL. Study of arginine' effect on dental microcosm[D]. Chengdu: Sichuan Univ,2012.
[28]Shu M,Browngardt CM,Chen YY,et al. Role of urease enzymes in stability of a 10-species oral biofilm consortium cultivated in a constant-depth film fermenter[J]. Infect Immun,2003,71(12):7188-7192.
[29]Zheng X,Cheng X,Wang L,et al. Combinatorial effects of arginine and fluoride on oral bacteria[J]. J Dent Res,2015,94(2):344-353.
[30]Nascimento MM,Browngardt C,Xiaohui X,et al. The effect of arginine on oral biofilm communities [J]. Mol Oral Microbiol,2014,29(1):45-54.
[31]王琳,郝玉慶,周學(xué)東,等. 精氨酸牙膏對口腔菌群組成影響的臨床研究[J]. 華西口腔醫(yī)學(xué)雜志,2014,32(增刊):87-91. Wang L,Hao YQ,Zhou XD,et al. Clinical trial on the effects of an arginine-containing toothpaste on the microbial ecology[J]. West Chin J Stomatol,2014,32(Suppl):87-91.
[32]許鵬程,鄧盟,周學(xué)東,等. 精氨酸牙膏對釉質(zhì)早期齲再礦化作用的研究[J]. 華西口腔醫(yī)學(xué)雜志,2014,32(1):32-35. Xu PC,Deng M,Zhou XD,et al. Effect of arginine dentifrice on remineralization of initial enamel carious lesions[J]. West Chin J Stomatol,2014,32(1):32-35.
[33]王琳,劉敏,郝玉慶,等. 格氏鏈球菌自溶酶AtlS的研究進(jìn)展[J]. 國際口腔醫(yī)學(xué)雜志,2013,40(5):667-669. Wang L,Liu M,Hao YQ,et al. Research progress on Streptococcus gordonii AtlS autolysis[J]. Int J Stomatol,2013,40(5):667-669.
[34]Nascimento M,Liu Y,Kalra R,et al. Arginine metabolism may confer caries resistance in children[J]. J Dent Res,2012,91(A):714.
[35]Peterson S,Woodhead J,Crall J. Caries resistance in children with chronic renal failure: plaque pH,salivary pH,and salivary composition[J]. Pediatr Res,1985,19(8):796-799.
[36]Shu M,Morou-Bermudez E,Suárez-Pérez E,et al. The relationship between dental caries status and dental plaque urease activity[J]. Oral Microbiol Immunol,2007,22(1):61-66.
[37]Nascimento MM,Liu Y,Kalra R,et al. Oral arginine metabolism may decrease the risk for dental caries in children[J]. J Dent Res,2013,92(7):604-608.
[38]Reyes E,Martin J,Moncada G,et al. Caries-free subjects have high levels of urease and arginine deiminase activity[J]. J Appl Oral Sci,2014,22(3):235-240.
[39]Clancy A,Burne RA. Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity[J]. FEMS Microbiol Lett,1997,151(2):205-211.
[40]Clancy KA,Pearson S,Bowen WH,et al. Characterization of recombinant,ureolytic Streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity[J]. Infect Immun,2000,68(5):2621-2629.
[41]Cummins D. The development and validation of a new technology,based upon 1.5% arginine,an insoluble calcium compound and fluoride,for everyday use in the prevention and treatment of dental caries [J]. J Dent,2013,41(Suppl 2):S1-S11.
(本文采編王晴)
Relationship of alkali production by plaque biofilm and dental caries
Zhou Shuangshuang,Zheng Xin,Zhou Xuedong,Xu Xin.(State Key Laboratory of Oral Diseases,Dept. of Conservative Dentistry and Endodontics,West China Hospital of Stomatology,Sichuan University,Chengdu 610041,China)
R 780.2
A
10.7518/gjkq.2016.05.018
2015-12-15;[修回日期]2016-02-01
“十二五”國家科技支撐計(jì)劃(2012BAI07B03);國家自然科學(xué)基金(81170959,81200782);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20120181120002)
周雙雙,碩士,Email:1101032104@qq.com
徐欣,副教授,博士,Email:nixux1982@hotmail.com