• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    牛頓-萊布尼茲公式與泰勒公式的拓展與應(yīng)用

    2016-01-28 03:02:16韓茂安
    大學(xué)數(shù)學(xué) 2015年5期
    關(guān)鍵詞:泰勒公式牛頓

    韓茂安

    (上海師范大學(xué)數(shù)學(xué)研究所,上海200234)

    ?

    牛頓-萊布尼茲公式與泰勒公式的拓展與應(yīng)用

    韓茂安

    (上海師范大學(xué)數(shù)學(xué)研究所,上海200234)

    [摘要]探討牛頓—萊布尼茲公式和泰勒公式對含參數(shù)函數(shù)的拓展形式,并用來研究含參數(shù)函數(shù)的零點的個數(shù)和微分方程周期解的個數(shù)的判定問題.

    [關(guān)鍵詞]牛頓—萊布尼茲公式; 泰勒公式; 周期解

    1基本定理

    眾所周知,牛頓-萊布尼茲公式是說,如果F∶[a,b]→R具有連續(xù)導(dǎo)數(shù),則成立

    這一公式被譽為微積分學(xué)基本定理[1].如果設(shè)x=a+t(b-a),則上式成為

    (1.1)

    現(xiàn)在我們對高階可微函數(shù)應(yīng)用(1.1).設(shè)U為x=0的一鄰域,一元函數(shù)F在U上有直到r階的連續(xù)導(dǎo)數(shù),r≥1,記為F∈Cr(U).利用公式(1.1),可將函數(shù)F寫為

    F(x)=F(0)+xF0(x),

    (1.2)

    其中

    引理1.1設(shè)U為x=0的鄰域,F(xiàn)∈Cr(U),r≥1,則(1.2)成立,其中

    F0∈Cr-1(U),F0(0)=F′(0).

    現(xiàn)設(shè)m為一自然數(shù),m≥0,并設(shè)F∈Cm+1(U),則由帶積分形式余項的泰勒公式可知

    其中

    (1.3)

    于是,證明了下述引理.

    引理1.2設(shè)U為x=0的鄰域,F(xiàn)∈Cm+1(U),m≥0,則有

    現(xiàn)在,把上述兩個引理的結(jié)論拓展到多元函數(shù).設(shè)有多元函數(shù)F(x,y),x∈U,y∈D,U為x=0的鄰域,D?n,n≥1.如果F∈Cr(U×D),則F對應(yīng)用引理1.1可得

    F(x,y)=F(0,y)+xF0(x,y),

    (1.4)

    其中

    與引理1.1類似,利用含參量積分的可微性知F0∈Cr-1(U×D).事實上,這里需要先建立含向量參數(shù)的積分之可微性定理,然后再多次利用這一定理得到這一結(jié)論.于是,證得下述定理.

    定理1.1設(shè)F∈Cr(U×D),其中U為x=0的鄰域,D?n,n≥1,則(1.4)成立,其中

    同理,利用引理1.2以及含參量積分的連續(xù)性定理知成立下述定理.

    定理1.2設(shè)F∈Cm+1(U×D),U為x=0的鄰域,D?n,n≥1,m≥0,則有

    2含參數(shù)函數(shù)根的個數(shù)

    定理2.1設(shè)存在自然數(shù)m≥0,使F∈Cm+1(U×D),那么成立

    (i) 如果

    則存在ε0∈(0,ε),使當(dāng)|λ-λ0|<ε0時,F(xiàn)關(guān)于x在區(qū)間(-ε0,ε0)上至多有m+1個根.

    (ii) 如果進一步設(shè)

    其中

    則對任意δ∈(0,ε0),都存在λ滿足|λ-λ0|<ε0,使函數(shù)F(x,λ)關(guān)于x在區(qū)間(-δ,δ)內(nèi)出現(xiàn)m+1個根,且均為單根. 此外,這m+1個根可以全部是正根.

    證在研究平面系統(tǒng)Hopf分支中極限環(huán)的個數(shù)問題時需要用到上述兩個結(jié)論(卻并沒有將它們專門寫成定理的形式),見[3,4]. 但以往都是對C∞函數(shù)來論述的(因為所討論的平面系統(tǒng)都假定是C∞光滑的),上述結(jié)論則不要求C∞光滑,這一點與以往不同.而對C∞光滑的情況,結(jié)論(i)可用反證法和羅爾定理來證,對結(jié)論(ii),先用一次隱函數(shù)定理,然后有兩種證法,一是逐次改變系數(shù)的符號使函數(shù)值不斷變號,每變號一次就出現(xiàn)一個根,二是引入合適的參變量尺度變換,而后利用多項式和連續(xù)函數(shù)的性質(zhì),一下子獲得m+1個根. 這里我們提供一種新的證法,即用數(shù)學(xué)歸納法來證明.

    再證結(jié)論(ii).利用定理1.2可知成立

    (2.1)

    由隱函數(shù)定理知道,結(jié)論(ii)中的條件意味著式(2.1)中的系數(shù)aj可取為自由參數(shù). 因此,現(xiàn)設(shè)這m+1個系數(shù)均為自由參數(shù),并用歸納法來完成證明. 當(dāng)m=0時,式(2.1)成為

    不妨設(shè)它為正.則存在x0>0,使當(dāng)a0=0時F(x0,λ)>0,當(dāng)|x|≤|x0|時

    從而當(dāng)0<-a0?1時

    F(x0,λ)>0,F(0,λ)=a0<0.

    即F有一個正的單根.

    設(shè)已證結(jié)論對m=k-1成立,現(xiàn)設(shè)m=k,此時由(2.1)知

    作為一個簡單應(yīng)用,由上述定理可知,C3函數(shù)

    F(x,λ)=λ1+λ2x+λ3cosx+sinx+x10/3,

    對λ0=(0,-1,0)附近的某些λ=(λ1,λ2,λ3)恰有3個正根.

    3一維周期系統(tǒng)周期解的分支

    本節(jié)利用定理1.1與定理2.1討論一維周期系統(tǒng)周期解的個數(shù)和分支. 首先引入幾個基本概念(詳見[4]). 考慮一維微分系統(tǒng)

    (3.1)

    引理3.1設(shè)存在1≤k≤r使當(dāng)|x|充分小時T周期系統(tǒng)(3.1)中的f滿足

    從而零解x=0為(3.1)的k重周期解.

    證由于解x(t,x0)關(guān)于初值x0是Cr,故對充分小的|x0|,它可寫成

    其中x1(0)=1,xj(0)=0,j≥1. 將上式代入(3.1)中,利用所設(shè)條件,易求得

    由此即知結(jié)論成立.

    下面給出方程(3.1)存在周期解族的條件.

    引理 3.2如果T周期系統(tǒng)(3.1)中的f滿足

    f(-t,x)=-f(t,x),

    (3.2)

    則其任一有界解都是周期解. 特別,如果(3.2)成立,且存在正數(shù)M>0使對一切(t,x)都有

    |f(t,x)|≤M(1+|x|),

    (3.3)

    則(3.1)的一切解都是周期解.

    x(T/2,x0)=x(-T/2,x0).

    由解的唯一性又知x(t+T,x0)=x(t,x(T,x0)),因此又有

    x(T/2,x0)=x(-T/2,x(T,x0)),

    從而成立

    x(-T/2,x0)=x(-T/2,x(T,x0)),

    于是必有x0=x(T,x0)=P(x0) (因為對任意t,x(t,x0)關(guān)于x0都是嚴格增加的,例見[4].)從而,這個解是周期的. 引理的后半部分利用常微分方程比較定理即得,因為任一周期線性方程的解都是有界的.

    現(xiàn)考慮系統(tǒng)(3.1)的T周期擾動系統(tǒng)

    (3.4)

    其中f與f1關(guān)于t都是T周期的,都是Cr函數(shù),且f1(t,x,0)=0. 系統(tǒng)(3.4)的Poincaré映射記為P(x0,λ),令

    F(x0,λ)=P(x0,λ)-x0,

    稱函數(shù)F為(3.3)的后繼函數(shù)或分支函數(shù). 顯然,分支函數(shù)關(guān)于x0的根與(3.4)的周期解是一一對應(yīng)的,此外,由微分方程解對初值與參數(shù)的光滑性定理知,映射P與函數(shù)F都是Cr的.可證

    定理3.1設(shè)存在1≤k≤r使得x=0是(3.1)的k重周期解,則存在ε>0,使得對一切|λ|<ε方程(3.4)在區(qū)域|x|<ε至多有k個周期解.

    證由假設(shè)知

    由此,利用定理2.1的結(jié)論(i)即得證明.

    在具體應(yīng)用中,可以利用定理2.1的結(jié)論(ii)證明,Ck系統(tǒng)的k重周期解在適當(dāng)?shù)腃k擾動下能夠產(chǎn)生k個周期解,這里不再給出.

    值得注意的是,定理3.1對系統(tǒng)的光滑性的要求已經(jīng)降到最低. 為說明這一點,取k=r=1,利用隱函數(shù)定理易見,C1系統(tǒng)的單重周期解在C1擾動下只產(chǎn)生一個周期解.然而,如果擾動不是C1的,這一結(jié)論就不成立了. 例如

    在x=0的任意小鄰域內(nèi)都可以出現(xiàn)3個周期解.

    下面考慮周期解族的擾動.考慮T周期擾動系統(tǒng)

    (3.5)

    其中f與f1關(guān)于t都是T周期的,都是Cr函數(shù),且f滿足(3.2)與(3.3).系統(tǒng)(3.5)的Poincaré映射記為P(x0,ε,λ),后繼函數(shù)為

    F(x0,ε,λ)=P(x0,ε,λ)-x0.

    由引理3.2知,F(x0,0,λ)=0,由微分方程解對初值與參數(shù)的光滑依賴性定理知函數(shù)F關(guān)于(x0,ε,λ)為Cr的,故由定理1.1知

    定理3.2設(shè)Cr方程(3.5)滿足(3.2)與(3.3),r≥1,則

    上述定理之結(jié)論好像是很顯然的,但如果不利用定理1.1就難以給出其成立的理由.對平面系統(tǒng)閉軌族的擾動分支,可給出類似的結(jié)果,此地不再詳論.

    我們來考慮一類較具體的方程,即

    (3.6)

    其中aj(t)為Ck+1類2π周期函數(shù),j=0,1,…,k,f0(t,x)為關(guān)于t為2π周期的Ck+1類函數(shù). 記b=(b0,…,bk-1),設(shè)x(t,x0,ε,b)為(3.6)的以x0為初值的解,則易知

    x(t,x0,ε,b)=1-cost+x0+εx1(t,x0,b)+O(ε2),

    其中

    經(jīng)整理,易知成立

    其中

    ……

    φk-1=bk-1ak-1(t)+kbkak(t)[1-cost],

    φk=bkak(t).

    現(xiàn)在假設(shè)

    (3.7)

    則有λk≠0,以及

    則由上述討論,利用定理3.2和定理2.1可知在條件(3.7)下,存在向量b∈Rk使當(dāng)ε充分小時方程(3.6)恰有k個2π周期解.

    [參考文獻]

    [1]華東師范大學(xué)數(shù)學(xué)系. 數(shù)學(xué)分析(上冊)[M]. 4版.北京: 高等教育出版社,2010.

    [2]華東師范大學(xué)數(shù)學(xué)系. 數(shù)學(xué)分析(下冊)[M]. 4版.北京: 高等教育出版社,2010.

    [3]Han M. Bifurcation Theory of Limit Cycles [M]. Beijing: Science Press,2013.

    [4]趙愛民,李美麗,韓茂安. 微分方程基本理論[M].北京:科學(xué)出版社,2013.

    Extensions and Applications of

    Newton-Leibniz’s figure and Taylor’s figure

    HANMao-an

    (The Institute of Mathematics, Shanghai Normal University, Shanghai 200234, China)

    Abstract:We provide some extensions of Newton-Leibniz’s figure and Taylor’s figure to smooth functions with multiple variables. Then we present some interesting applications of these extensions to bifurcations of periodic solutions of differential equations.

    Key words:Newton-Leibniz’s figure; Taylor’s figure; periodic solution

    [中圖分類號]O172

    [文獻標(biāo)識碼]A

    [文章編號]1672-1454(2015)05-0006-06

    [收稿日期]2015-06-19

    猜你喜歡
    泰勒公式牛頓
    牛頓的實驗室
    解讀牛頓第一定律
    牛頓忘食
    風(fēng)中的牛頓
    型極限的求解方法
    東方教育(2016年8期)2017-01-17 20:15:18
    泰勒公式在高等數(shù)學(xué)解題中的應(yīng)用分析
    泰勒公式與泰勒級數(shù)的比較教學(xué)
    泰勒公式中各種余項的討論
    從泰勒公式在極限計算中的應(yīng)用談數(shù)學(xué)思維
    失信的牛頓
    欧美bdsm另类| 91午夜精品亚洲一区二区三区| 国产熟女欧美一区二区| 男女边摸边吃奶| 久久久久久伊人网av| 综合色av麻豆| 男人和女人高潮做爰伦理| 18禁动态无遮挡网站| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 亚洲美女视频黄频| 一级二级三级毛片免费看| 麻豆成人午夜福利视频| 久久久a久久爽久久v久久| 国产精品一区二区三区四区免费观看| 欧美日韩视频精品一区| 欧美性猛交╳xxx乱大交人| 丝袜脚勾引网站| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看 | 女的被弄到高潮叫床怎么办| 久久久久久久国产电影| 青春草国产在线视频| 美女cb高潮喷水在线观看| 国产在视频线精品| 99久国产av精品国产电影| 狂野欧美激情性bbbbbb| 免费看av在线观看网站| 蜜桃久久精品国产亚洲av| 国产综合懂色| 国产淫语在线视频| 亚洲性久久影院| 网址你懂的国产日韩在线| 成人亚洲精品一区在线观看 | 三级国产精品片| 免费人成在线观看视频色| 国产有黄有色有爽视频| 色吧在线观看| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 色综合色国产| 亚洲av成人精品一二三区| 久久精品久久精品一区二区三区| 日本黄色片子视频| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久人妻蜜臀av| 制服丝袜香蕉在线| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 欧美极品一区二区三区四区| 成人免费观看视频高清| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 国产精品一二三区在线看| 亚洲av中文字字幕乱码综合| 亚洲一区二区三区欧美精品 | 麻豆成人av视频| 22中文网久久字幕| 亚洲精品国产色婷婷电影| 人妻少妇偷人精品九色| 久久久欧美国产精品| 免费av不卡在线播放| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 狂野欧美激情性bbbbbb| 国产精品国产av在线观看| 亚洲电影在线观看av| 欧美三级亚洲精品| 精品人妻一区二区三区麻豆| 日本三级黄在线观看| av在线老鸭窝| 国产精品一区二区三区四区免费观看| 亚洲一区二区三区欧美精品 | 一级毛片我不卡| 下体分泌物呈黄色| 亚洲图色成人| 97超碰精品成人国产| 三级男女做爰猛烈吃奶摸视频| 中文字幕av成人在线电影| 日韩不卡一区二区三区视频在线| 男女国产视频网站| 一个人观看的视频www高清免费观看| 欧美另类一区| 亚洲色图综合在线观看| 18禁裸乳无遮挡免费网站照片| 少妇人妻精品综合一区二区| 别揉我奶头 嗯啊视频| 秋霞伦理黄片| 国产欧美亚洲国产| 亚洲第一区二区三区不卡| 婷婷色麻豆天堂久久| 国产 一区精品| 亚洲av男天堂| 激情 狠狠 欧美| 亚洲综合精品二区| 免费看av在线观看网站| av福利片在线观看| 一边亲一边摸免费视频| 乱系列少妇在线播放| 少妇的逼水好多| 神马国产精品三级电影在线观看| 啦啦啦中文免费视频观看日本| 又爽又黄无遮挡网站| 搞女人的毛片| 久久久久久久久久久免费av| 日本色播在线视频| 性色avwww在线观看| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| av一本久久久久| 国产乱来视频区| 欧美人与善性xxx| 国产精品成人在线| 在线观看免费高清a一片| av在线app专区| 夜夜看夜夜爽夜夜摸| 大码成人一级视频| 天堂俺去俺来也www色官网| 搞女人的毛片| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 欧美日本视频| 一区二区av电影网| 男人和女人高潮做爰伦理| 亚洲人成网站高清观看| 国产极品天堂在线| 97热精品久久久久久| 日本一本二区三区精品| 亚洲精品乱码久久久久久按摩| 嫩草影院精品99| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 亚洲综合精品二区| 国产伦理片在线播放av一区| 久久99热这里只有精品18| 婷婷色综合www| 成人欧美大片| 看非洲黑人一级黄片| 欧美成人一区二区免费高清观看| 国产探花在线观看一区二区| 天天躁夜夜躁狠狠久久av| 一级毛片 在线播放| 一边亲一边摸免费视频| 亚洲成人av在线免费| 日本-黄色视频高清免费观看| 男女啪啪激烈高潮av片| 视频区图区小说| 国产高清国产精品国产三级 | 高清日韩中文字幕在线| 69人妻影院| 国产精品国产三级国产专区5o| 日韩一区二区视频免费看| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 亚洲欧美中文字幕日韩二区| 免费少妇av软件| av天堂中文字幕网| 五月伊人婷婷丁香| 成人漫画全彩无遮挡| 欧美丝袜亚洲另类| 成人免费观看视频高清| 有码 亚洲区| 成人二区视频| 麻豆久久精品国产亚洲av| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 你懂的网址亚洲精品在线观看| 亚洲内射少妇av| 欧美丝袜亚洲另类| 国产免费福利视频在线观看| 一级二级三级毛片免费看| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 男插女下体视频免费在线播放| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 久久精品国产亚洲网站| 国产男女超爽视频在线观看| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 成人鲁丝片一二三区免费| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 国产一区二区亚洲精品在线观看| 日韩 亚洲 欧美在线| 伊人久久精品亚洲午夜| 亚州av有码| 午夜激情福利司机影院| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 新久久久久国产一级毛片| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 亚洲av成人精品一二三区| 午夜爱爱视频在线播放| 大陆偷拍与自拍| 成人特级av手机在线观看| 99久久人妻综合| 国产爱豆传媒在线观看| 成人无遮挡网站| 少妇的逼水好多| 亚洲怡红院男人天堂| 国产精品一区www在线观看| www.av在线官网国产| 2018国产大陆天天弄谢| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 观看美女的网站| 久久久a久久爽久久v久久| 亚洲欧美精品专区久久| 亚洲欧美清纯卡通| 网址你懂的国产日韩在线| 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 精品久久久噜噜| 纵有疾风起免费观看全集完整版| 亚洲av中文av极速乱| 大陆偷拍与自拍| 一级片'在线观看视频| 人妻系列 视频| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 人妻系列 视频| a级一级毛片免费在线观看| 夜夜爽夜夜爽视频| h日本视频在线播放| 国产黄a三级三级三级人| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 色哟哟·www| 国产一级毛片在线| 免费av不卡在线播放| 亚洲精品乱久久久久久| 简卡轻食公司| 赤兔流量卡办理| 人体艺术视频欧美日本| 日日撸夜夜添| 春色校园在线视频观看| 国产亚洲av片在线观看秒播厂| 精品久久久久久久人妻蜜臀av| 免费av不卡在线播放| 在线观看三级黄色| 最近2019中文字幕mv第一页| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 精品一区二区免费观看| 国产亚洲精品久久久com| 国产淫语在线视频| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 超碰97精品在线观看| 人妻制服诱惑在线中文字幕| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 国产乱人偷精品视频| 身体一侧抽搐| a级毛片免费高清观看在线播放| a级毛色黄片| 99re6热这里在线精品视频| 日韩伦理黄色片| 日韩欧美精品免费久久| 男女那种视频在线观看| 午夜福利网站1000一区二区三区| 成人特级av手机在线观看| 欧美3d第一页| 岛国毛片在线播放| 久久99热这里只有精品18| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 国产精品偷伦视频观看了| 深爱激情五月婷婷| 女的被弄到高潮叫床怎么办| 黄色日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美+日韩+精品| 国内揄拍国产精品人妻在线| 性色avwww在线观看| a级一级毛片免费在线观看| 久久久午夜欧美精品| 在线观看美女被高潮喷水网站| 久久97久久精品| 精品久久久久久久末码| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 精品国产三级普通话版| 精品久久久精品久久久| 国产探花在线观看一区二区| 国产极品天堂在线| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 国产高清国产精品国产三级 | 久久精品夜色国产| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 97精品久久久久久久久久精品| 在线精品无人区一区二区三 | 午夜激情久久久久久久| a级毛色黄片| 夫妻性生交免费视频一级片| 午夜福利在线观看免费完整高清在| 黄片无遮挡物在线观看| 欧美日韩视频高清一区二区三区二| 成年av动漫网址| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 国产真实伦视频高清在线观看| 日韩免费高清中文字幕av| 伦精品一区二区三区| 哪个播放器可以免费观看大片| 国产黄片视频在线免费观看| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 2018国产大陆天天弄谢| 高清欧美精品videossex| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲精品,欧美精品| 97热精品久久久久久| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 亚洲最大成人手机在线| 欧美日本视频| 深爱激情五月婷婷| 搞女人的毛片| 国产黄片视频在线免费观看| 免费大片黄手机在线观看| 18禁在线播放成人免费| 日韩成人伦理影院| 青青草视频在线视频观看| 少妇的逼水好多| 麻豆国产97在线/欧美| av在线老鸭窝| 国产精品人妻久久久影院| 涩涩av久久男人的天堂| 亚州av有码| 别揉我奶头 嗯啊视频| 日韩人妻高清精品专区| 大片电影免费在线观看免费| 高清日韩中文字幕在线| 国产精品久久久久久精品古装| 国产免费福利视频在线观看| 天美传媒精品一区二区| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 久久久久久久国产电影| 免费高清在线观看视频在线观看| 亚洲va在线va天堂va国产| 十八禁网站网址无遮挡 | 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频 | 久久亚洲国产成人精品v| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 99热这里只有是精品50| 欧美bdsm另类| 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 三级国产精品欧美在线观看| 午夜亚洲福利在线播放| 一级爰片在线观看| 欧美日韩在线观看h| 日韩亚洲欧美综合| 国产毛片a区久久久久| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 亚洲国产欧美人成| 久久精品国产a三级三级三级| 亚洲精品乱码久久久久久按摩| 亚洲精品影视一区二区三区av| 在线播放无遮挡| 久久久国产一区二区| 欧美97在线视频| 九色成人免费人妻av| 成年女人在线观看亚洲视频 | 久久精品国产亚洲av涩爱| 久久久久久久精品精品| 一个人看的www免费观看视频| 美女内射精品一级片tv| 插逼视频在线观看| 国产在视频线精品| 交换朋友夫妻互换小说| 三级国产精品片| 亚洲欧美精品专区久久| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲伊人久久精品综合| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 国产视频首页在线观看| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 国产亚洲av嫩草精品影院| 中国美白少妇内射xxxbb| 大片电影免费在线观看免费| 国产大屁股一区二区在线视频| 欧美bdsm另类| 秋霞在线观看毛片| av福利片在线观看| 国产亚洲最大av| 高清毛片免费看| 国产精品偷伦视频观看了| 亚洲国产色片| 国产老妇女一区| 久久精品久久精品一区二区三区| 国产精品国产av在线观看| 中文精品一卡2卡3卡4更新| av在线app专区| 久久精品久久久久久噜噜老黄| 97精品久久久久久久久久精品| 午夜福利在线观看免费完整高清在| 国产av国产精品国产| 国产精品一二三区在线看| 男女那种视频在线观看| 哪个播放器可以免费观看大片| 午夜免费鲁丝| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 青春草亚洲视频在线观看| av在线天堂中文字幕| 欧美日韩国产mv在线观看视频 | 欧美97在线视频| 亚洲美女视频黄频| 极品教师在线视频| 欧美日韩精品成人综合77777| 六月丁香七月| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 18+在线观看网站| 亚洲色图av天堂| 日韩三级伦理在线观看| 日本黄色片子视频| 男人舔奶头视频| 国产中年淑女户外野战色| 日韩人妻高清精品专区| 日本欧美国产在线视频| 久久久久久久久久久免费av| 国产综合精华液| 国产日韩欧美亚洲二区| av播播在线观看一区| 国产乱来视频区| 亚洲欧美精品专区久久| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| tube8黄色片| 最新中文字幕久久久久| 好男人在线观看高清免费视频| 成人欧美大片| 国产永久视频网站| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 欧美激情国产日韩精品一区| 中国国产av一级| 麻豆成人av视频| 一区二区三区四区激情视频| 99久久九九国产精品国产免费| 99热国产这里只有精品6| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 99久久中文字幕三级久久日本| av在线老鸭窝| 国产一区亚洲一区在线观看| 一级av片app| 亚洲成人精品中文字幕电影| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 在现免费观看毛片| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 国产精品一区www在线观看| 神马国产精品三级电影在线观看| 欧美丝袜亚洲另类| 男女边摸边吃奶| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 国产精品国产三级国产专区5o| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看| 免费看a级黄色片| 中文字幕制服av| 视频区图区小说| 内地一区二区视频在线| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 亚洲伊人久久精品综合| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 亚洲av中文av极速乱| 亚洲最大成人手机在线| 岛国毛片在线播放| 久久人人爽人人爽人人片va| 男人添女人高潮全过程视频| 色哟哟·www| 成人亚洲精品av一区二区| 自拍偷自拍亚洲精品老妇| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版| 亚洲人与动物交配视频| 亚洲av二区三区四区| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 一级爰片在线观看| 黑人高潮一二区| 免费少妇av软件| 国产成人福利小说| 中文资源天堂在线| 免费大片18禁| 黄色配什么色好看| 超碰av人人做人人爽久久| 免费看光身美女| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 国产成人精品婷婷| 亚洲人成网站高清观看| 国产精品一及| 观看免费一级毛片| 丰满人妻一区二区三区视频av| 久久久a久久爽久久v久久| xxx大片免费视频| 秋霞伦理黄片| 久久久精品欧美日韩精品| 亚洲性久久影院| 69av精品久久久久久| 大陆偷拍与自拍| 色婷婷久久久亚洲欧美| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 亚洲精品久久久久久婷婷小说| 性色av一级| 3wmmmm亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产av玫瑰| 精品一区二区三卡| 综合色av麻豆| 精品少妇黑人巨大在线播放| 免费观看无遮挡的男女| 精品国产一区二区三区久久久樱花 | 国产一级毛片在线| 国产男人的电影天堂91| 天天一区二区日本电影三级| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久噜噜老黄| 波多野结衣巨乳人妻| 亚洲国产最新在线播放| 91aial.com中文字幕在线观看| 中文字幕久久专区| 免费观看无遮挡的男女| 亚洲av中文av极速乱| 丝袜喷水一区| 久久97久久精品| 男女啪啪激烈高潮av片| 国产大屁股一区二区在线视频| 天美传媒精品一区二区| 国产高潮美女av| 亚洲人成网站在线播| 久久久精品欧美日韩精品| 天堂中文最新版在线下载 | 日韩av在线免费看完整版不卡| av黄色大香蕉| 日韩成人av中文字幕在线观看| 午夜福利网站1000一区二区三区| 久久精品国产亚洲av天美| 国产精品女同一区二区软件| 亚洲欧美一区二区三区黑人 | 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看| 伦理电影大哥的女人| 一级黄片播放器| 大码成人一级视频| 成年版毛片免费区| 国产中年淑女户外野战色| 黑人高潮一二区| 网址你懂的国产日韩在线| 国产精品一二三区在线看| 一边亲一边摸免费视频| 欧美日韩综合久久久久久| 国产精品久久久久久久久免|