陳建國(guó),田 浩,孟付良,沈培林,向自偉,4,周大鵬
1.浙江杭摩合成材料有限公司, 浙江 湖州 313310;
2.浙江嘉民塑膠有限公司, 浙江 嘉興 314027;
3.嘉興學(xué)院生物與化工學(xué)院, 浙江 嘉興 314021;
4.浙江大學(xué)聚合反應(yīng)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310027
酚醛樹(shù)脂綠色化合成研究進(jìn)展
陳建國(guó)1,2,田 浩1,孟付良1,沈培林2,向自偉1,2,4,周大鵬3
1.浙江杭摩合成材料有限公司, 浙江 湖州 313310;
2.浙江嘉民塑膠有限公司, 浙江 嘉興 314027;
3.嘉興學(xué)院生物與化工學(xué)院, 浙江 嘉興 314021;
4.浙江大學(xué)聚合反應(yīng)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310027
利用生物質(zhì)資源合成或改性傳統(tǒng)酚醛樹(shù)脂制備高性能樹(shù)脂已成為酚醛樹(shù)脂行業(yè)的研究熱點(diǎn)之一。首先介紹了原料可再生型酚醛樹(shù)脂的種類,分析了生物質(zhì)提取物(例如植物油、木質(zhì)素、淀粉或單寧等)的結(jié)構(gòu)及其改性原理,進(jìn)而分別論述了以上述提取物為原料制備改性樹(shù)脂方面的研究進(jìn)展,同時(shí)還分析和介紹了酶促聚合合成聚酚樹(shù)脂的現(xiàn)狀,而酶促合成聚酚樹(shù)脂作為一種新興的聚合方法,為傳統(tǒng)酚醛樹(shù)脂的制備開(kāi)辟了一條全新的、環(huán)境友好的途徑。
酚醛樹(shù)脂 生物質(zhì) 生物酶 環(huán)??稍偕?/p>
酚醛樹(shù)脂(phenolic resin,簡(jiǎn)稱PF)作為應(yīng)用最廣泛、發(fā)展歷史最悠久的三大熱固性樹(shù)脂之一,一般由酚類化合物與醛類化合物在酸或堿的催化下縮聚而成[1,2]。但隨著科技進(jìn)步,傳統(tǒng)酚醛樹(shù)脂及其生產(chǎn)工藝已無(wú)法滿足高新技術(shù)領(lǐng)域的需求,尤其是對(duì)生產(chǎn)酚醛樹(shù)脂工藝中環(huán)保和可再生性能的要求[3]。因此,需要尋找能替代苯酚、甲醛或者傳統(tǒng)催化劑的環(huán)保且可再生的原料,以實(shí)現(xiàn)酚醛樹(shù)脂的綠色化合成[4,5]。生物質(zhì)中含有大量的酚或醛結(jié)構(gòu)單元,利用生物質(zhì)資源合成或改性酚醛樹(shù)脂能夠從本質(zhì)上解決樹(shù)脂的環(huán)保及再生性問(wèn)題,因此,生物質(zhì)改性已成為酚醛樹(shù)脂行業(yè)的研究熱點(diǎn)之一[6,7]。與此同時(shí),由于酶催化合成的聚合物一般都可生物降解,這也為當(dāng)前日益嚴(yán)重的環(huán)境問(wèn)題(如白色污染等)提供了一種較好的解決方法,因此,以生物酶為催化劑催化聚合制備新型高性能樹(shù)脂及其替代品也逐漸受到化學(xué)工作者們的重視[8]。本工作綜述了近幾年來(lái)由典型生物質(zhì)提取物(如植物油、木質(zhì)素、糖類和單寧)及生物酶制備和改性酚醛樹(shù)脂的研究進(jìn)展。
1.1 植物油
1.1.1 桐 油
桐油是油桐種子經(jīng)機(jī)械壓榨提煉而成的可再生工業(yè)用植物油,其中桐油酸三甘油酯(即十八碳共軛三烯-9,11,13-酸甘油酯)占桐油質(zhì)量的80%~85%,結(jié)構(gòu)見(jiàn)圖1。在酸性條件下,3個(gè)共軛雙鍵可與苯酚發(fā)生烷基化反應(yīng),在酚醛樹(shù)脂分子鏈上引入柔性烷基鏈,從而克服樹(shù)脂脆性大及韌性差等缺陷。
圖1 桐油酸三甘油酯結(jié)構(gòu)Fig.1 The structure of glycerin tung oil acid ester
1980年,日本住友化學(xué)[9]以間異丙基苯酚與桐油反應(yīng)生成中間體為初始原料,在酸性條件下與甲醛縮聚生成桐油改性酚醛樹(shù)脂,實(shí)驗(yàn)發(fā)現(xiàn)該樹(shù)脂具有優(yōu)良的彈性及耐熱性。隨后,Yoshimura[10-12]研究了桐油與烷基苯酚的聚合機(jī)理,結(jié)果表明,烷基苯酚與桐油的共軛雙鍵發(fā)生烷基化反應(yīng),單甲基苯酚反應(yīng)活性從大到小依次為:2-甲基苯酚,3-甲基苯酚和4-甲基苯酚。邵美秀等[13]將苯酚與桐油在酸性條件下進(jìn)行反應(yīng),然后在堿性條件下與甲醛反應(yīng)制桐油改性樹(shù)脂,該樹(shù)脂的剪切及沖擊強(qiáng)度較未改性樹(shù)脂大,但硬度適中。通過(guò)在桐油分子中引入一些耐熱性基團(tuán),桐油改性樹(shù)脂的性能(如耐熱性)能夠得到進(jìn)一步改善[14]。商士斌等[15,16]以桐油、馬來(lái)酸酐、雙馬來(lái)酰亞胺及酚醛樹(shù)脂為基本原料,制備得到耐熱性較好的桐油酸酐酰亞胺雙改性酚醛樹(shù)脂,該樹(shù)脂的耐熱指數(shù)可達(dá)165.8 ℃。李屹等[17,18]發(fā)現(xiàn)將硼引入桐油改性酚醛樹(shù)脂后的雙改性樹(shù)脂的耐熱性及柔韌性均得到顯著的提高。
1.1.2 亞麻油
亞麻油具有與桐油相類似的結(jié)構(gòu),其主要成分為亞麻酸和甘油酯,因此也可作為酚醛樹(shù)脂的改性劑[19],其結(jié)構(gòu)見(jiàn)圖2。
圖2 亞麻酸結(jié)構(gòu)Fig.2 The structure of linoleic acid
Lubisch等[20]采用兩步法成功地制備出亞麻油改性酚醛樹(shù)脂。Bijwe等[21]詳細(xì)地研究了直鏈、烷基苯、腰果殼液、丁腈橡膠和亞麻油改性酚醛樹(shù)脂,發(fā)現(xiàn)亞麻油改性酚醛樹(shù)脂表現(xiàn)出與直鏈改性酚醛樹(shù)脂相反的性能,具有非常突出的耐磨性及較差的熱穩(wěn)定性和強(qiáng)度。近些年來(lái),袁新華等[22,23]首先將亞麻油與苯酚在酸性條件下反應(yīng)制成亞麻油-苯酚反應(yīng)物,然后與甲醛在氨水催化下成功地制備出亞麻油改性酚醛樹(shù)脂。熱分析結(jié)果表明,改性后酚醛樹(shù)脂的耐熱性和熱穩(wěn)定性能均得到很大提高。這可能是由于亞麻油參與反應(yīng)并充分成為聚合物結(jié)構(gòu)的一部分,從而使改性后酚醛樹(shù)脂固化后呈現(xiàn)出互穿聚合物網(wǎng)絡(luò)結(jié)構(gòu)。?ayl?等[24]采用亞麻油與幾種甲階酚醛樹(shù)脂(對(duì)乙基、對(duì)叔丁基、對(duì)辛基及對(duì)苯基酚醛樹(shù)脂)進(jìn)行共聚反應(yīng)后分別得到相對(duì)應(yīng)的亞麻油改性酚醛樹(shù)脂,結(jié)果發(fā)現(xiàn)亞麻油改性對(duì)乙基酚醛樹(shù)脂表現(xiàn)出最佳的力學(xué)性能(65 ℃時(shí)儲(chǔ)能模量可達(dá)350 MPa)和耐熱性。
參考文獻(xiàn)[13]中引入ni和nj兩個(gè)參量,統(tǒng)計(jì)在時(shí)間間隔內(nèi),時(shí)間變量xt(i)和xt(j)局部最小的次數(shù),其中對(duì)于節(jié)點(diǎn)i和節(jié)點(diǎn)j,t=1,2,…,T。nij用來(lái)表示節(jié)點(diǎn)與節(jié)點(diǎn)在觀測(cè)時(shí)間內(nèi)同時(shí)局部最小的次數(shù)。
1.1.3 腰果殼油
與桐油和亞麻油不同,在酸性條件下腰果殼油發(fā)生脫羧后即可變成一種具有獨(dú)特長(zhǎng)鏈烷烴的酚(腰果酚),其結(jié)構(gòu)見(jiàn)圖 3[25]。由于其間位上含有長(zhǎng)烷基鏈,因此,腰果殼油改性酚醛樹(shù)脂能夠有效地提高酚醛樹(shù)脂柔韌性[5,26]。
圖3 腰果酚結(jié)構(gòu)Fig.3 The structure of cardanol
根據(jù)主要原料反應(yīng)組合順序的不同,腰果殼油改性酚醛樹(shù)脂的合成工藝主要有3種[27]:(1)混酚法,即腰果殼油、苯酚、甲醛和催化劑等按一定的配比直接投入到反應(yīng)設(shè)備中進(jìn)行反應(yīng);(2)預(yù)聚法,即苯酚與甲醛預(yù)聚體后再與腰果殼油進(jìn)行反應(yīng);(3)雙酚法,苯酚與腰果殼油在酸性條件下發(fā)生傅克烷基化反應(yīng)生成雙酚,然后再與醛進(jìn)行縮聚??傊?,無(wú)論哪種合成工藝,所得到的腰果殼油改性酚醛樹(shù)脂均具有良好的摩擦特性(摩擦系數(shù)穩(wěn)定,磨損?。┖晚g性,如SI公司型號(hào)為SP-6700的腰果殼油改性產(chǎn)品等[28,29]。
雖然腰果殼油在增韌改性方面作用突出,但由于受到酚羥基的影響,苯環(huán)上烷基側(cè)鏈在一定溫度下會(huì)劇烈分解從而降低樹(shù)脂耐熱性。魯鄭全等[30]將三聚氰胺引入到腰果殼油改性酚醛樹(shù)脂中,所得的雙改性酚醛樹(shù)脂的摩擦、耐熱、耐氧化和力學(xué)性能皆能滿足摩擦材料樹(shù)脂基體的性能指標(biāo)。張洋等[31]將硼原子引入到腰果油改性酚醛樹(shù)脂后發(fā)現(xiàn),當(dāng)硼酸用量為總酚用量的10%~15%時(shí),雙改性樹(shù)脂的綜合性能達(dá)到最佳,其熱分解溫度超過(guò) 520 ℃。金保宏等[32]通過(guò)馬來(lái)酰亞胺對(duì)腰果殼油改性酚醛樹(shù)脂進(jìn)行改性也能達(dá)到提高耐熱性的目的。周文富等[33]利用納米材料和交聯(lián)劑對(duì)腰果殼油甲酚醛樹(shù)脂進(jìn)行改性,合成了一種高性能的腰果殼油改性酚醛樹(shù)脂,其熱分解溫度可達(dá)417~452 ℃。
1.2 木質(zhì)素
木質(zhì)素是具有三維網(wǎng)狀結(jié)構(gòu)的天然多酚類高分子聚合物,一般認(rèn)為是由愈創(chuàng)木基、紫丁香基和對(duì)羥基苯基 3種單體通過(guò)碳碳鍵或碳氧鍵連接(圖 4)。在與苯酚和甲醛合成酚醛樹(shù)脂的反應(yīng)中,木質(zhì)素既可提供醛基又可提供羥基,因此在制備木質(zhì)素改性酚醛樹(shù)脂的過(guò)程中就有可能減少甚至完全代替甲醛和苯酚,從根本上解決甲醛殘留和釋放等問(wèn)題。El等[34,35]分別對(duì)木質(zhì)素的相對(duì)分子質(zhì)量分布及其功能進(jìn)行了研究,并指出其替代苯酚的可行性及優(yōu)越性。目前,根據(jù)木質(zhì)素生產(chǎn)工藝的不同可將其改性酚醛樹(shù)脂劃分為以下幾種:
圖4 木質(zhì)素的基本結(jié)構(gòu)單元Fig.4 The structure of lignin units
1.2.1 磺化木質(zhì)素改性酚醛樹(shù)脂
磺化木質(zhì)素,又稱木質(zhì)素磺酸鹽,是亞硫酸鹽法造紙木漿的副產(chǎn)品。木質(zhì)素磺酸鹽在酸性、高溫下先與苯酚反應(yīng)生產(chǎn)酚化產(chǎn)物,酚化產(chǎn)物再與甲醛反應(yīng)合成酚醛樹(shù)脂。酚化可以使木質(zhì)素的相對(duì)分子質(zhì)量和甲氧基含量降低,酚羥基含量增加,從而更多地代替毒性較高的苯酚,達(dá)到環(huán)保及可持續(xù)性使用的目的。Alonso等[36]研究發(fā)現(xiàn),改性木質(zhì)素磺酸鹽可部分取代苯酚合成樹(shù)脂。Vazquez等[37]比較了硫酸鹽木質(zhì)素改性樹(shù)脂和普通樹(shù)脂的性能,結(jié)果表明,硫酸鹽木質(zhì)素替代了50%左右的苯酚。因此,改性后的樹(shù)脂不僅環(huán)保,而且成本較低,由其制造的產(chǎn)品具有較低的甲醛釋放量。
堿木質(zhì)素,俗稱木糖粉,主要來(lái)自于堿法制漿廢液,經(jīng)過(guò)最新生產(chǎn)工藝噴霧干燥而成。堿木質(zhì)素改性酚醛樹(shù)脂主要由醛和酚與羥甲基化、脫甲基化或堿性條件酚化后的堿木質(zhì)素反應(yīng)后獲取。
羥甲基化主要在木質(zhì)素芳環(huán)和芳環(huán)側(cè)鏈羥甲基化進(jìn)而達(dá)到增加木質(zhì)素活性的目的。Vázquez等[38]發(fā)現(xiàn)經(jīng)羥甲基化后的桉樹(shù)木質(zhì)素對(duì)苯酚的替代率達(dá)到40%;歐陽(yáng)新平等[39]發(fā)現(xiàn)麥草堿木質(zhì)素在堿活化和羥甲基化后其反應(yīng)活性有一定的提高,同時(shí)當(dāng)木質(zhì)素對(duì)苯酚的替代率低于50%時(shí),樹(shù)脂的粘結(jié)強(qiáng)度并不隨著替代率的增加而發(fā)生改變。
脫甲基化改性是指通過(guò)化學(xué)手段將占據(jù)木質(zhì)素芳環(huán)活性位置的甲氧基轉(zhuǎn)化為酚羥基,此種法工藝復(fù)雜,成本較高,目前研究較少。安鑫南等[40]利用堿木質(zhì)素黑液與硫在高溫下進(jìn)行反應(yīng),冷卻酸化萃取后即可得到甲氧基質(zhì)量分?jǐn)?shù)為5%的脫甲基化改性木質(zhì)素,它可用來(lái)完全代替苯酚制成性能良好的木材膠粘劑。
堿性條件酚化改性是堿木質(zhì)素在堿性高溫條件下與苯酚發(fā)生的化學(xué)反應(yīng),這種方法是堿木質(zhì)素制膠最有前景的方法。Nonaka等[41]將黑液在堿性條件下酚化改性后制成性能良好的堿木質(zhì)素改性酚醛樹(shù)脂,其中木質(zhì)素代替苯酚的比例達(dá)到60%。
1.2.3 酶解木質(zhì)素改性酚醛樹(shù)脂
酶解木質(zhì)素是從植物秸稈發(fā)酵制備酒精的殘?jiān)刑崛〉囊环N新型木質(zhì)素,它較好地保留了木質(zhì)素的化學(xué)活性,因此,酶解木質(zhì)素的改性效果較佳。鄭鉆斌等[42]從秸稈發(fā)酵制備酒精的殘?jiān)刑崛〉拿附饽举|(zhì)素,部分代替苯酚合成了改性酚醛樹(shù)脂,并熱壓制成膠合板。通過(guò)測(cè)定膠合板的膠合強(qiáng)度,改性樹(shù)脂膠的黏度、固含量及游離酚醛等性能指標(biāo)后發(fā)現(xiàn),各項(xiàng)性能基本達(dá)到國(guó)家標(biāo)準(zhǔn)I類板的要求。1.2.4 甘蔗渣木質(zhì)素改性酚醛樹(shù)脂
甘蔗渣木質(zhì)素主要從甘蔗制糖過(guò)程中產(chǎn)生的廢渣中提取,用氮?dú)饧兓蟾收嵩举|(zhì)素大大增加了羥甲基含量,因而更有利于提高木質(zhì)素的反應(yīng)活性。在工業(yè)生產(chǎn)中為了能更多地代替苯酚,甘蔗渣木質(zhì)素常常首先進(jìn)行甲基化反應(yīng)。Khan等[43]將經(jīng)甲基化的甘蔗渣木質(zhì)素代替50%的苯酚,制得了性能與水溶性酚醛樹(shù)脂相近的木質(zhì)素改性酚醛樹(shù)脂。
1.3 淀粉/葡萄糖
淀粉是由葡萄糖分子聚合而成的,在特定條件下可完全水解生成 D-葡萄糖,其具有醛的特性,且還存在大量的羥基,因此,在酸性條件下,淀粉(葡萄糖)可與苯酚發(fā)生縮聚反應(yīng)生成苯酚-淀粉(葡萄糖)樹(shù)脂。具體反應(yīng)過(guò)程如下[44]:
苯酚與甲醛縮聚反應(yīng)
淀粉水解為葡萄糖,然后脫水生成羥甲基糠醛
羥甲基糠醛與苯酚縮聚反應(yīng)
羥甲基糠醛與苯酚甲醛縮聚物之間的縮聚反應(yīng)
苯酚羥甲基糠醛縮聚物與苯酚甲醛縮聚物之間的縮聚反應(yīng)
苯酚羥甲基糠醛縮聚物與甲醛之間的縮聚反應(yīng)
與傳統(tǒng)的酚醛樹(shù)脂相比,苯酚一淀粉(葡萄糖)樹(shù)脂具有更優(yōu)的耐熱性能,不僅成本低,生物降解性好,且解決了生產(chǎn)和使用過(guò)程中甲醛等污染問(wèn)題,因此,該樹(shù)脂具有良好的環(huán)境及經(jīng)濟(jì)效益。
1980年,Mudde[45]在酸性條件下將玉米淀粉水解為5-羥基-2-呋喃甲醛,隨后與苯酚發(fā)生縮合反應(yīng)生成改性酚醛樹(shù)脂,隨后他們[46]采用相同的合成方法制備了淀粉改性酚醛樹(shù)脂并對(duì)其耐熱性進(jìn)行研究。結(jié)果表明,由于分子結(jié)構(gòu)中存在大量糖側(cè)鏈,改性后的樹(shù)脂表現(xiàn)出較好的耐熱性,在 300 ℃時(shí)開(kāi)始分解,在600 ℃時(shí)殘?zhí)柯士蛇_(dá)64%以上。
1.4 單 寧
單寧是一類廣泛存在于植物中的多羥基酚類化合物,由于其與酚的化學(xué)結(jié)構(gòu)類似,故具有部分或全部取代常用酚類物質(zhì)制備酚醛樹(shù)脂的基本條件和巨大潛力[47]。孫豐文等[48]以落葉松樹(shù)皮提取物替代部分苯酚,在堿性條件下與甲醛水溶液發(fā)生縮聚反應(yīng),制備出毒性小、成本低及耐水性好的改性木材膠粘劑。Lee等[49]以阿拉伯橡膠樹(shù)和杉木提取物代替部分間苯二酚(取代量分別為51.6%和46.5%),采用兩步法制取間苯二酚/單寧/甲醛三元共聚樹(shù)脂。與普通樹(shù)脂相比,該三元共聚改性酚醛樹(shù)脂具有冷固化、黏度高和凝膠時(shí)間短等優(yōu)點(diǎn),但其穩(wěn)定性差,儲(chǔ)存期較短。Sekaran等[50]將制革工業(yè)回收的單寧引入到普通酚醛樹(shù)脂中得到單寧改性酚醛樹(shù)脂,經(jīng)過(guò)紅外光譜、熱重分析以及溶解性和抗腐蝕性能等測(cè)試發(fā)現(xiàn),該酚醛樹(shù)脂具有較好的抗腐蝕性能及力學(xué)性能,但熱穩(wěn)定性有一定程度的降低。
作為一種具有催化活力的特殊蛋白質(zhì),生物酶能夠在十分溫和的條件下催化化學(xué)反應(yīng)進(jìn)程,是一種天然、環(huán)保及可再生資源。近年來(lái),隨著酶催化理論的突破,科研工作者發(fā)現(xiàn)酶能夠催化合成化學(xué)法難以實(shí)現(xiàn)的功能化樹(shù)脂-聚酚樹(shù)脂,其結(jié)構(gòu)如圖5所示。
圖5 聚酚及聚對(duì)苯基苯酚結(jié)構(gòu)Fig.5 The structure of polyphonel resin and poly(p-phenylphenol) resin
酶促合成聚酚樹(shù)脂所用酶主要為辣根過(guò)氧化物酶、大豆過(guò)氧化物酶和漆酶等氧化還原酶。Dordick等[51]首次報(bào)道了在過(guò)氧化氫氧化下,苯酚及其衍生物在辣根過(guò)氧化物酶催化下生成酚氧自由基,之后依次經(jīng)過(guò)重排和偶聯(lián)等反應(yīng)形成聚酚樹(shù)脂。結(jié)果表明,聚酚樹(shù)脂的產(chǎn)率及分子量主要受酚的種類及反應(yīng)介質(zhì)影響。隨后,Blinkovsky等[52]發(fā)現(xiàn)在有機(jī)溶劑體系中木質(zhì)素與對(duì)甲酚能夠被辣根過(guò)氧化物酶催化生成類似熱固性樹(shù)脂的聚酚樹(shù)脂,其木質(zhì)素含量達(dá)80%,所得聚合物的最大重均分子量?jī)H為 10 000。汪學(xué)軍等[53]研究發(fā)現(xiàn)在反相微乳液(十六烷基三甲基溴化銨/正丁醇/異辛烷/水)中木質(zhì)素與對(duì)甲酚發(fā)生聚合反應(yīng)后生成的共聚物最高分子量可達(dá)1.89×106。Rao等[54]嘗試了辣根過(guò)氧化物酶在反相膠束中催化酚類物質(zhì)的聚合反應(yīng),介質(zhì)為異辛烷,表面活性劑為十六烷基硫代琥珀酸鈉。結(jié)果表明,聚酚樹(shù)脂的分子量可通過(guò)調(diào)節(jié)十六烷基硫代琥珀酸鈉的濃度進(jìn)行調(diào)控,例如當(dāng)十六烷基硫代琥珀酸鈉的濃度為0.15 mol/L時(shí),聚酚樹(shù)脂重均分子量為2×104,而將濃度增加到1.5 mol/L時(shí),聚酚樹(shù)脂重均分子量可達(dá)4×105。Tonami等[55]以4-羥基苯基苯甲酸酯為起始原料,大豆過(guò)氧化物酶為催化劑,過(guò)氧化氫為氧化劑,在l,4-二氧六環(huán)/磷酸鹽緩沖液中催化氧化,隨后在堿性條件下水解即可得到聚酚樹(shù)脂(如圖6所示)。
圖6 聚酚合成路線Fig.6 The synthetic route of polyphonel resin
隨著石油資源的短缺,以生物質(zhì)提取物(植物油、單寧、淀粉或者腰果殼油等)部分或完全替代甲醛或苯酚生產(chǎn)制備高性能改性酚醛樹(shù)脂,具有來(lái)源廣泛、價(jià)格低廉、環(huán)保及可再生性等優(yōu)點(diǎn),是實(shí)現(xiàn)酚醛樹(shù)脂綠色化生產(chǎn)的最佳選擇,可以獲得極好的經(jīng)濟(jì)效益、社會(huì)效益和環(huán)境效益,因此,在合成及改性傳統(tǒng)酚醛樹(shù)脂方面具有廣闊的應(yīng)用前景。
生物酶催化苯酚及其衍生物合成聚酚樹(shù)脂,具有化學(xué)催化劑無(wú)可比擬的優(yōu)越性,無(wú)論合成工藝還是產(chǎn)品性能上都具有明顯的優(yōu)點(diǎn),這也為酚醛樹(shù)脂改性開(kāi)辟了一條全新的、環(huán)境友好的途徑。聚酚樹(shù)脂不僅可代替?zhèn)鹘y(tǒng)的酚醛樹(shù)脂,而且在光電材料方面顯示了極強(qiáng)的應(yīng)用潛力。但是,酶催化合成從實(shí)驗(yàn)室轉(zhuǎn)移到工業(yè)領(lǐng)域時(shí)仍存在許多問(wèn)題,其中如何降低酶催化合成聚酚樹(shù)脂的成本是其實(shí)現(xiàn)工業(yè)化必須解決的問(wèn)題。
[1]Baekeland L H. Method of making insoluble products of phenol and formaldehyde: US, 942699[P]. 1909-12-07.
[2]Higuchi M. Phenolic resin: alkali-catalyzed phenol-formaldehyde reactions[J]. Mokuzai Gakkaishi, 1999, 45(6): 425-433.
[3]Nair C P R. Non-conventional phenolic resins-an overview on recent advances[J]. Journal of Scientific & Industrial Research, 2002, 61(1): 17-33.
[4]Zhao Y, Yan N. Recent development in forest biomass derived phenol formaldehyde(PF) resol resin for wood adhesives application[J]. Journal of Biobased Materials and Bioenergy, 2014, 8(5): 465-480.
[5]Balgude D, Sabnis A S. CNSL: an environment friendly alternative for the modern coating industry[J]. Journal of Coatings Technology and Research, 2014, 11(2): 169-183.
[6]Umemura K. Research trends of natural adhesives[J]. Mokuzai Gakkaishi, 2014, 60(3): 123-143.
[7]Laurichesse S, Averous L. Chemical modification of lignins: towards biobased polymers[J]. Progress in Polymer Science, 2014, 39(7): 1266-1290.
[8]Reihmann M, Ritter H. Synthesis of phenol polymers using peroxidases[M]// Kobayashi S, Ritter H, Kaplan D. Enzyme-catalyzed synthesis of polymers. Berlin: Springer Berlin Heidelberg, 2006: 1-49.
[9]Sumitomo Chem Co Ltd. Tung oil-meta-isopropyl-phenol addition compound useful in production of phenol-formaldehyde resin coating compositions: JP, 55007247-A[P]. 1980-01-19.
[10]Yoshimura Y. Reaction of 3-methyl phenol with tung oil[J]. Journal of Applied Polymer Science, 1983, 28(3): 1147-1158.
[11]Yoshimura Y. Reactions of phenols with tung oil[J]. Journal of Applied Polymer Science, 1984, 29(4): 1063-1069.
[12]Yoshimura Y. Polymerization of tung oil by reaction of phenols with tung oil[J]. Journal of Applied Polymer Science, 1984, 29(9): 2735-2747.
[13]邵美秀, 袁新華, 陳 敏, 等. 桐油改性酚醛樹(shù)脂及其在剎車片中的應(yīng)用研究[J]. 塑料加工, 2005, 40(3): 34-37. Shao Meixiu, Yuan Xinhua, Chen Min, et al. Study on phenolic resin modified with tung oil and its application to brake block[J]. Engineering Plastics Application, 2005, 40(3): 34-37.
[14]Shibata M, Teramoto N, Nakamura Y. High performance bio-based thermosetting resins composed of tung oil and bismaleimide[J]. Journal of Applied Polymer Science, 2011, 119(2): 896-901.
[15]商士斌, 王 瑀, 宋湛謙, 等. 桐油酸酐酰亞胺酚醛樹(shù)脂耐熱性研究[J]. 林產(chǎn)化學(xué)與工業(yè), 2007, 27(2): 33-35. Shang Shibin, Wang Yu, Song Zhanqian, et al. Thermal stability of bismaleimide-phenol formaldehyde resin modified by tung oil-maleic anhydride adduct[J]. Chemistry and Industry of Forest Products, 2007, 27(2): 33-35.
[16]商士斌, 周永紅, 王 丹, 等. 桐油酰亞胺酚醛樹(shù)脂耐熱性研究[J]. 林產(chǎn)化學(xué)與工業(yè), 2005, 25(S1): 27-30. Shang Shibin, Zhou Yuhong, Wang Dan, et al. Thermal stability of bismaleimide-phenol resin modified by tung oil[J]. Chemistry and Industry of Forest Products, 2005, 25(S1): 27-30.
[17]李 屹, 周元康, 姚 進(jìn). 硼酸-桐油雙改性酚醛樹(shù)脂基制動(dòng)帶的摩擦性能研究[J]. 潤(rùn)滑與密封, 2010, 35(4): 43-46. Li Yi, Zhou Yuankang, Yao Jin. Research of friction performance of the brake band based on the phenolic resin binary modified by boric acid&tung oil[J]. Lubrication Engineering, 2010, 35(4): 43-46.
[18]王滿力, 周元康, 李 屹, 等. 桐油改性硼酚醛的耐熱性及其復(fù)合材料摩擦性能的研究[J]. 精細(xì)化工, 2004, 21(6): 477-480. Wang Manli, Zhou Yuankang, Li Yi, et al. Heat resistance of boron phenolic resin modified by tung oil and frication property of its complex material[J]. Fine Chemistry, 2004, 21(6): 477-480.
[19]?ukaszewicz M, Szopa J, Krasowska A. Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants[J]. Food Chemistry, 2004, 88(2): 225-231.
[20]Lubisch H J, Sauer J D, Adamski R, et al. Modified phenol-formaldehyde novolak resins production by reaction of phenol(s) with unsatd oils at 343-372 K using acid catalyst, followed by poly-condensation with formaldehyde at pH 0.1-5: DE, DD266574[P]. 1989-04-05.
[21]Bijwe J, Majumdar N, Satapathy B. Influence of modified phenolic resins on the fade and recovery behavior of friction materials[J]. Wear, 2005, 259(7): 1068-1078.
[22]袁新華, 邵美秀, 陳 敏, 等. 亞麻油改性酚醛樹(shù)脂制備及其耐熱性能[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 27(3): 234-236. Yuan Xinhua, Shao Meixiu, Chem Min, et al. Preparation and heat-resistant characterization of phenolic resin modified by linseed oil[J]. Journal of Jiangsu University(Natural Science Edition), 2006, 27(3): 234-236.
[23]Sumitomo B C. Preparation of phenol resin for manufacture laminated board by reacting phenol with aldehyde in acidic catalyst then reacting with aldehyde in presence of tert-amine: JP, 2073820[P]. 1990-03-13.
[24]?ayl? G, Küsefo?lu S. Polymerization of linseed oil with phenolic resins[J]. Journal of Applied Polymer Science, 2010, 118(2): 849-856.
[25]Voirin C, Caillol S, Sadavarte N V, et al. Functionalization of cardanol: towards biobased polymers and additives[J]. Polymer Chemistry, 2014, 5(9): 3142-3162.
[26]Telascrea M, Leao A L, Ferreira M Z, et al. Use of a cashew nut shell liquid resin as a potential replacement for phenolic resins in the preparation of panels[J]. Molecular Crystals and Liquid Crystals, 2014, 604(1): 222-232.
[27]瞿雄偉, 吳培熙. 腰果酚及腰果酚類樹(shù)脂[M]. 北京: 化學(xué)工業(yè)出版社, 2013: 93-136.
[28]Maly N A, McGilvrey J R. Sulfur vulcanizable rubber compound: US, 5684091[P]. 1996-06-12.
[29]Gunei K K, Mitsui T F K K. Phenol! resin compsn for use as binder-prepared from cashew nut shell phenol(s) and aldehyde(s): JP, 59096117-A[P]. 1984-06-02.
[30]魯鄭全, 郭利兵, 李江濤. 三聚氰胺和腰果殼油改性酚醛樹(shù)脂的研究[J]. 河南科學(xué), 2009, 27(3): 282-284. Lu Zhenquan, Guo Libing, Li Jiangtao. Synthesis of modified phenolic resin with cashew shell oil and melamine[J]. Henan Science, 2009, 27(3): 282-284.
[31]張 洋, 馬榴強(qiáng). 硼酸, 腰果油雙改性酚醛樹(shù)脂的合成及其耐熱性研究[J]. 熱固性樹(shù)脂, 1998, 13(1): 9-14. Zhang Yang, Ma Liuqiang. Study on the synthesis and thermaostability of phenolic resin modified by boric acid and cashew nut shell oil[J]. Thermoseting Resin, 1998, 13(1): 9-14.
[32]金保宏, 王柏臣, 陳 平. BMI改性腰果殼油-酚醛樹(shù)脂的熱性能[J]. 合成樹(shù)脂及塑料, 2010, 27(2): 55-58. Jin Baohong, Wang Bochen, Chen Ping. Thermal properties of cashew shell oil-phenolic resin modified by BMI[J]. China Synthetic Resin and Plastic, 2010, 27(2): 55-58.
[33]周文富, 吳端鑫, 林建平, 等. 納米材料插層原位聚合腰果殼油甲酚醛樹(shù)脂[J]. 寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版), 2006, 26(1): 38-42. Zhou Wenfu, Wu Duanxin, Lin Jianping, et al. Research on modification of methyl-phenolic resin by nanocomponents and cashew shell oil[J]. Journal of Baoji University of Arts and Sciences(Natural Science), 2006, 26(1): 38-42.
[34]El M N E, Salvadó J. Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins[J]. Industrial Crops and Products, 2006, 24(1): 8-16.
[35]Cetin N S, ?zmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production I: organosolv lignin modified resins[J]. International Journal of Adhesion and Adhesives, 2002, 22(6): 477-480.
[36]Alonso M V, Oliet M, García J, et al. Gelation and isoconversional kinetic analysis of lignin-phenol-formaldehyde resol resins cure[J]. Chemical Engineering Journal, 2006, 122(3): 159-166.
[37]Donmez C A, Kalaycioglu H, Hiziroglu S. Some of the properties of oriented strandboard manufactured using kraft lignin phenolic resin[J]. Journal of Materials Processing Technology, 2008, 202(1/3): 559-563.
[38]Vazquez G, Gonzalez J, Freire S, et al. Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins[J]. Bioresource Technology, 1997, 60(3): 191-198.
[39]歐陽(yáng)新平, 戰(zhàn) 磊, 陳 凱, 等. 木質(zhì)素改性酚醛樹(shù)脂膠粘劑的制備[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 39(11): 22-26. Ouyang Xinping, Zhan Lei, Chen Kai, et al. Preparation of lignin-modified phenol-formaldehyde resin adhesive[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(11): 22-26.
[40]安鑫南. 脫甲基硫酸鹽木質(zhì)素代替酚在木材粘合劑中的應(yīng)用[J]. 林產(chǎn)化學(xué)與工業(yè), 1995, 15(3): 36-42. An Xinnan. Demethylated kraft lignin as a substitute for phenol in wood adhesive[J]. Chemistry and Industry of Forest Products, 1995, 15(3): 36-42.
[41]Nonaka Y, Tomita B, Hatano Y. Synthesis of lignin/epoxy resins in aqueous systems and their properties[J]. Holzforschung-InternationalJournal of the Biology, Chemistry, Physics and Technology of Wood, 1997, 51(2): 183-187.
[42]鄭鉆斌, 程賢甦, 符 堅(jiān), 等. 酶解木質(zhì)素改性酚醛樹(shù)脂膠黏劑的研究[J]. 林產(chǎn)工業(yè), 2009, (4): 24-27. Zhen Zuanbin, Chen Xiansu, Fu Jian, et al. Study on enzymatic hydrolysis lignin modified phenol formaldehyde resin[J]. China Forest Poroducts Industry, 2009, (4): 24-27.
[43]Khan M A, Ashraf S M, Malhotra V P. Development and characterization of a wood adhesive using bagasse lignin[J]. International Journal of Adhesion and Adhesives, 2004, 24(6): 485-493.
[44]李建鋒. 環(huán)保型酚醛樹(shù)脂膠粘劑的合成[J]. 科學(xué)技術(shù)與工程, 2011, 11(23): 5707-5710. Li Jianfeng. Environmental protection phenolic resin synthesis of adhesive[J]. Science Technology and Engineering, 2011, 11(23): 5707-5710.
[45]Mudde J P. Corn starch: a low cost route to novolac resins[J]. Modern Plastics, 1980, 57(2): 69-74.
[46]Wang M, Yuan Z, Cheng S, et al. Synthesis of novolac-type phenolic resins using glucose as the substitute for formaldehyde[J]. Journal of Applied Polymer Science, 2010, 118(2): 1191-1197.
[47]Pizzi A. Advanced wood adhesive technology[M]. New York: Marcel Dekker, 1994: 149-215.
[48]孫豐文, 張齊生, 孫達(dá)旺. 落葉松單寧酚醛樹(shù)脂膠粘劑的研究與應(yīng)用[J]. 林業(yè)科技開(kāi)發(fā), 2006, 20(6): 50-52. Sun Fengwen, Zhang Qisheng, Sun Dawang. Study and application on phenol resin adhesive from Larix gmelinii tannin[J]. China Forestry Science and Technology, 2006, 20(6): 50-52.
[49]Lee W J, Lan W C. Properties of resorcinol-tannin-formaldehyde copolymer resins prepared from the bark extracts of Taiwan acacia and China fir[J]. Bioresource Technology, 2006, 97(2): 257-264.
[50]Sekaran G, Thamizharasi S, Ramasami T. Physicochemical and thermal properties of phenol-formaldehyde-modified polyphenol impregnate[J]. Journal of Applied Polymer Science, 2001, 81(7): 1567-1571.
[51]Dordick J S, Marletta M A, Klibanov A M. Polymerization of phenols catalyzed by peroxidase in nonaqueous media[J]. Biotechnology and Bioengineering, 1987, 30(1): 31-36.
[52]Blinkovsky A M, Dordick J S. Peroxidase-catalyzed synthesis of lignin-phenol copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(7): 1839-1846.
[53]汪學(xué)軍. 酶催化合成草漿木質(zhì)素—對(duì)甲酚共聚物的研究[J]. 環(huán)境污染治理技術(shù)與設(shè)備, 2003, 4(1): 19-21. Wang Xuejun. Peroxidase catalyzed copolymerization of lignin with p-cresol[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(1): 19-21.
[54]Rao A M, John V T, Gonzalez R D, et al. Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems[J]. Biotechnology and Bioengineering, 1993, 41(5): 531-540.
[55]Tonami H, Uyama H, Kobayashi S, et al. Chemoenzymatic synthesis of a poly(hydroquinone)[J]. Macromolecular Chemistry and Physics, 1999, 200(9): 1998-2002.
Research Progress in Synthese of Phenolic Resin from Biomatericals
Chen Jianguo1,2, Tian Hao1, Meng Fuliang1, Shen Peilin2, Xiang Ziwei1,2,4, Zhou Dapeng3
1. Zhejiang Hangmo Synthetic Material Co Ltd, Huzhou 313310, China;
2. Zhejiang Jiamin Plastics Co Ltd, Jiaxing 314027, China;
3. Biochemistry and Chemical Engineer Department, Jiaxing University, Jiaxing 314021, China;
4. State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
The synthese or modification of phenolic resin with high-performance using biomaterial has become one of the research hotspots. Firstly, some kinds of phenolic resin prepared from renewable raw materials were summarized. Then the structure of biomass extracts, such as vegetable oil, lignin, cellulose and tannin, and the methods of chemical modification of phenolic resin by these biomass extracts were introduced briefly and the latest development of chemical modification of phenolic resin was reviewed. Meanwhile, the research progress of polyphonel resin prepared by enzymatic synthesis was analyzed. As a new polymerization method, enzymatic synthesis of polyphonel resin has developed an environmentally benign and green road for traditional phenolic resin.
phenolic resin; biomaterial resources; enzyme; environment-friendly and renewable
TQ323.1
A
1001—7631 ( 2015 ) 06—0548—08
2015-03-24;
2015-10-14。
陳建國(guó)(1981—),男,工程師;向自偉(1984—),男,博士,通訊聯(lián)系人。E-mail: xiangzw@zju.edu.cn。