• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金納米粒表面修飾官能團及其影響細胞作用的機制

    2015-12-01 02:37:01文長春雷文琪沈星燦紀仕辰蔣邦平梁宏
    無機化學學報 2015年9期
    關(guān)鍵詞:官能團藥用教育部

    文長春雷文琪沈星燦紀仕辰蔣邦平梁宏

    (廣西師范大學藥用資源化學與藥物分子工程教育部重點實驗室,桂林541004)

    金納米粒表面修飾官能團及其影響細胞作用的機制

    文長春雷文琪沈星燦*紀仕辰蔣邦平梁宏*

    (廣西師范大學藥用資源化學與藥物分子工程教育部重點實驗室,桂林541004)

    通過配體交換法,在AuNPs表面分別引入羥基(-OH),羧基(-COOH)和甲基(-CH3),制備了3種表面修飾官能團的金納米粒:Au-OH NPs,Au-COOH NPs和Au-CH3NPs,其平均粒徑為(15.6±3.2)nm,ζ電位均為負值。MTT法對比研究表面修飾和未修飾的AuNPs與HeLa細胞和MCG-803細胞作用后的細胞存活率,當濃度達到197 ng·mL-1時,表現(xiàn)出低細胞毒性,且順序為:AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs。細胞周期研究結(jié)果發(fā)現(xiàn),表面未修飾的AuNPs對細胞G2/M期活動有一定的阻滯作用。單個活細胞顯微拉曼光譜原位對比研究表面修飾和未修飾的AuNPs與HeLa細胞的作用,結(jié)果表明:未修飾的AuNPs和Au-CH3NPs與細胞作用的主靶點可能為DNA骨架、堿基和細胞磷脂膜的極性頭部,而Au-COOH NPs與Au-OH NPs對這些位點作用輕微。本研究為解釋表面修飾-COOH和-OH官能團可降低AuNPs細胞毒性提供了研究證據(jù)。

    金納米粒;表面官能團;細胞毒性;分子機制

    0 Introduction

    Over the past decades,gold nanoparticles(AuNPs) have attracted enormous amount of interest for biomedical applications based on their unique optical, chemical,electrical,and catalytic of properties[1-2].The classic ways to prepare AuNPs are chemical reduction of gold chloride with citrate-mediated reductions in boiling water[3],or with sodium borohydride in the presence of alkane thiols in a water-toluene phase[4]. The reliable AuNPs have been synthesized,and surface coatings provide their both solubility and stability[1-6].The strong binding of thiols,phosphines and amines to AuNPs enables easy surface functionalization of AuNPs with various materials, such as polymers[6-7],silica[8],enzymes[9],peptide[10], protein[11],miRNA[12],drugs[13-14]and targeting agents[8,14], leading to important biomedical applications including X-ray/CT imaging,cell imaging,targeted drug delivery,cancer diagnostics and therapeutic agents[6-14]. The new and exciting advances on AuNPs in biology and medicine have been reviewed[1,5,15-16].

    For most of the fascinated cellular and therapeutic uses,AuNPs are often required to pass cell plasma membranes either by endocytosis or by direct penetration to reach target cellular compartments[17].Thus,the interaction of AuNPs with biological systems has become one of the most urgent areas for their bio-applications and toxicological studies. Numerous experimental studies have been conducted to probe AuNPs-cell interactions in the past few years. It has been reported that the size and surface charges can dramatically influence the uptake of AuNPs, showing that cationic 2-nm AuNPs are moderately toxic,whereas anionic 2-nm AuNPs are quite nontoxic[18], and revealing that both the level of penetration and membrane disruption increase as surface charge density of the AuNPs increases[7].In addition,surface modifications can also lead to different AuNPs-cell interactions[6-21].The 18-nm spherical AuNPs with citrate and biotin are not inherently toxic at concentrations up to 250 μmol·L-1(gold atoms), whereas,those capped with glucose or cysteine surface modifiers,or with a reduced gold surface,were nontoxic at concentrations up to 25 μmol·L-1(gold atoms)[19].It was reported that 1.4-nm AuNPs stabilized by triphenylphosphine derivatives causes predominantly rapid cell death via necrosis by oxidative stress,whereas,AuNPs of similar size but capped with glutathione likewise do not induce oxidative stress[20].AuNPs capped by thymidine 5-monophosphate are able to penetrate even into U87 cancer cells nucleus,whereas,those capped with thymine or thymidine only overcome intracellular barriers[21].

    Based on these findings,surface modifications of AuNPs have been considered to be crucial for controlling cell uptake,intracellular localization, reduce the cytotoxicity and enhance the biocompatible.The surface functional groups are the base of modifications structures.However,the surfacefunctional-groups-regulated AuNPs-cells interactions are still poorly understood.The lack of molecularlevel details on AuNPs-cell interactions prevents us from gaining an in-depth understanding of the observed phenomena.The goal of this work is to study the surface-functional-groups-regulated AuNPs-cells interaction.We investigated the effect of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs on human cervical carcinoma(HeLa)cell line and human stomach adenocarcinoma(MCG-803)cell line in vitro. The cell viability and cell cycle has been evaluated when cells are exposed to AuNPs.Moreover, mechanisms of AuNPs-cells interactions have been revealed with micro-Raman spectroscopy.

    1 Experimental

    1.1Materials

    Chemicals of 11-mercapto-1-undecanol(AR),11-mercaptoundecanoic acid(AR),1-undecanethiol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphynyl tetrazolium bromide(MTT,AR)were purchased from Sigma-Aldrich.Chloroaunic acid tetrahydrate(HAuCl4·4H2O) (AR)was obtained from Chengdu Gracia Chemical Technology Company.Sodium citrate(C6H5Na3O7) (AR)was bought from Guangzhou Chemical Regent Factory.All reagents were used without furtherpurification.Ultrapure water(resistivity~18.2 MΩ) was used as the solvent throughout the experiments.

    1.2Synthesis,surfacemodificationand characterizationofgoldnanoparticles

    The gold nanoparticles(AuNPs)were synthesized with citrate-mediated reductions[3].Typically,a stirred aqueous solution of HAuCl4(0.01%,50 mL)was heated to reflux,and then trisodium citrate solution (1%,1.5 mL)was added quickly,resulting in a change in solution color from pale yellow to pink. After the color change,the solution was heated under reflux for an additional 30 min and allowed to cool to room temperature.This procedure resulted in a red solution containing citrate-stabilized AuNPs,and the gold solution was dialyzed for 24 h in deionized water using dialysis membrane(molecular weight cut off 12 kDa)to remove excess unreduced ions in this colloidal solution.

    The obtained AuNPs was modified with the most commonly used approach of thiol functionalization[22-23]. Typically,10 mL of the dialyzed AuNPs solution in a tube was centrifuged at 4000 r·min-1for~30 min,and the rest of the centrifuged AuNPs with final volume<50 μL were added to freshly prepared 10 mL of 1 mmol·L-1ethanolic thiol solutions of 11-mercapto-1-undecanol,11-mercaptoundecanoic acid,1-undecanethiol,and aged at room temperature for 12 h, respectively.The added alkanethiols amount was estimated to be about 270 molar equivalents to monolayer formation on AuNPs surface at optimum condition.Then,20 mL of 3 mol·L-1NaCl solution was slowly added into this mixture,followed with sonication for 10 s.This process was repeated 5 times at a 1 h interval to maximize the surface functional groups loading amounts.The functionalized AuNPs were centrifuged three times to remove displaced citrates and excess thiols in solution.The AuNPs solutions were dispersed to achieve a final Au concentration of 39.4μg·mL-1.The particle concentration of AuNPs solutions was estimated according to Beers law,with extinction coefficient at 520 nm of 2.78×108mol-1·cm-1[24].The absorption spectra of AuNPs were recorded on a Cary-100 UV (Varian,USA)spectrometer.The quantities of thiols attached on the surface of AuNPs were further estimated to be 3.9%~4.6%compared to unmodified AuNPs,the decomposition of which at about 200℃was tested by thermogravimetric analysis(TGA, Labsys Evo;Setaram,France)in nitrogen gas at a temperature ramp of 10℃·min-1.Transmission electron microscopy(TEM)images of AuNPs were observed on an H-8100 transmission electron microscope(Hitachi,Japan).The AuNPs with and without surface modification were dispersed in deionized water to achieve the same Au concentration of 197 ng·mL-1.Furthermore,ζ potentials of these AuNPs solutions were measured with electrophoretic light scattering method using a Nano-ZS90 Zeta potentiometry(Malvern,UK)at room temperature.

    1.3 Gold nanoparticles treatment and cytotoxicity determination by MTT assay

    HeLa cell line and MGC-803 cell line were cultured with dulbeccos modified eagles medium (DMEM)contained 10%fetal calf serum,streptomycin (1 mg·mL-1)and penicillin(1 000 units·mL-1),at 37℃in water-saturated air supplemented with 5%CO2in CO281R CO2cell culture apparatus(New Brunswick Scientific,USA).Actively growing HeLa cells and MGC-803 cells were seeded at a density of 1×105cells·well-1of a 96-well tissue culture plate and incubated overnight.The cells were treated with AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs for 24 and 48 h in quadruplets at a serial of concentrations(cAu:19.7,49.25,98.5 and 197 ng·mL-1), respectively.Control cells were used without AuNPs treatment.At the end of each exposure,the cytotoxicity level of AuNPs was assessed by MTT assay measured at 570 nm using an Infinite M1000 UV-Vis microplate reader(TECAN,Austria).All experiments were performed 3 times,and the average of all experiments has been shown as cell-viability percentage in comparison with the control experiment, while AuNPs untreated controls were considered as 100%viable.

    1.4Flow cytometric analysis of cell-cycle

    HeLa cells cultured and treated with AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs at Au concentrations of 197 ng·mL-1for 48 h.In brief,1× 105cells were collected and washed in PBS,slowly fixed in 75%ethanol,and kept at-20℃for 1 h.The cell pellet was centrifuged for 5 min at 2 500 r·min-1and the pellet re-suspended in 0.5 mL RNase(Sigma, 100 μg·mL-1)and stored at 37℃about 30 min. Then,propidium iodide(PI,Sigma,0.05 mg·mL-1)was added into the cell pellet and incubated for 30 min at 4℃.Total cellular DNA content was analyzed with a FC500 flow cytometer(Beckman Coulter Inc.,Brea, CA,USA).

    1.5Raman microspectrometry of single living cells treated with AuNPs nanoparticles

    HeLa cells were cultured as above and incubated with AuNPs and surface modified AuNPs at Au concentration of 197 ng·mL-1for 48 h.The living cells were analyzed as monolayers,seeding on the cover glass and washed 3 times with PBS.The Raman spectra of single living cells were recorded on the cover glass by confocal Raman spectrometer(Renishaw, inVia,UK)connected to a Leica microscope with a 514-nm emitting.An excitation beam of~20 mW laser power was focused onto a single cell with a 100× objective,and each Raman spectrum was recorded in the range of 500~1 800 cm-1with integration time of 240 s.All obtained spectra were background corrected and normalized to the 1 450 cm-1band.

    1.6Statistical analysis

    For statistical analyses,each experimental value was compared to its corresponding control.Results were expressed as mean±standard deviation(S.D.). Multi-group comparisons of means were carried out using Student t test.Statistical significance for all tests was set at p<0.05.

    Fig.1  Schematic illustration of the surface modified gold nanoparticles

    2 Results and discussion

    2.1Physicochemical characterization of surface modified of gold nanoparticles

    The citrate-synthesized AuNPs are ones with surface modified by thiols functionalization in aqueous solution.In this most commonly used approach[22-23], three alkanethiols agents with terminal functional groups of-CH3,-COOH and-OH are adsorbed at the surface of AuNPs via citrate-to-thiol exchanges, generating functionalized Au-CH3NPs,Au-COOH NPs and Au-OH NPs,separately(Fig.1).The ligand exchange of thiols for citrate molecules on AuNPs is made due to the substantial difference in energy between Au-S(~168 kJ·mol-1)[25]and Au-O(~8 kJ·mol-1)interactions[26].The self-assembled monolayers with functional groups are formed on surface of AuNPs due to the strong affinity,and structural characterizations of functional groups in overlayer have been probed by attenuated total reflectioninfrared intensity(ATR-IR)features and X-ray photoelectron spectroscopy(XPS)data in previous studies[22-23].Quantitative determination results show that these thiols attached on the surface of AuNPs under optimum condition are approximate,estimated to be 3.9%~4.6%,which is slightly larger than that reported values in literature[22],attributed the smaller size of AuNPs.

    The as-prepared AuNPs are observed under transmission electron microscopy(TEM),showing unmodified AuNPs and surface modified AuNPs are roughly spherical,and the average diameters are all about(15.6±3.2)nm(Fig.2).For further characterization,dynamic light scattering(DLS)results show that corresponding average hydrodynamic diameters of the AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs are(21.59±7.98),(30.68±9.24),(25.84±9.84)and (25.0±10.71)nm,respectively.The difference in the average diameters by the two techniques of DLS and TEM is expected considering that TEM measures the size of the electron-dense Au core,whereas DLS measures the capping agent shell and the hydration sphere of the AuNPs[27].After functionalized with alkanethiols,there are small increases in the hydrohynamic diameter,probably due to the different surface properties imparted by the capping agents. AuNPs are known to exhibit a surface plasmon resonance(SPR)in the visible region,which is caused by incoming electromagnetic radiation indu-cing the formation of a dipole in the nanoparticle[24].As the UV-Vis spectra shown in Fig.3,the well-defined and narrow SPR absorption of the AuNPs solution is localized at 519 nm,which shifts slightly to 521 nm with an insignificant broadening for Au-CH3NPs,Au-COOH NPs and Au-OH NPs solutions.The observation about SPR bands in absorption spectra (Fig.3)indicates that the surface modification does not bring obvious aggregation and difference of particle sizes is very small,which is also proved by TEM(Fig. 2)and DLS results.Both the prepared AuNPs and surface modified AuNPs are wine-red colloidal solution(inset,Fig.2)with the stability over 4 weeks.

    Fig.2  TEM images of AuNPs and surface modified AuNPs

    For further characterization,ζ potential measurements are carried out to identify the surface charge. ζ potential analysis gives potential values of-30.5,-5.43,-44.2 and-34.1 mV for the AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs,respectively.The results reveal that surface of these AuNPs with negative charge.The negative charged spherical AuNPs and surface modified AuNPs with relatively uniform size and stable in the aqueous phase are further used for the interactions studies with cells.

    Fig.3  UV-Vis spectra of AuNPs and surface modified AuNPs

    2.2Cell viability assay and cell-cycle analysis

    The biocompatibility of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs is assessed by MTT assay in vitro.In this work,after treated with AuNPs and surface modified AuNPs at varied Au concentrations from 19.7 to 197 ng·mL-1in vitro,cell death is only observed at the highest concentration of 197 ng·mL-1with both HeLa and MCG-803 cells(Fig. 4).The results indicate that the concentration of 197 ng·mL-1is a critical point for cell viability. Consequently,the following studies on AuNPs-cells interaction are investigated at Au concentration of 197 ng·mL-1.

    As shown in Fig.4,AuNPs exhibit low cytotoxicity at the highest tested Au concentration of 197 ng·mL-1.The viability of HeLa and MCG-803 cells revealed by MTT data is 79.87%±3.71%and 76.84%±3.55%at exposure time of 24 h,which decreases to 72.65%±2.79%and 71.62%±2.33%at exposure time of 48 h,respectively.Therefore,an increase in exposure time decreases the percentage of cell viable in the two cell lines,and the cell viability is still higher than 70%.In contrast,higher biocompatibility is detected with these cells following exposure to surface modified AuNPs at the two exposure time point.The viability of HeLa cells is increased to 93.61%±4.04%,and that of MCG-803 cells is increased to 91.96%±2.83%after 48 h exposure to Au-OH NPs(Fig.4).This suggests that the modification of functional groups onto the surface of AuNPs is able to render them with improved cytocompatibility in both HeLa and MCG-803 cell lines,and the slight cytotoxicity follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs (Fig.4).

    Fig.4  MTT viability assay of(a)HeLa cells and(b)MCG-803 cells exposed to the AuNPs and surface modified AuNPs,respectively

    To further explore the bio-effects of AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs,their exposure induced cell-cycle distribution are analyzed with HeLa cells.It is particularly notable that AuNPs exposure leads to an alteration in cell cycle.Adecrease in G0/G1 phase and an obvious increase in G2/M are noticed after 48 h treatment with AuNPs (Fig.5).The G2/M proportion is 7.74%in control, which increases to 19.43%following exposure to the AuNPs,indicating the AuNPs induce a significant delay of G2/M phase in connection with genotoxicity[28].In contrast,as shown in Fig.5B~D, HeLa cell treatment with surface modified AuNPs at the same dosage,the G2/M proportions increase to 14.05%(Au-CH3NPs),13.58%(Au-COOH NPs)and 13.48%(Au-OH NPs),indicating that the surface modified AuNPs evidently decrease the G2/M phase delay effect of AuNPs.The smaller changes of G2/M arrest induced by Au-CH3NPs,Au-COOH NPs and Au-OH NPs mean higher cytocompatibility and lower genotoxicity surface modified AuNPs,which is consistent with the above MTT assay results.

    2.3Surface-functional-groups-regulated AuNPscells interaction

    Micro-Raman spectroscopy is used to obtain rich biochemical information from individual living cells in a non-invasive way,without the need of labels or other contrast[29-33].As the surface-enhanced Raman spectroscopy(SERS)-active nanoprobe,the endocytic AuNPs are crucial to obtained SERS spectra originated from bio-molecules that are in close proximity to the enhanced electromagnetic field at the Au surface in situ.The Raman spectra of normal HeLa cells and those treated with unmodified and modified AuNPs recorded in the 600~1 800 cm-1regions are compared in Fig.6,and proposed band assignments[30-34]are also included.

    Fig.5  Cell cycle distribution in HeLa cells:(A)HeLa Cells control;HeLa cells exposed to(B)AuNPs;(C)Au-CH3NPs; (D)Au-COOH NPs;(E)Au-OH NPs.The concentrations of Au are 197 ng·mL-1

    Firstly,the influence to phospholipid membrane of the single living HeLa cells is presented in Fig.6. As shown in Fig.6a,the Raman band at 722 cm-1is assigned to the symmetric C-N stretching vibration of phosphatidyl choline headgroup N+(CH3)3[30],which shifts to 726 cm-1and 725 cm-1after treated with AuNPs and Au-CH3NPs,respectively(Fig.6b and c). Whereas,these symmetric stretching vibrations are observed at 721 cm-1with slight shifts when treated with Au-COOH and Au-OH NPs(Fig.6d and e). Besides,the intensities of 958 cm-1asymmetric stretching vibration[31]distinctively decrease after treated with AuNPs and Au-CH3NPs,while insignificant changes are found with the corresponding peaks with Au-COOH and Au-OH NPs(Fig.6d and e). The peaks at 1 067 and 1 125 cm-1are assigned vibrations of C-C chain stretching of the phospholipid membrane(Fig.6a)[32].These Raman peaks move to 1071 cm-1,1 126 cm-1induced by AuNPs(Fig.6b),and are observed at 1 068 cm-1,1 120 cm-1induced by Au-CH3NPs(Fig.6c).The corresponding Raman peaks are shown at 1 068 cm-1,1 123 cm-1for Au-COOH NPs(Fig.6d),and no shifts induced by Au-OH NPs are observed(Fig.6e).Furthermore,the intense mode at 1 449 cm-1assigned to protein and lipid CH deflexed bending mode(Fig.6a)[32]moves to 1 444 cm-1due to treatment of the AuNPs,however,the bands remain approximately constant(Fig.6b~e)with the surface modified Au NPs.The data suggest that polar choline headgroups of phospholipid membrane are target sites for AuNPs and Au-CH3NPs in cells. Besides,the binding of AuNPs and Au-CH3NPs disarrange slightly of C-C chains of phospholipid membrane.In contrast,the special interactions on phospholipid membrane are obviously decreased induced by Au-COOH NPs and Au-OH NPs.

    Fig.6  Raman spectra of single living HeLa cells.(a)HeLa cell control;HeLa cell treated with:(b)AuNPs;(c)Au-CH3NPs; (d)Au-COOH NPs;(e)Au-OH NPs.The concentrations of Au are 197 ng·mL-1

    Secondly,Raman spectral profiles provide information about DNA-AuNPs interactions in HeLa cells.Especially,the band assigned to the phosphate diester(PO2-)symmetric stretching mode of the DNA backbone shifts from 1 097 cm-1(Fig.6a)to 1 102 and 1 100 cm-1after interaction with AuNPs and Au-CH3NPs(Fig.6b and c),respectively.The most significant spectral changes are also observed at 827 cm-1peaks (Fig.6a)corresponding to the phosphodiester(O-P-O) stretching bond of DNA backbone[33-34],which move to 824 cm-1after treatment with AuNPs or Au-CH3NPs (Fig.6b and c).Whereas,the treatments with Au-COOH NPs and Au-OH NPs have no significant contribution for both O-P-O and PO2-stretching vibrations in the spectra(Fig.6d and e).Besides,the vibrational mode observed at 782 cm-1correlates with cytosine ring breathings of pyrimidine,and 1 337 cm-1assigned to adenine(A)and guanine(G)ring stretching[33-34]shift to 778 and 1 331 cm-1induced by Au NPs,respectively(Fig.6b).These Raman bands show insignificant changes as treated with Au-CH3NPs,Au-COOH NPs and Au-OH NPs(Fig.6c~e). According to this observation,the basic assumption is that the backbone and nucleic bases of DNA molecules have chemisorptions occurring on the surface of AuNPs.Whereas,AuNPs modified with-COOH and-OH can obviously decrease this surface interaction.

    Interestingly,exposure to AuNPs induces obvious spectral changes with Raman peaks associated with the polar headgroup of phospholipid membrane,and Raman vibrations are attributed to backbone and nucleic bases of DNA.Therefore,our micro-Raman results provide the evidence in situ that the polar headgroup of phospholipid membrane and backbone and nucleic bases of DNA are probably the targeted sites of AuNPs-cells interaction.The detected difference suggests that AuNPs and surface modifiedAuNPs exposure displays different effect on DNA and phospholipid membrane,following the order AuNPs> Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.The conclusion also supports the cytotoxicity results of Au-CH3NPs attained by MTT assay,and is consistent with the flow cytometry results of cell cycle G2/M arrest.The present studies determine the difference interactions of AuNPs containing a variety of surface functional groups with cells.The surface-functionalgroups-regulated interactions provide the probable mechanism to explain the surface-modified regulated cytotoxicity of AuNPs,although further experiments would be necessary to conclusively demonstrate this.

    3 Conclusions

    Taken togeth er,negative charged spherical and stable AuNPs,Au-CH3NPs,Au-COOH NPs and Au-OH NPs with diameter~16 nm have been prepared. The data suggest that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng·mL-1for both HeLa and MCG-803 cells in vitro,and induce a cell cycle slightly arrest in the G2/ M phase.The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.Our results demonstrate the molecular mechanism in situ that the polar headgroup of phospholipid membrane,backbone and nucleic bases of DNA are the mainly interacted target sites of the AuNPs and Au-CH3NPs in living cells.In contrast, the binding to these sites are insignificant induced by Au-COOH NPs and Au-OH NPs.

    Acknowledgements:The Authors are grateful to Professor SHEN Pan-Wen at Nankai University for providing us long-term support,attention and guidance.

    References:

    [1]Yeh Y C,Creran B,Rotello V M.Nanoscale,2012,4:1871 -1880

    [2]Daniel M C,Astruc D.Chem.Rev.,2004,104:293-346

    [3]Turkevich J,Stevenson P C,Hillier J.Discuss.Faraday Soc., 1951,11:55-75

    [4]Frens G.Nat.Phys.Sci.,1973,241:20-22

    [5]Giljohann D A,Seferos,D S,Daniel W L,et al.Angew. Chem.Int.Ed.,2010,49:3280-3294

    [6]Wang Z,Tan B,Hussain I,et al.Langmuir,2007,23:885 -895

    [7]Ding Y,Bian X,Yao W,et al.ACS Appl.Mater.Inter., 2010,2:1456-1465

    [8]Huang P,Bao L,Zhang C,et al.Biomaterials,2011,32: 9796-9809

    [9]Wu P,Hwang K,Lan T,et al.J.Am.Chem.Soc.,2013,135: 5254-5257

    [10]Bartczak D,Nitti S,Millar T M,et al.Nanoscale,2012,4: 4470-4472

    [11]Park J,Park J H,Ock K S,et al.J.Colloid Interface Sci., 2011,363:105-113

    [12]Ghosh R,Singh L C,Shohet J M,et al.Biomaterials, 2013,34:807-816

    [13]Wang F,Wang Y-C,Dou S,et al.ACS Nano,2011,5:3679 -3692

    [14]Heo D N,Yang D H,Kwon K.Biomaterials,2012,33:856 -866

    [15]Mieszawska A J,Mulder W J M,Fayad Z A,et al.Mol. Pharmaceutics,2013,10:831-847

    [16]Jans H,Huo Q.Chem.Soc.Rev.,2012,41:2849-2866

    [17]Pan Y,Neuss S,Leifert A,et al.Small,2007,3:1941-1949

    [18]Goodman C M,McCusker C D,Yilmaz T,et al.Bioconjugate Chem.,2004,15:897-900

    [19]Connor E E,Mwamuka J,Gole A,et al.Small,2005,1:325 -327

    [20]Pan Y,Leifert A,Ruau D,et al.Small,2009,5:2067-2076

    [21]Avvakumova S,Scari G,Porta F.RSC Adv.,2012,2:3658-3661

    [22]Park J-W,Shumaker-Parry J S.ACS Nano,2015,9:1665 -1682

    [23]Zhou Y,Wang S X,Zhang K,et al.Angew.Chem.,2008, 120:7564-7566

    [24]Zhao W,Chiuman W,Lam J C F,et al.J.Am.Chem.Soc., 2008,130:3610-3618

    [25]Nuzzo R G,Zegarski B R,Dubois L H.J.Am.Chem.Soc., 1987,109:733-740

    [26]Chen F,Li X,Hihath J,et al.J.Am.Chem.Soc.,2006,128: 15874-15881

    [27]Jiang B P,Zhang L,Zhu Y,et al.J.Mater.Chem.B, 2015,3:3767-3776

    [28]Jeyaraj M,Arun R,Sathishkumar G,et al.Mater.Res.Bull., 2014,52:15-24

    [29]Puppels G J,de Mul F F,Otto C,et al.Nature,1990,347: 301-303

    [30]Konorov S O,Schulze H G,Piret J M,et al.J.Raman Spectrosc.,2011,42:1135-1141

    [31]Bush S F,Adams R G,Levin I W.Biochemistry,1980,19: 4429-4436

    [32]Notingher I,Verrier S,Haque S,et al.Biopolymer,2003,72: 230-240

    [33]Zoladek A,Pascut F C,Patel P,et al.J.Raman Spectrosc., 2011,42:251-258

    [34]Pyrgiotakis G,Kundakcioglu O E,Pardalos P M,et al.J. Raman Spectrosc.,2011,42:1222-1231

    Comparative Interaction Mechanisms Between Cells and Gold Nanoparticles Modified with Different Chemical Functional Groups

    WEN Chang-Chun LEI Wen-Qi SHEN Xing-Can*JI Shi-Chen JIANG Bang-Ping LIANG Hong*
    (Key Laboratory of Medicinal Chemical Resources and Molecular Engineering,Ministry of Education,Guangxi Normal University,Guilin 541004,China)

    Chemical functional groups of-CH3,-COOH and-OH have been introduced to the surface of AuNPs, separately.The AuNPs,Au-OH NPs,Au-COOH NPs and Au-CH3NPs are spherical with dimension of(15.6± 3.2)nm,displaying negativeζpotentials.The cytotoxicity of these AuNPs has been evaluated by methylthiazoletetrazolium(MTT)assay against Hela cells and MCG-803 cells in vitro,separately.MTT data reveal that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng·mL-1for both HeLa and MCG-803 cells in vitro.The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs>Au-CH3NPs>Au-COOH NPs≈Au-OH NPs.Cell cycle analysis indicates that AuNPs cause cell cycle slightly arrest at the G2/M phase.Micro-Raman spectra of individual living HeLa cells demonstrate that the backbone and nucleic bases of DNA as well as the polar headgroup of phospholipid in cells are the probable target binding sites of AuNPs and Au-CH3NPs.Whereas,the interfacial interactions are significantly reduced when cells are treated with Au-COOH NPs and Au-OH NPs.Our results on the interaction mechanisms between AuNPs and cells demonstrate that AuNPs modified with surface functional groups of-COOH or-OH can improve their cytocompatibility.

    gold nanoparticles(AuNPs);surface functional groups;cycotoxicity;molecular mechanisms

    O614.123

    A

    100-4861(2015)09-1903-10

    10.11862/CJIC.2015.253

    2015-06-18。收修改稿日期:2015-08-04。

    國家自然科學基金(No.21161003,21364002),廣西自然科學基金杰青(2013GXNSFGA019001),教育部新世紀優(yōu)秀人才支持計劃(NCET-13-0743),藥用資源化學與藥物分子工程教育部重點實驗室主任基金(2015-A)資助項目。

    *通訊聯(lián)系人。E-mail:xcshen@mailbox.gxnu.edu.cn;hliang@gxnu.edu.cn,Tel:+86-0773-5846273;會員登記號:05M140629103。

    猜你喜歡
    官能團藥用教育部
    熟記官能團妙破有機題
    酒釀搭配藥用最養(yǎng)生
    在對比整合中精準把握有機官能團的性質(zhì)
    試論藥用觀賞植物在園林綠化配置中的應用
    教育部召開座談會推進一流大學和一流學科建設(shè)
    新課程研究(2016年1期)2016-12-01 05:52:14
    蕨類植物在利尿通淋中的藥用研究(二)
    蒙藥藥用資源
    污泥中有機官能團的釋放特性
    逆向合成分析法之切斷技巧
    教育部:高考地方性加分項目2018年減至35個
    欧美精品一区二区免费开放| 日日夜夜操网爽| 十分钟在线观看高清视频www| 香蕉国产在线看| 亚洲精华国产精华精| 嫩草影院精品99| 在线免费观看的www视频| 久久欧美精品欧美久久欧美| 一边摸一边做爽爽视频免费| 国产熟女xx| 日日爽夜夜爽网站| 国产高清国产精品国产三级| 久久久国产成人精品二区 | 最新美女视频免费是黄的| 精品久久久久久电影网| 国产欧美日韩一区二区精品| 欧美乱妇无乱码| 国产精品 国内视频| 一夜夜www| 99国产综合亚洲精品| 女生性感内裤真人,穿戴方法视频| 国产精品免费一区二区三区在线| 男女下面进入的视频免费午夜 | 国产黄a三级三级三级人| 精品乱码久久久久久99久播| 亚洲片人在线观看| 一区福利在线观看| 欧美在线黄色| 波多野结衣av一区二区av| 神马国产精品三级电影在线观看 | 国产欧美日韩一区二区三区在线| 夜夜看夜夜爽夜夜摸 | av欧美777| 国产成人系列免费观看| 亚洲成人免费av在线播放| 18禁观看日本| 久久人人97超碰香蕉20202| 国产欧美日韩一区二区三区在线| 亚洲中文字幕日韩| 中文亚洲av片在线观看爽| 久久国产精品影院| 国产精品免费视频内射| 精品福利观看| 国产精品98久久久久久宅男小说| 午夜91福利影院| 久久久久久久久中文| 免费一级毛片在线播放高清视频 | 久久人人爽av亚洲精品天堂| 国产精品 欧美亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看| 十分钟在线观看高清视频www| 色婷婷av一区二区三区视频| 日本撒尿小便嘘嘘汇集6| 99久久精品国产亚洲精品| 人人妻人人澡人人看| 日本wwww免费看| 三级毛片av免费| 99香蕉大伊视频| 搡老乐熟女国产| 老司机福利观看| 欧美一级毛片孕妇| 成人三级做爰电影| 一级片'在线观看视频| 欧美中文日本在线观看视频| 国产亚洲欧美98| 亚洲成国产人片在线观看| 亚洲第一欧美日韩一区二区三区| 99久久综合精品五月天人人| 国产成人欧美在线观看| 欧美中文日本在线观看视频| 久久久国产成人精品二区 | 久久久久久人人人人人| 亚洲精品在线美女| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 99精品久久久久人妻精品| 欧美乱妇无乱码| 91国产中文字幕| 嫁个100分男人电影在线观看| 99riav亚洲国产免费| a在线观看视频网站| 午夜福利在线观看吧| 久久久久九九精品影院| 69精品国产乱码久久久| 69精品国产乱码久久久| 美女 人体艺术 gogo| 18禁黄网站禁片午夜丰满| x7x7x7水蜜桃| 久久久国产成人精品二区 | 亚洲成人精品中文字幕电影 | 欧美黄色片欧美黄色片| 一二三四社区在线视频社区8| 长腿黑丝高跟| 久久久精品欧美日韩精品| 一个人免费在线观看的高清视频| 久久中文字幕人妻熟女| 免费观看人在逋| 亚洲七黄色美女视频| 免费搜索国产男女视频| 视频在线观看一区二区三区| 18美女黄网站色大片免费观看| 嫁个100分男人电影在线观看| 男人操女人黄网站| 无人区码免费观看不卡| 成年女人毛片免费观看观看9| 国产亚洲欧美精品永久| 熟女少妇亚洲综合色aaa.| 国产精品 欧美亚洲| 国产在线精品亚洲第一网站| 精品一区二区三区av网在线观看| 精品久久久久久久久久免费视频 | 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 黄网站色视频无遮挡免费观看| 不卡一级毛片| www.自偷自拍.com| 国产av在哪里看| 日韩精品免费视频一区二区三区| 亚洲视频免费观看视频| 十八禁网站免费在线| 国产黄a三级三级三级人| 国产精品自产拍在线观看55亚洲| 亚洲精品中文字幕一二三四区| 久久精品91无色码中文字幕| 国产精华一区二区三区| 国产国语露脸激情在线看| 国产区一区二久久| 久久久国产一区二区| 久久午夜综合久久蜜桃| 国产成人av激情在线播放| 精品一区二区三区av网在线观看| 欧美最黄视频在线播放免费 | 久久精品91蜜桃| 黄网站色视频无遮挡免费观看| 久热爱精品视频在线9| 亚洲精品在线美女| 好男人电影高清在线观看| 亚洲国产精品sss在线观看 | 最近最新中文字幕大全免费视频| 久久精品91无色码中文字幕| 久久久国产成人免费| 性少妇av在线| 久久久国产一区二区| 亚洲精品国产色婷婷电影| 人妻丰满熟妇av一区二区三区| 亚洲av成人一区二区三| 无限看片的www在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 999精品在线视频| 精品人妻1区二区| 久久国产精品男人的天堂亚洲| 一区福利在线观看| 天堂动漫精品| 欧美日韩亚洲综合一区二区三区_| 桃红色精品国产亚洲av| 又大又爽又粗| 如日韩欧美国产精品一区二区三区| 亚洲男人天堂网一区| 久久久久久大精品| 少妇裸体淫交视频免费看高清 | av中文乱码字幕在线| avwww免费| 免费高清视频大片| 日韩视频一区二区在线观看| а√天堂www在线а√下载| 色精品久久人妻99蜜桃| 久99久视频精品免费| 日本wwww免费看| 熟女少妇亚洲综合色aaa.| 久久热在线av| 午夜91福利影院| 亚洲av五月六月丁香网| 丰满饥渴人妻一区二区三| 18禁观看日本| 美女午夜性视频免费| 欧美老熟妇乱子伦牲交| 精品电影一区二区在线| 日韩成人在线观看一区二区三区| av网站免费在线观看视频| 美女高潮到喷水免费观看| 久久人妻福利社区极品人妻图片| 十八禁人妻一区二区| 18美女黄网站色大片免费观看| 精品国产一区二区久久| 午夜老司机福利片| 高清av免费在线| 黄片播放在线免费| 无限看片的www在线观看| 亚洲三区欧美一区| www.自偷自拍.com| 久久狼人影院| 免费少妇av软件| 深夜精品福利| 久久中文字幕一级| cao死你这个sao货| 国产欧美日韩综合在线一区二区| 日韩一卡2卡3卡4卡2021年| 校园春色视频在线观看| 亚洲 欧美一区二区三区| 不卡av一区二区三区| 成人特级黄色片久久久久久久| 日韩精品青青久久久久久| avwww免费| 天堂动漫精品| 高清黄色对白视频在线免费看| 亚洲一卡2卡3卡4卡5卡精品中文| av网站在线播放免费| 免费观看精品视频网站| 老司机在亚洲福利影院| 麻豆久久精品国产亚洲av | 大香蕉久久成人网| 精品久久久久久电影网| 亚洲第一欧美日韩一区二区三区| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 国产精品久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 日本精品一区二区三区蜜桃| 亚洲精品中文字幕一二三四区| 99精品久久久久人妻精品| 成人18禁在线播放| 法律面前人人平等表现在哪些方面| 麻豆一二三区av精品| 久热爱精品视频在线9| 最好的美女福利视频网| 国产欧美日韩精品亚洲av| 欧美在线一区亚洲| 美女 人体艺术 gogo| 天堂影院成人在线观看| 国产亚洲精品一区二区www| 国产视频一区二区在线看| 精品电影一区二区在线| 欧美黑人精品巨大| 亚洲狠狠婷婷综合久久图片| 国产精品偷伦视频观看了| 精品久久久久久成人av| 日日摸夜夜添夜夜添小说| 黑人巨大精品欧美一区二区mp4| 少妇粗大呻吟视频| 亚洲第一av免费看| 午夜免费观看网址| 在线看a的网站| 国产成人av教育| 搡老乐熟女国产| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品国产一区二区电影| 在线观看一区二区三区| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡免费网站照片 | 国产亚洲精品一区二区www| 国产成人欧美| 婷婷六月久久综合丁香| 99国产综合亚洲精品| 香蕉国产在线看| 黑人猛操日本美女一级片| 日韩欧美三级三区| 88av欧美| 亚洲精品中文字幕一二三四区| 交换朋友夫妻互换小说| 国产熟女午夜一区二区三区| www国产在线视频色| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸 | 久久久精品欧美日韩精品| 黄片大片在线免费观看| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜 | 久久中文字幕一级| 99热国产这里只有精品6| 50天的宝宝边吃奶边哭怎么回事| 757午夜福利合集在线观看| av天堂在线播放| 免费高清视频大片| 91国产中文字幕| av天堂久久9| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲| 国产伦人伦偷精品视频| 青草久久国产| 久久国产精品人妻蜜桃| 午夜激情av网站| 国产成人系列免费观看| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影 | 国产精品嫩草影院av在线观看 | 亚洲黑人精品在线| 欧美黄色淫秽网站| 在线国产一区二区在线| 91久久精品电影网| 欧美午夜高清在线| 午夜福利免费观看在线| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 女同久久另类99精品国产91| 国产不卡一卡二| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 88av欧美| 1024手机看黄色片| 天堂网av新在线| 亚洲精品在线美女| 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 精品人妻一区二区三区麻豆 | 男人舔女人下体高潮全视频| 国产精品久久久久久人妻精品电影| 美女高潮的动态| 国产在线男女| 亚洲专区中文字幕在线| 变态另类丝袜制服| 1024手机看黄色片| 乱码一卡2卡4卡精品| 日韩中文字幕欧美一区二区| av欧美777| 两个人视频免费观看高清| 婷婷丁香在线五月| 亚洲欧美日韩东京热| av国产免费在线观看| 日本a在线网址| 男人狂女人下面高潮的视频| 日本熟妇午夜| 精品久久久久久久久亚洲 | 最近视频中文字幕2019在线8| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 欧美+亚洲+日韩+国产| 色哟哟·www| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 亚洲成人久久性| 哪里可以看免费的av片| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 长腿黑丝高跟| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 国产乱人视频| 午夜福利免费观看在线| 性欧美人与动物交配| 757午夜福利合集在线观看| 国产不卡一卡二| 色播亚洲综合网| 久久精品国产亚洲av天美| 在线观看66精品国产| 日韩欧美三级三区| 一本一本综合久久| 欧美潮喷喷水| 久久久久亚洲av毛片大全| 最近视频中文字幕2019在线8| 国产亚洲欧美98| 色5月婷婷丁香| 美女大奶头视频| 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 日本 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩黄片免| 少妇的逼好多水| 老司机午夜十八禁免费视频| 欧美日本视频| 色在线成人网| 岛国在线免费视频观看| 免费黄网站久久成人精品 | av视频在线观看入口| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 国产精品久久久久久精品电影| 国产精品久久视频播放| 国产高清三级在线| 在线观看av片永久免费下载| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 国产精品三级大全| 国内精品久久久久久久电影| 少妇熟女aⅴ在线视频| 久久中文看片网| 午夜激情欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品久久久久久噜噜老黄 | 亚洲成人免费电影在线观看| АⅤ资源中文在线天堂| 国产成人aa在线观看| 日日摸夜夜添夜夜添av毛片 | 亚洲乱码一区二区免费版| 男女之事视频高清在线观看| 99久国产av精品| 国产白丝娇喘喷水9色精品| 免费电影在线观看免费观看| 国产淫片久久久久久久久 | 精品一区二区三区人妻视频| 午夜福利免费观看在线| 亚洲精品456在线播放app | 日本熟妇午夜| 免费av毛片视频| 午夜精品久久久久久毛片777| 看片在线看免费视频| 美女大奶头视频| 国产精品嫩草影院av在线观看 | bbb黄色大片| 亚洲国产日韩欧美精品在线观看| 日韩中字成人| 真人一进一出gif抽搐免费| 国产精品人妻久久久久久| av国产免费在线观看| 嫁个100分男人电影在线观看| 精品久久久久久久人妻蜜臀av| 美女免费视频网站| 亚洲五月婷婷丁香| 免费一级毛片在线播放高清视频| 亚洲乱码一区二区免费版| 亚洲精品影视一区二区三区av| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 成年女人永久免费观看视频| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 亚洲自偷自拍三级| 午夜激情欧美在线| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 精品人妻熟女av久视频| 又黄又爽又免费观看的视频| 亚洲,欧美精品.| 欧美黄色淫秽网站| 在线天堂最新版资源| 琪琪午夜伦伦电影理论片6080| 一级av片app| 亚洲精品在线美女| av在线天堂中文字幕| 国产精品亚洲av一区麻豆| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 色av中文字幕| 日韩人妻高清精品专区| 毛片一级片免费看久久久久 | 欧美乱妇无乱码| 成人永久免费在线观看视频| 丰满的人妻完整版| 精品无人区乱码1区二区| 少妇高潮的动态图| 九九热线精品视视频播放| 内地一区二区视频在线| 91在线观看av| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 国产色爽女视频免费观看| 无遮挡黄片免费观看| 麻豆成人午夜福利视频| 精品福利观看| 最近视频中文字幕2019在线8| 级片在线观看| 精品久久久久久,| 青草久久国产| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看| 十八禁人妻一区二区| 天天一区二区日本电影三级| 琪琪午夜伦伦电影理论片6080| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 国产午夜精品久久久久久一区二区三区 | 色在线成人网| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | 全区人妻精品视频| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 午夜免费成人在线视频| 毛片女人毛片| 激情在线观看视频在线高清| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 婷婷色综合大香蕉| 两人在一起打扑克的视频| 精品国产亚洲在线| 一区二区三区免费毛片| 在线观看舔阴道视频| 精品国产三级普通话版| 亚洲男人的天堂狠狠| 五月伊人婷婷丁香| 国产成人av教育| 亚洲一区二区三区色噜噜| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 综合色av麻豆| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 成年免费大片在线观看| 欧美一区二区精品小视频在线| www.www免费av| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| www.999成人在线观看| 久久久久精品国产欧美久久久| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 嫩草影院入口| 欧美不卡视频在线免费观看| 69人妻影院| 搞女人的毛片| 免费看美女性在线毛片视频| 看片在线看免费视频| www.999成人在线观看| 国产aⅴ精品一区二区三区波| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美精品综合久久99| 国产三级在线视频| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 久久久色成人| 亚洲电影在线观看av| 桃红色精品国产亚洲av| 一级黄色大片毛片| 91久久精品国产一区二区成人| 成人永久免费在线观看视频| 极品教师在线免费播放| 免费av观看视频| 久久久久久久午夜电影| 日本一本二区三区精品| 久久久久久久久大av| 99久久成人亚洲精品观看| 国产精品av视频在线免费观看| 精品午夜福利视频在线观看一区| 欧美又色又爽又黄视频| 国产人妻一区二区三区在| 亚洲中文字幕日韩| 亚洲精华国产精华精| 成年版毛片免费区| 搡老妇女老女人老熟妇| 欧美日韩国产亚洲二区| 综合色av麻豆| 在线国产一区二区在线| 国产成人福利小说| 天堂网av新在线| 亚洲av成人av| 看免费av毛片| 欧美精品国产亚洲| 国产 一区 欧美 日韩| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 99久久精品热视频| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲男人的天堂狠狠| 一区福利在线观看| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 如何舔出高潮| 少妇丰满av| 亚洲不卡免费看| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 搡老岳熟女国产| 亚洲男人的天堂狠狠| 婷婷六月久久综合丁香| 黄色丝袜av网址大全| 欧美午夜高清在线| av在线老鸭窝| 十八禁网站免费在线| 免费观看精品视频网站| 色哟哟·www| 18+在线观看网站| 欧美一区二区亚洲| 特级一级黄色大片| 久久6这里有精品| 少妇高潮的动态图| 在线观看午夜福利视频| 欧美三级亚洲精品| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 国产午夜精品久久久久久一区二区三区 | 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 欧美xxxx性猛交bbbb| 免费看a级黄色片| 老司机午夜福利在线观看视频| 少妇丰满av| 黄色丝袜av网址大全| 亚州av有码| 窝窝影院91人妻| 久久久久久大精品| 亚洲无线观看免费| 男女之事视频高清在线观看| 婷婷亚洲欧美| 亚洲精品久久国产高清桃花| 在线天堂最新版资源|