• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羧酸橋聯(lián)的四核鑭系簇合物的磁熱效應(yīng)和慢磁弛豫

    2015-12-01 02:36:59劉遂軍崔雨宋偉朝王慶倫卜顯和
    關(guān)鍵詞:熱效應(yīng)鐵磁羧酸

    劉遂軍 崔雨 宋偉朝 王慶倫 卜顯和*,

    (1南開大學(xué)化學(xué)系,金屬與分子基材料化學(xué)天津市重點(diǎn)實(shí)驗(yàn)室,天津化學(xué)化工協(xié)同創(chuàng)新中心,天津300071)

    (2江西理工大學(xué)冶金與化學(xué)工程學(xué)院,贛州341000)

    羧酸橋聯(lián)的四核鑭系簇合物的磁熱效應(yīng)和慢磁弛豫

    劉遂軍1,2崔雨1宋偉朝1王慶倫1卜顯和*,1

    (1南開大學(xué)化學(xué)系,金屬與分子基材料化學(xué)天津市重點(diǎn)實(shí)驗(yàn)室,天津化學(xué)化工協(xié)同創(chuàng)新中心,天津300071)

    (2江西理工大學(xué)冶金與化學(xué)工程學(xué)院,贛州341000)

    在水熱條件下,通過使用羧酸和螯合配體得到了一個(gè)系列的四核鑭系簇合物,即[Ln4(mnba)12(tzp)2(H2O)2](Ln=Gd(1),Tb (2),Er(3);Hmnba=間硝基苯甲酸;tzp=2-(1H-1,2,4-三唑-3-基)吡啶))。這3個(gè)化合物是同構(gòu)的,且具有線性的四核簇結(jié)構(gòu)。磁性研究表明,化合物1和3中簇內(nèi)鑭系離子之間是弱鐵磁耦合的,但化合物2中鋱離子之間是弱的反鐵磁相互作用和(或)鋱離子激發(fā)的斯塔克能級(jí)的去布居?;衔?具有較大的磁熱效應(yīng)(-ΔSmmax=20.6 J·kg-1·K-1)。交流磁化率測試表明化合物3展現(xiàn)出頻率和溫度依賴的虛部信號(hào),這是慢磁弛豫的典型特征,原因是鉺離子的強(qiáng)各向異性和鐵磁耦合的存在。

    羧酸;鑭系簇合物;磁熱效應(yīng);慢磁弛豫

    0 Introduction

    The investigation of lanthanide(Ln)clusters has recently become an active field for their both fascinating structures and exceptional applications as molecular coolers and single-molecule magnets(SMMs)[1-6]. On one hand,GdⅢclusters could be regarded as candidate materials for magnetic refrigerators because of negligible magnetic anisotropy(D),large spin ground state(S)and low-lying excited spin states of GdⅢion and weak couplings between GdⅢions[7-11].Generally, the entropy change(-ΔSm)is employed to represent the magnetocaloric effect(MCE)of molecular magnetorefrigerants[12-13].The magnetic intensity(Mw/NGd)and magnetic interaction(θ)between GdⅢions are proposed to be main factors to affect MCE for the Gd-type magnetic refrigerants[14-16].To reduce Mw/NGdratio and |θ|value of GdⅢcomplexes,the utilization of light ligands to synthesize GdⅢclusters supply an effective tool.

    On the other hand,Ln-based SMMs with large energy barriers have been a hot research topic for molecular magnets compared with 3d/3d-4f based SMMs[17-19].LnⅢclusters(especially for TbⅢ,DyⅢ,HoⅢand ErⅢtypes)have recently become favorable candidates to explore SMMs,since the S and D of LnⅢions could lead to an relatively large anisotropic energy barrier(Ueff)that prevents the reversal of the molecular magnetization[20-21].

    Till now,most of Ln-clusters were constructed from Schiff-base and calix[4]arenes ligands with their chelating characteristic[22-25].The mixed-ligand strategy, especially the utilization of carboxylates and N-donor ligands,has been employed to construct discrete clusters and coordination polymers as a powerful synthetic approach,while the design and synthesis of discreteLn-clusterswithuniquestructuresand magnetic properties still remain a great challenge because of different affinities and coordination capabilities of the LnⅢions to O-donors and N-donors[26-27].

    As an extension of our studies on the synthesis andmagneticinvestigationofLnⅢcomplexes[28-31],herein, we choose sterically hindered Hmnba(m-nitrobenzoic acid)andcornerligands2-(1H-1,2,4-triazol-3-yl) pyridine)(tzp)to construct low-dimensional structures (Scheme 1).Fortunately,a series of tetranuclear LnⅢclusters,namely[Ln4(mnba)12(tzp)2(H2O)2](Ln=Gd(1), Tb(2)and Er(3))were successfully synthesized.

    Scheme 1Ligands used for the synthesis of 1~3

    Magnetic analyses reveal that complex1 is weakly ferromagnetic coupled with-ΔSmmax=20.6 J·kg-1·K-1for ΔH=7 T at 2.0 K and complex 3 displays slow relaxation of the magnetization.Strong quantum tunnellingeffectexcludestheexistenceofslow magnetic relaxation for 2 although 2 kOe dc field was exerted.

    1 Experimental

    1.1Materials and instrumentation

    All chemicals were of reagent grade and used as purchasedwithoutfurtherpurification.Elemental analysis(C,H and N)was performed on a Perkin-Elmer 240C analyzer(Perkin-Elmer,USA).The X-ray powder diffraction(PXRD)spectra were recorded on a Rigaku D/Max-2500 diffractometer at 60 kV,300 mA for a Cu-target tube and a graphite monochromator. Simulation of the PXRD spectra were carried out by the single-crystal data and diffraction-crystal module of the Mercury(Hg)program available free of charge via the Internet at http://www.iucr.org.IR spectra were measured in the range of 400~4 000 cm-1on a Tensor 27 OPUS FT-IR spectrometer using KBr pellets (Bruker,German).Magnetic data were measured by a Quantum Design MPMS-XL-7 SQUID magnetometer. Diamagnetic correctionswereestimatedbyusing Pascalconstantsandbackgroundcorrectionsby experimental measurement on sample holders.

    1.2Preparation of 1~3

    [Gd4(mnba)12(tzp)2(H2O)2](1):A mixture of Gd2O3(181 mg,0.5 mmol),Hmnba(334 mg,2 mmol)and tzp(66.6 mg,0.5 mmol)in 10 mL H2O was sealed in a Teflon-lined autoclave and heated to 160℃for 2days.Aftertheautoclavewascooledtoroom temperature in 12 h,Cubic colorless crystals were collected with 30%yield based on GdⅢ.Anal.Calcd. for C98H64O50N20Gd4(%):C,39.89;H,2.19;N,9.49. Found(%):C,39.78;H,2.78;N,9.35.IR(KBr,cm-1): 3579m,3504m,3161m,3087s,2 901m,2 765w,1580 s,1 483s,1 344s,1 263s,1 166m,1 080s,995w,912m, 831m,788s,725s,651m,576w,523w,416m.

    [Tb4(mnba)12(tzp)2(H2O)2](2):The same procedure as that for 1 was used for this complex except that Gd2O3(181 mg,0.5 mmol)was replaced by Tb2O3(183 mg,0.5 mmol)and the holding time is 3 days.Block colorless crystals were collected with~40%yield based on TbⅢ.Anal.Calcd.for C98H64O50N20Tb4(%):C, 39.80;H,2.18;N,9.47.Found(%):C,40.13;H,2.89; N,9.60.IR(KBr,cm-1):3494w,3157w,3080m,2893 m,2767w,1598s,1517s,1415s,1350s,1266m,1082 m,995w,910w,790m,723s,649w.

    [Er4(mnba)12(tzp)2(H2O)2](3):The same procedure as that for 1 was used for this complex except that Gd2O3(181 mg,0.5 mmol)was replaced by Er2O3(191 mg,0.5 mmol)and the holding time is 3 days.Block pink crystals were collected with~30%yield based on ErⅢ.Anal.Calcd.for C98H64O50N20Er4(%):C,39.36; H,2.16;N,9.37.Found(%):C,39.64;H,2.78;N, 9.43.IR(KBr,cm-1):3496w,3163w,3083m,2891w, 1 608s,1 525s,1 478s,1 410s,1 346s,1 267m,1 166w, 1 079m,1 001w,909w,830w,719s,650m,584w, 518w,413w.

    1.3Crystallographic data and structure refinements

    The single-crystal X-ray diffraction data of 1~3 were collected on a Rigaku SCX-mini diffractometer at 293(2)K with Mo Kα radiation(λ=0.071 073 nm) by ω scan mode.The program CrystalClear[32]was used for the integration of the diffraction profiles.The structures were solved by direct method using the SHELXS program of the SHELXTL package and refined by full-matrix least-squares methods with SHELXL[33].The non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F2.All hydrogen atoms of ligands were generated theoretically at the specific atoms and refined isotropically with fixed thermal factors.The hydrogen atoms of water in 1~3 were added by the difference Fourier maps and refined with suitable constrains.A summary of the crystallographic data,data collection,and refinement parameters for 1~3 is provided in Table 1.

    CCDC:978830,1;978831,2;978832,3.

    Table 1Crystal data and structure refinements for 1~3

    Continued Table 1

    2 Results and discussion

    2.1Synthesis

    The mix-ligand strategy has been employed to constructthelinearLn-clusterssuccessfully.As effective terminal co-ligands,tzp plays a key role in theformationofdiscretelanthanideclusters. Compared with lanthanide salts,the use of Ln2O3provides not only a slow-release LnⅢion source but also a pH regulator of the reactions.

    2.2Description of crystal structures

    Single crystal X-ray analysis reveals that 1~3 are isostructural,thus only the structure of 1 is described in detail.Complex 1 crystallizes in the triclinic space group P1 with the asymmetric unit including two GdⅢions,six mnba ligands,one tzp ligand and one coordinated H2O.Gd1 is located in a seven coordinated environment constructed with seven O atoms from one water molecule and six carboxylates.Gd2 center exhibits an eight-coordinated environment with two N atoms of one tzp ligand and six carboxylate O atoms from five mnba ligands.Gd1 and Gd2 are connected by four carboxylate groups with syn,syn-μ2-η1∶η1to form a linear Gd4cluster(Fig.1).

    Fig.1 View of the molecular structure showing 30% probability thermal ellipsoids of 1

    2.3Magnetic studies

    The magnetic properties of 1~3 were studied by solid state magnetic susceptibility measurements in 2.0~300 K range at 1 kOe dc field and the isothermal field-dependent magnetizations M(H)at fields up to 70 kOe at 2.0 K.Before the magnetic measurements of 1~3,their crushed crystalline samples were used to measure X-ray powder diffraction(PXRD,Fig.S1,SI) to confirm their phase purities.

    Fig.2 Plots of χMT vs T for 1~3

    Complex 1 contains isotropic GdⅢ(f7)with a ground state8S7/2,and the first excited state6P7/2is very high in energy,while complexes 2 and 3 include other anisotropic LnⅢions.Generally,the magnetism of lanthanide(Ln)clusters is very difficult to explain because of the exchange-coupling and large orbital contributions as well as the crystal field perturbation[34-35].The magnetic properties in the form of χMT vs T plots of 1~3 are shown in Fig.2.The room-temperature χMT products estimated as 31.45(1),46.39(2)and 47.96 (3)emu·mol-1·K are in relative good agreement with the presence of four lanthanide metal ions:four GdⅢions(S=7/2,L=0,J=7/2,g=2,C=7.88 emu·mol-1·K) for 1,four TbⅢions(S=3,L=3,J=6,g=3/2,C=11.82 emu·mol-1·K)for 2 and four ErⅢions(S=3/2,L=6,J=15/2,g=6/5,C=11.48 emu·mol-1·K)for 3.For 1,as the temperature decreases,the χMT value stays nearly constant in the high temperature range with a value of 30.86 emu·mol-1·K at 14 K.Upon further cooling the temperature to 2.0 K,χMT abruptly increases to a maximum value(32.31 emu·mol-1·K,indicating the ferromagnetic(F)interaction between GdⅢions in the Gd4cluster.For 2,up lowering of the temperature to 2.0 K,χMT value stays nearly constant at high temperatures,and then decreases sharply to a minimum value(28.62 emu·mol-1·K),which indicates weak antiferromagnetic(AF)interaction in the Tb4cluster and/or depopulation of the TbⅢexcited Stark sublevels.The Stark sub-levels of the anisotropic TbⅢions may be progressively thermally depopulated leading to a decrease of the χMT value.For 3,as the temperature decreases,the value ofχMT slowly decreases down to a minimum value of 39.96 emu·mol-1·K at 4.5 K.On cooling the temperature to 2 K,χMT abruptly increases to the maximum value(41.17 emu·mol-1·K), indicating ferromagnetic coupling between ErⅢions in the Er4cluster.

    Fig.3 M vs H curves of 1(a),2(b)and 3(c)at 2.0 K

    The magnetizations slowly increase and tend to a value of 27.77Nβ at 70 kOe,and the experimental magnetization plot of 1 is nearly consistent with the red line that presents the Brillouin function for four magnetically uncoupled GdⅢions with S=7/2 and g= 2.0,which further confirms the weak F behavior for 1 as similar literatures[3-4](Fig.3a).The field dependences of the magnetizations at 2.0 K for 2 and 3 show rapid increases of the magnetizations at low fields,reaching about 16.13Nβ and 19.87Nβ at 10 kOe,and linear increases at high fields without achieving a complete saturation at 70 or 50 kOe(22.90Nβ for 2 and 23.57 Nβ for 3,Fig.3b and 3c),which could be explained by the fact that the depopulation of the Stark levels of the LnⅢ2S+1LJground state under the ligand-field perturbation produces a much smaller effective spin.For 2 and 3,the M vs H/T(Fig.4)data at 2~4 K shows non-superposition plots and a rapid increase of the magnetization at low fields without any sign of saturation at 50 kOe.The reason is most likely because of anisotropy and important crystal-field effect at the TbⅢor ErⅢions,which eliminates the degeneracy of the7F6and4I15/2ground states.Reduced magnetization curves do not superimpose,further indicating the presence of a significant magnetic anisotropy and/or low lying excited states[15].

    Therecentlydevelopednon-criticalscaling theory could be used to study the F/AF behaviors of 2 and 3 based on the sum of two exponential functions (as shown in Eq.1)[36-38].

    Fig.4 Curves of M vs H/T for 2(a)and 3(b)

    In Eq.1,A+B is the high-temperature extrapolated Curie constant andE1andE2denotethe magnitude of the intracluster magnetic interaction. The first term in Eq.1 represents an F/AF contribution to the moment that is dominant at low temperatures, whereas the second term reflects the crystal-field effect because the interionic interactions between the internal 4f electrons are usually very weak.The best fit of the experimental data gives that A+B=47.22 emu ·mol-1·K,E1=-0.61 K and E2=-20.94 K for 2 and A+ B=48.54 emu·mol-1·K,E1=0.08 K and E2=-18.12 K for 3(Fig.2).The small values of E1of 2 and 3 further indicate very weak magnetic interactions between the TbⅢ/ErⅢions,which is in good agreement with the prediction that the Ln-Ln interaction is expected to be very weak,due to the shielding of the f-orbitals and the consequent poor overlap with the bridging ligand orbitals[12].

    To characterize the low-temperature behaviors of 1,the temperature dependencies of field-cooled(FC) andzero-field-cooled(ZFC)magnetizationwere measured under a field of 50 Oe upon warming from 2.0 K(Fig.5).The FC curve coincides with the ZFC curve and the magnetizations increase monotonically with the decrease of temperature,and no maximum is observed.These results indicate that 1 does not exhibit magnetic ordering above 2.0 K.

    Fig.5 FC/ZFC curves at 2~30 K for 1

    Considering the weak magnetic couplings between the GdⅢions and potential application of GdⅢcomplexes for magnetic refrigeration,we investigated the magnetocaloric properties of 1.We used the magnetic entropy change(ΔSm)to evaluate MCE,which could be calculatedbytheMaxwellequation(ΔSm(T)ΔH=∫[?M(T,H) /?T]HdH)[39-41].According to the equation,we could obtain the-ΔSmfrom the experimental magnetization data(Fig.6a),and the curves of-ΔSmare depicted in Fig. 6b.The obtained-ΔSmmaxgives the value of 20.6 J·kg-1·K-1(the theoretical-ΔSmmaxis 23.4 J·kg-1·K-1calculated with-ΔSmmax=4Rln(2S+1),R is the gas constant) for a field change of 7 T at 2.0 K.If-ΔSmmaxis given per unit of volume,it is equivalent to 36.96 mJ·cm-3· K-1.Although various discrete GdⅢclusters have been constructed,theirmagnetocaloricpropertieshave rarely been reported.Previous literatures report only twelve GdⅢclusters with significant MCE(-ΔSmmax>20 J·kg-1·K-1),as shown in Table 2.

    Fig.6 (a)M vs H curves of 1 at T=2~10 K and H=2.5~70 kOe;(b)Experimental-ΔSmobtained from magnetization data of 1 at different fields and temperatures

    Table 2Comparison of-ΔSmmax(larger than 20.0 J·kg-1·K-1)among 1 and GdⅢclusters associated with potential molecule-based magnetic coolers*

    To investigate possible SMM behaviors of 2 and 3,alternating current(ac)susceptibility measurements were carried out in the temperature range of 15~2.0 K under Hdc=0 Oe and Hac=3.5 Oe for variable frequencies (from 1 488 to 10 Hz).Unfortunately,although all the in-phasecurves(χ′)are almost consistent without peaks, there is no frequency dependent out-of-phase signal even up to 997 Hz(Fig.S2a and S2c).In order to weaken the quantum tunneling effect,2 kOe dc field were applied to further study the dynamic properties. The ac signal of 2 is still poor and slow magnetic relaxation is not observed(Fig.S2b),while there is weak frequency dependent out-of-phase signal for 3(Fig.S2d).Then 5 kOe dc field was exerted and attempted to obtain better ac signals.Therefore,the peaks can be observed obviously both in χM′and χM″curves(see Fig.7),which suggested the existence of slow magnetic relaxation behavior in 3.As aforementioned,strong anisotropy of ErⅢions and weak ferromagnetic interaction presumably lead to the fieldinduced slow magnetic relaxation behavior in 3.

    Fig.7 Temperature dependence of the ac χMat different frequencies for 3 with Hdc=5 kOe

    3 Conclusions

    A type of linear tetranuclear lanthanide clusters (1~3)constructed fromthemonocarboxylate and terminal co-ligand has been synthesized in hydrothermal reactions.Magnetic investigation indicates that 1~3 are weakly coupled with 1 displaying large MCE with-ΔSmmax=20.6 J·kg-1·K-1and 3 exhibiting slow magnetic relaxation behavior for the strong anisotropy and ferromagnetic contribution.Complex 2 does not show slow magnetic relaxation behavior because of weak antiferromagneticinteractionandstrongquantum tunneling effect,although 2 kOe dc field was exerted.

    References:

    [1]Zheng Y Z,Zhou G J,Zheng Z,et al.Chem.Soc.Rev.,2014, 43:1462-1475

    [2]Sharples J W,Collison D.Polyhedron,2013,54:91-103

    [3]Woodruff D N,Winpenny R E P,Layfield R A.Chem.Rev., 2013,113:5110-5148

    [4]Liu J L,Chen Y C,Guo,F S,et al.Coord.Chem.Rev., 2014,281:26-49

    [5]Rinehart J D,Long J R.Chem.Sci.,2011,2:2078-2085

    [6]Habib F,Murugesu M.Chem.Soc.Rev.,2013,42:3278-3288

    [7]Wang P,Shannigrahi S,Yakovlev N L,et al.Chem.Asian J.,2013,8:2943-2946

    [8]Liu S J,Zhao J P,Tao J,et al.Inorg.Chem.,2013,52:9163-9165

    [9]Sharples J W,Zheng Y Z,Tuna F,et al.Chem.Commun., 2011,47:7650-7652

    [10]Chang L X,Xiong G,Wang L,et al.Chem.Commun.,2013, 49:1055-1057

    [11]Guo F S,Chen Y C,Mao L L,et al.Chem.Eur.J.,2013, 19:14876-14885

    [12]Guo F S,Leng J D,Liu J L,et al.Inorg.Chem.,2012,51: 405-413

    [13]Evangelisti M,Roubeau O,Palacios E,et al.Angew.Chem. Int.Ed.,2011,50:6606-6609

    [14]Liu S J,Xie C C,Jia J M,et al.Chem.Asian J.,2014,9: 1116-1122

    [15]Lorusso G,Sharples J W,Palacios E,et al.Adv.Mater., 2013,25:4653-4656

    [16]Han S D,Miao X H,Liu S J,et al.Inorg.Chem.Front., 2014,1:549-552

    [17]Blagg R J,Muryn C A,McInnes E J L,et al.Angew.Chem. Int.Ed.,2011,50:6530-6533

    [18]Gao F,Cui L,Liu W,et al.Inorg.Chem.,2013,52:11164-11172

    [19]Guo Y N,Xu G F,Wernsdorfer W,et al.J.Am.Chem. Soc.,2011,133:11948-11951

    [20]Jiang S D,Liu S S,Zhou L N,et al.Inorg.Chem.,2012,51: 3079-3087

    [21]Jiang S D,Wang B W,Sun H L,et al.J.Am.Chem.Soc., 2011,133:4730-4733

    [22]Rell N M,Anwar M U,Drover M W,et al.Inorg.Chem., 2013,52:6731-6742

    [23]Anwar M U,Thompson L K,Dawe L N,et al.Chem. Commun.,2012,48:4576-4578

    [24]Liu C M,Zhang D Q,Hao X,et al.Cryst.Growth Des., 2012,12:2948-2954

    [25]Xu X,Zhao L,Xu G F,et al.Dalton.Trans.,2011,40:6440-6444

    [26]Liu S J,Zhao J P,Song W C,et al.Inorg.Chem.,2013,52: 2103-2109

    [27]Sessoli R,Powell A K.Coord.Chem.Rev.,2009,253:2328-2341

    [28]Jia J M,Liu S J,Cui Y,et al.Cryst.Growth Des.,2013,13: 4631-4634

    [29]Liu S J,Zeng Y F,Xue L,et al.Inorg.Chem.Front.,2014, 1:200-206

    [30]Han S D,Miao X H,Liu S J,et al.Chem.Asian J.,2014,9:3116-3120

    [31]Miao X H,Han S D,Liu S J,et al.Chin.Chem.Lett.,2014, 25:829-834

    [32]Rigaku.CrystalClear,Process-AutoRigakuAmericas Corporation,The Woodlands,Texas,1998.

    [33]Sheldrick G M.SHELXL97,Program for Crystal Structure Refinement,University of G?ttingen,G?ttingen,Germany, 1997.

    [34]Wu M F,Wang M S,Guo S P,et al.Cryst.Growth Des., 2011,11:372-381

    [35]Kahn M L,Sutter J P,Golhen S,et al.J.Am.Chem.Soc., 2000,122:3413-3421

    [36]Zheng Y Z,Lan Y H,Wernsdorfer W,et al.Chem.Eur.J., 2009,15:12566-12570

    [37]Souletie J,Rabu P,Drillon M.Phys.Rev.B,2005,72:214427 [38]Drillon M,Panissod P,Rabu P,et al.Phys.Rev.B,2002, 65:104404

    [39]Zheng Y Z,Evangelisti M,Winpenny R E P.Angew.Chem. Int.Ed.,2011,50:3692-3695

    [40]Zheng Y Z,Pineda E M,Helliwell M,et al.Chem.Eur.J., 2012,18:4161-4165

    [41]FAN Shao-Yong(范少勇),HUANG Ke-Di(黃科棣),TANG Qing-Mei(唐清美),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2014,30:1167-1173

    [42]Peng J B,Kong X J,Zhang Q C,et al.J.Am.Chem.Soc., 2014,136:17938-17941

    [43]Adhikary A,Jena H S,Biswas S,et al.Chem.Asian J., 2014,9:1083-1090

    [44]Adhikary A,Sheikh J A,Biswas S,et al.Dalton Trans., 2014,43:9334-9343

    [45]Sheikh J A,Adhikary A,Konar S.New J.Chem.,2014,38: 3006-3014

    Carboxylate-Bridged Tetranuclear Lanthanide Clusters: Magnetocaloric Effect and Slow Magnetic Relaxation

    LIU Sui-Jun1,2CUI Yu1SONG Wei-Chao1WANG Qing-Lun1BU Xian-He*,1
    (1Department of Chemistry,TKL of Metal-and Molecule-Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Nankai University,Tianjin 300071,China)
    (2School of Metallurgical and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)

    By using carboxylate and chelating ligands,a family of tetranuclear lanthanide clusters,namely [Ln4(mnba)12(tzp)2(H2O)2](Ln=Gd(1),Tb(2)and Er(3),Hmnba=m-nitrobenzoic acid,tzp=2-(1H-1,2,4-triazol-3-yl) pyridine),has been obtained under hydrothermal conditions.The three complexes exhibit linear tetranuclear clusters bridged by carboxylates with syn,syn-μ2-η1∶η1mode.Magnetic investigation indicates weak ferromagnetic interaction between adjacent GdⅢor ErⅢions of the Ln4cluster in 1 and 3,while weak intra-molecular antiferromagnetic interaction between TbⅢions and/or depopulation of the TbⅢexcited Stark sub-levels in 2. Complex 1 exhibits a significant magnetocaloric effect with-ΔSmmax=20.6 J·kg-1·K-1and ac susceptibility measurements reveal frequency-and temperature-dependent out-of-phase signal under 5 kOe dc field in 3,being typical slow magnetic relaxation behavior due to strong anisotropy of ErⅢand ferromagnetic coupling.CCDC: 978830,1;978831,2;978832,3.

    carboxylate;lanthanide clusters;magnetocaloric effect;slow magnetic relaxation

    O614.33+9;O614.341;O614.344

    A

    1001-4861(2015)09-1894-09

    10.11862/CJIC.2015.240

    2015-06-08。收修改稿日期:2015-07-22。

    國家自然科學(xué)基金(No.21290171),江西省科技廳青年自然科學(xué)基金(No.20151BAB213003)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:buxh@nankai.edu.cn

    猜你喜歡
    熱效應(yīng)鐵磁羧酸
    關(guān)于兩類多分量海森堡鐵磁鏈模型的研究
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    攪拌對(duì)聚羧酸減水劑分散性的影響
    化學(xué)反應(yīng)熱效應(yīng)類試題解析
    你好,鐵磁
    你好,鐵磁
    加載速率對(duì)合成纖維力學(xué)性能影響的力熱效應(yīng)
    復(fù)合羧酸鑭對(duì)PVC熱穩(wěn)定作用研究
    中國塑料(2014年1期)2014-10-17 02:46:34
    聚羧酸減水劑與減縮劑的相容性研究
    一維交替鐵磁-反鐵磁耦合的海森堡鏈[Mn(N3)2(pybox)]n
    免费久久久久久久精品成人欧美视频| 日韩一卡2卡3卡4卡2021年| 男女边吃奶边做爰视频| 一本大道久久a久久精品| 一边摸一边做爽爽视频免费| 80岁老熟妇乱子伦牲交| 国产成人精品无人区| 免费播放大片免费观看视频在线观看| 精品一区在线观看国产| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影| 日韩,欧美,国产一区二区三区| 一级片免费观看大全| 国产精品亚洲av一区麻豆 | 亚洲精品久久午夜乱码| 水蜜桃什么品种好| 日韩精品免费视频一区二区三区| 天堂中文最新版在线下载| 亚洲av成人精品一二三区| 两个人看的免费小视频| 丰满饥渴人妻一区二区三| 久久狼人影院| 亚洲精品aⅴ在线观看| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 免费黄网站久久成人精品| 亚洲国产精品999| 成人亚洲欧美一区二区av| 免费高清在线观看视频在线观看| 国产人伦9x9x在线观看 | 黄片无遮挡物在线观看| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 乱人伦中国视频| 国产一区二区三区综合在线观看| 国产精品一国产av| 看免费av毛片| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 秋霞伦理黄片| 男女啪啪激烈高潮av片| 男女边吃奶边做爰视频| 五月天丁香电影| videos熟女内射| av有码第一页| 精品一区二区三区四区五区乱码 | 成人黄色视频免费在线看| 激情五月婷婷亚洲| 精品少妇一区二区三区视频日本电影 | 成人18禁高潮啪啪吃奶动态图| 国产成人aa在线观看| 国产成人精品一,二区| 免费高清在线观看日韩| 女人精品久久久久毛片| 老司机亚洲免费影院| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 久久精品国产自在天天线| 日韩成人av中文字幕在线观看| 国产精品免费视频内射| 宅男免费午夜| 波多野结衣一区麻豆| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 精品酒店卫生间| 午夜日本视频在线| 丝瓜视频免费看黄片| 激情视频va一区二区三区| 少妇熟女欧美另类| 国产亚洲一区二区精品| 欧美成人精品欧美一级黄| 在线观看人妻少妇| 精品人妻在线不人妻| 亚洲成av片中文字幕在线观看 | 99热网站在线观看| 欧美少妇被猛烈插入视频| 一二三四中文在线观看免费高清| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 男男h啪啪无遮挡| 99久久人妻综合| 99精国产麻豆久久婷婷| av免费在线看不卡| 日本欧美国产在线视频| 亚洲视频免费观看视频| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| av在线app专区| 香蕉丝袜av| 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 亚洲少妇的诱惑av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品少妇内射三级| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久男人| 十分钟在线观看高清视频www| 国语对白做爰xxxⅹ性视频网站| 极品少妇高潮喷水抽搐| 精品人妻偷拍中文字幕| xxxhd国产人妻xxx| 精品亚洲成国产av| 人成视频在线观看免费观看| 国产亚洲最大av| 激情视频va一区二区三区| 在线天堂中文资源库| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 我要看黄色一级片免费的| 国产色婷婷99| 国产精品无大码| 中文字幕av电影在线播放| 久久精品国产鲁丝片午夜精品| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 在线 av 中文字幕| 91精品三级在线观看| 亚洲天堂av无毛| 免费观看性生交大片5| 国产爽快片一区二区三区| 久久久久久久久久人人人人人人| 日本猛色少妇xxxxx猛交久久| 一级a爱视频在线免费观看| 日韩一区二区视频免费看| 久久免费观看电影| 亚洲av电影在线观看一区二区三区| 在线观看www视频免费| av有码第一页| 国产精品欧美亚洲77777| 性色av一级| 五月开心婷婷网| 久久久久视频综合| 婷婷色av中文字幕| 丝袜美腿诱惑在线| 亚洲国产精品一区三区| 国产亚洲精品第一综合不卡| 日韩人妻精品一区2区三区| 青春草亚洲视频在线观看| 999精品在线视频| 看十八女毛片水多多多| 国产激情久久老熟女| 韩国av在线不卡| 久久久久国产网址| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 人成视频在线观看免费观看| 欧美日韩视频高清一区二区三区二| 欧美亚洲日本最大视频资源| 免费观看av网站的网址| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 啦啦啦在线观看免费高清www| 亚洲欧美精品综合一区二区三区 | www.熟女人妻精品国产| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 亚洲国产精品国产精品| 国产黄色免费在线视频| av国产久精品久网站免费入址| 美女午夜性视频免费| 2022亚洲国产成人精品| 性色avwww在线观看| 一区福利在线观看| 免费播放大片免费观看视频在线观看| 欧美精品亚洲一区二区| 亚洲经典国产精华液单| av一本久久久久| 欧美 日韩 精品 国产| 免费观看av网站的网址| 久久青草综合色| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| 国产成人午夜福利电影在线观看| 成人国产av品久久久| 亚洲国产精品国产精品| av在线观看视频网站免费| 热re99久久国产66热| 日韩精品免费视频一区二区三区| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 亚洲美女搞黄在线观看| 国产成人精品久久二区二区91 | 美国免费a级毛片| 人妻 亚洲 视频| 五月伊人婷婷丁香| 国产成人aa在线观看| 国产在线免费精品| www.熟女人妻精品国产| 波多野结衣av一区二区av| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到 | 成年av动漫网址| 大话2 男鬼变身卡| 在线观看美女被高潮喷水网站| 波多野结衣av一区二区av| 国产精品偷伦视频观看了| 精品久久久精品久久久| 黄色配什么色好看| 欧美国产精品一级二级三级| 国产亚洲精品第一综合不卡| 日韩伦理黄色片| 成年人午夜在线观看视频| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 亚洲精品自拍成人| 老司机影院成人| 国产在线免费精品| 久久久久久久久免费视频了| 欧美精品高潮呻吟av久久| 日本色播在线视频| 在线免费观看不下载黄p国产| 免费高清在线观看日韩| 久久青草综合色| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 免费黄色在线免费观看| 国产精品av久久久久免费| 9色porny在线观看| 午夜福利乱码中文字幕| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 日本av免费视频播放| 五月天丁香电影| 美女高潮到喷水免费观看| www.精华液| 黄色 视频免费看| 交换朋友夫妻互换小说| 超碰成人久久| 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 中国国产av一级| 国产成人精品一,二区| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 人妻 亚洲 视频| 久久久久久伊人网av| 久久久精品区二区三区| 亚洲精品日韩在线中文字幕| 老司机亚洲免费影院| 国产精品.久久久| www.熟女人妻精品国产| 乱人伦中国视频| 香蕉国产在线看| 亚洲国产色片| 大话2 男鬼变身卡| 高清欧美精品videossex| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 妹子高潮喷水视频| 伊人亚洲综合成人网| 好男人视频免费观看在线| 成人午夜精彩视频在线观看| 欧美日韩一级在线毛片| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产最新在线播放| 久久狼人影院| 国产av码专区亚洲av| 18禁裸乳无遮挡动漫免费视频| 少妇人妻精品综合一区二区| 在线精品无人区一区二区三| 中国三级夫妇交换| 老司机影院成人| 亚洲,欧美,日韩| 亚洲综合色惰| 九色亚洲精品在线播放| 国产毛片在线视频| 性少妇av在线| 曰老女人黄片| 亚洲在久久综合| 少妇人妻久久综合中文| 欧美成人午夜精品| 香蕉丝袜av| 久久综合国产亚洲精品| 亚洲美女搞黄在线观看| 精品国产乱码久久久久久男人| 性少妇av在线| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 亚洲美女视频黄频| 不卡av一区二区三区| 亚洲人成网站在线观看播放| 欧美日韩视频精品一区| 国语对白做爰xxxⅹ性视频网站| 午夜免费观看性视频| 亚洲精品aⅴ在线观看| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 伊人亚洲综合成人网| 日韩成人av中文字幕在线观看| av在线老鸭窝| 91国产中文字幕| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 久久精品久久精品一区二区三区| 91精品三级在线观看| 青春草亚洲视频在线观看| 国产av一区二区精品久久| av网站在线播放免费| 午夜福利视频在线观看免费| 成人国产av品久久久| 97在线人人人人妻| 日韩制服骚丝袜av| 亚洲av在线观看美女高潮| 美女主播在线视频| 晚上一个人看的免费电影| 青草久久国产| 动漫黄色视频在线观看| 国产精华一区二区三区| 超碰97精品在线观看| 国产精品偷伦视频观看了| 国产亚洲av高清不卡| 1024视频免费在线观看| 麻豆成人av在线观看| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 51午夜福利影视在线观看| 咕卡用的链子| 亚洲中文av在线| 国产精品野战在线观看 | 在线观看免费高清a一片| 亚洲熟妇熟女久久| 久久 成人 亚洲| 国产午夜精品久久久久久| 午夜免费鲁丝| 99在线人妻在线中文字幕| 怎么达到女性高潮| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| xxxhd国产人妻xxx| 琪琪午夜伦伦电影理论片6080| 丁香六月欧美| 日韩视频一区二区在线观看| 搡老熟女国产l中国老女人| 久久久久久大精品| 一本综合久久免费| 一夜夜www| 无限看片的www在线观看| 中文字幕人妻丝袜制服| 久久精品亚洲熟妇少妇任你| 夜夜爽天天搞| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 夜夜看夜夜爽夜夜摸 | 国产乱人伦免费视频| 大型av网站在线播放| 亚洲一区中文字幕在线| 久久亚洲真实| 热99国产精品久久久久久7| 欧美成人性av电影在线观看| av免费在线观看网站| 中国美女看黄片| 亚洲欧美日韩另类电影网站| 男人的好看免费观看在线视频 | 亚洲成国产人片在线观看| 国产三级在线视频| 成熟少妇高潮喷水视频| 国产av一区二区精品久久| 久久久久精品国产欧美久久久| 亚洲精品一二三| 制服人妻中文乱码| 日本精品一区二区三区蜜桃| 窝窝影院91人妻| 色综合站精品国产| 一本大道久久a久久精品| 日日干狠狠操夜夜爽| www日本在线高清视频| 久久99一区二区三区| 欧美不卡视频在线免费观看 | 亚洲全国av大片| 精品一区二区三区四区五区乱码| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲高清精品| 亚洲欧美激情综合另类| 免费少妇av软件| 成人三级做爰电影| 久久精品国产亚洲av香蕉五月| 国产高清videossex| 午夜福利,免费看| 精品国内亚洲2022精品成人| 黑丝袜美女国产一区| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 在线视频色国产色| 国产激情久久老熟女| 久久天堂一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 国产精品爽爽va在线观看网站 | 99久久综合精品五月天人人| 国产主播在线观看一区二区| 精品久久久久久久久久免费视频 | 国产高清videossex| 欧美黄色片欧美黄色片| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 午夜福利影视在线免费观看| 亚洲国产欧美一区二区综合| 999精品在线视频| 三级毛片av免费| 国产三级在线视频| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 久久 成人 亚洲| 久久中文字幕人妻熟女| 午夜激情av网站| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 亚洲精品一区av在线观看| 99久久综合精品五月天人人| a级片在线免费高清观看视频| 免费在线观看日本一区| 国产有黄有色有爽视频| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕| 天天躁夜夜躁狠狠躁躁| 久久久久国产一级毛片高清牌| 黄色女人牲交| 亚洲色图综合在线观看| 免费观看人在逋| 国产精品99久久99久久久不卡| 久久九九热精品免费| 自线自在国产av| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产 | 欧美激情高清一区二区三区| 精品福利观看| 如日韩欧美国产精品一区二区三区| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 久久这里只有精品19| 久久国产乱子伦精品免费另类| 午夜成年电影在线免费观看| 欧美日本中文国产一区发布| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一小说| 丝袜在线中文字幕| 首页视频小说图片口味搜索| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲| 色精品久久人妻99蜜桃| ponron亚洲| 欧美丝袜亚洲另类 | 日韩高清综合在线| 日韩免费av在线播放| 成人国语在线视频| 国产91精品成人一区二区三区| 黄色毛片三级朝国网站| 高清黄色对白视频在线免费看| 亚洲 欧美 日韩 在线 免费| av片东京热男人的天堂| 精品人妻在线不人妻| 一级毛片女人18水好多| 黄频高清免费视频| 精品国产亚洲在线| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 国产成人免费无遮挡视频| 51午夜福利影视在线观看| 亚洲三区欧美一区| 国产精品秋霞免费鲁丝片| av在线播放免费不卡| 男女高潮啪啪啪动态图| 国产免费现黄频在线看| a级毛片黄视频| 真人一进一出gif抽搐免费| 亚洲成人免费av在线播放| 夫妻午夜视频| 久久久久久久午夜电影 | 波多野结衣一区麻豆| 久久久国产欧美日韩av| 正在播放国产对白刺激| 淫秽高清视频在线观看| 精品福利观看| 女警被强在线播放| 国产又色又爽无遮挡免费看| 99精品在免费线老司机午夜| 高清黄色对白视频在线免费看| 欧美日韩黄片免| 首页视频小说图片口味搜索| 欧美黄色片欧美黄色片| 欧美乱色亚洲激情| 国产精品偷伦视频观看了| 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 嫩草影院精品99| 在线观看66精品国产| 国产成人一区二区三区免费视频网站| 一区二区日韩欧美中文字幕| 一级毛片高清免费大全| 电影成人av| 午夜精品国产一区二区电影| 亚洲男人的天堂狠狠| 久久精品影院6| 亚洲va日本ⅴa欧美va伊人久久| 两性夫妻黄色片| 欧美av亚洲av综合av国产av| 我的亚洲天堂| 亚洲av熟女| 每晚都被弄得嗷嗷叫到高潮| 精品欧美一区二区三区在线| 天堂√8在线中文| 日韩精品中文字幕看吧| 日韩有码中文字幕| 精品人妻在线不人妻| 男男h啪啪无遮挡| 中亚洲国语对白在线视频| 999久久久国产精品视频| 国产成人啪精品午夜网站| 亚洲av日韩精品久久久久久密| 国产精品一区二区精品视频观看| 美女 人体艺术 gogo| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 国产激情久久老熟女| 视频区欧美日本亚洲| 午夜激情av网站| 久久这里只有精品19| 亚洲激情在线av| 99久久99久久久精品蜜桃| 超色免费av| 午夜影院日韩av| 国产aⅴ精品一区二区三区波| 天天添夜夜摸| 亚洲精品在线美女| 色综合欧美亚洲国产小说| 国产欧美日韩精品亚洲av| 亚洲国产精品合色在线| 18禁黄网站禁片午夜丰满| 在线永久观看黄色视频| av电影中文网址| 青草久久国产| 午夜福利欧美成人| 久久 成人 亚洲| 亚洲一区二区三区欧美精品| 国产亚洲精品第一综合不卡| 精品国产乱子伦一区二区三区| 国产成人精品久久二区二区91| 日韩免费av在线播放| 国内久久婷婷六月综合欲色啪| 亚洲av电影在线进入| 夜夜看夜夜爽夜夜摸 | av中文乱码字幕在线| 亚洲情色 制服丝袜| 日日干狠狠操夜夜爽| 亚洲专区中文字幕在线| 日本三级黄在线观看| 俄罗斯特黄特色一大片| 麻豆久久精品国产亚洲av | 黄色视频不卡| 久久国产精品影院| 性欧美人与动物交配| 19禁男女啪啪无遮挡网站| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 欧美日本中文国产一区发布| 黄色成人免费大全| 国产亚洲欧美98| 久久精品影院6| 亚洲专区国产一区二区| 久久久国产成人精品二区 | 女性被躁到高潮视频| 美女 人体艺术 gogo| 深夜精品福利| 国产乱人伦免费视频| 国产亚洲欧美98| 成年人免费黄色播放视频| 一级a爱视频在线免费观看| 女人被狂操c到高潮| 女生性感内裤真人,穿戴方法视频| 黄色成人免费大全| 亚洲成国产人片在线观看| 国产午夜精品久久久久久| 国产精品亚洲一级av第二区| 大码成人一级视频| 露出奶头的视频| 欧美日韩黄片免| 成人18禁在线播放| 男女之事视频高清在线观看| 自线自在国产av| 黄色a级毛片大全视频| 精品福利永久在线观看|