• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于四甲基取代六元瓜環(huán)的四核稀土鏑簇合物的慢磁弛豫

    2015-12-01 02:36:56陳文建孔祥建龍臘生鄭蘭蓀
    無機化學學報 2015年9期
    關鍵詞:化工學院稀土甲基

    陳文建 孔祥建 龍臘生 鄭蘭蓀

    (固體表面物理化學國家重點實驗室,廈門大學化學化工學院化學系,廈門361005)

    基于四甲基取代六元瓜環(huán)的四核稀土鏑簇合物的慢磁弛豫

    陳文建孔祥建*龍臘生*鄭蘭蓀

    (固體表面物理化學國家重點實驗室,廈門大學化學化工學院化學系,廈門361005)

    報道了2個基于四甲基取代六元瓜環(huán)的三明治型四核稀土簇合物,[Ln4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]·(NO3)4·26H2O(Ln=Dy,1;Ln=Tb,2)。晶體結構分析顯示2個簇合物包含2個四甲基取代瓜環(huán)夾心的四核稀土立方烷結構,[Ln4(μ3-OH)4]8+。磁性研究顯示化合物1顯示了慢磁弛豫行為。由于六元瓜環(huán)配體可以有效的傳遞能量給稀土鋱離子,化合物2具有較好的發(fā)光性能。

    簇合物;磁性;發(fā)光;六元瓜環(huán)

    0 Introduction

    Single-molecule magnets(SMMs)continue to be an inviting research field in recent decades,not only because of their intriguing properties,but also their potential applications in quantum computing[1],magnetic information storage[2],nanoelectrons[3],and molecular spintronics[4-5].Since the first SMM of[Mn12O12(AcO)16(H2O)4]appearance in the early 1990s[6],a large number of transition-metal polynuclear compounds with SMMs property have been reported.

    It was found that high spin lanthanide ions are good candidates for constructing new SMMs,due to their large intrinsic magnetic anisotropy[8-11].However, because of the synthetic challenges and the difficulty in promoting magnetic interactions via connecting by bridging ligands,rational design and assembly of pure lanthanide based SMMs remain a challenge[9-11]. Investigations on the lanthanide cluster-based molecular magnetism suggest that selecting appropriate bridgingligand is crucial to the construction of pure lanthanide -based SMMs.So far,a number of organic ligands, such as aminoacids[11-12],o-vanillin[8b],Schiff bases[13], carboxylates[14],β-diketones[15],and calixarenes[9,16]have been used to construct lanthanide SMMs,among which Schiff base based on o-vanillin[8b,10b,17]has been most studied.

    Cucurbit[n]urils(Q[n]s,Fig.1a)and their alkylsubstituted derivatives have proved to be an excellent class of both ligands and organic building blocks due to the two opening portals of these macrocycles with its unique cavity rimmed with π-rich dipole carbonyl groups[18-21].Although a large number of Q[n]s supported transition metal-containing[22]and lanthanide-containing coordination compounds have been reported[23],Q[n]s supported polynuclear lanthanide SMMs are rare[24]. Herein we report a TMeQ[6](Fig.1b)supported Dy4cluster complex,formulated as[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]·(NO3)4·26H2O(1),which features a disordered[Dy4(μ3-OH)4]8+cubane cluster coresandwichedbytwoTMeQ[6]macrocycles. Alternating current susceptibility measurements reveal that the compound 1 exhibits slow relaxation of magnetization.To the best of our knowledge,this is the first example of a TMeQ[6]supported lanthanide cluster with slow relaxation of magnetization.We also obtain its Tb3+analogue[Tb4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ [6])2](NO3)4·26H2O(2),which exhibitsinteresting luminescent property.

    Fig.1 Molecular structure of Q[n]s(a)and TMeQ[6](b)

    1 Experimental

    1.1Materials and methods

    All reagents were of commercial origin with 99% purity and were used as received.TMeQ[6]was prepared by procedures reported elsewhere[19e].The C, H and N microanalyses were carried out with a CE instruments EA 1110 elemental analyzer.TGA curve was obtained on a SDT Q600 thermal analyzer. Magnetic susceptibility was measured by a Quantum Design MPMS superconducting quantum interference device(SQUID).

    1.2Synthesis

    1.2.1[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(1)

    TMeQ[6](0.138 g,0.125 mmol),Dy(NO3)3·5H2O (0.484 g,1.00 mmol)and 1H-[3-(4-pyridyl)pyrazole]-acetic acid(0.104 g,0.50 mmol)were dissolved in 40.0 mL of water while stirring at 70℃.The mixture was heated to 100℃and refluxed for 2 h.The filtrate was left to stand at room temperature in an open beaker(50 mL).After six days,colorless crystals of 1 were obtained and collected in a yield of 36%on the basis of TMeQ[6].Anal.Calcd.for 1(%):C,25.48;H, 4.12;N,20.06.Found(%):C,25.58;H,4.22;N, 20.12.

    1.2.2[Tb4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(2)

    This compound was prepared using the same procedure as described above for the synthesis of its Dy cognate,but using 0.481 g Tb(NO3)3·5H2O(1.00 mmol)instead of Dy(NO3)3·5H2O.Colorless crystals of 2 were obtained after a week and collected in a yield of 40%on the basis of TMeQ[6].Anal.Calcd.for 2 (%):C,25.58;H,4.13;N,20.14.Found(%):C,25.66; H,4.20;N,20.22.

    1.2.3Single-Crystal X-ray structure determination

    Data collections were performed on a Bruker Apex-2000diffractometerusinggraphite monochromated Mo Kα radiation(λ=0.071 073 nm)at 173 K.Absorption corrections were applied using the ultiscan program SADABS[25].The structures were solved by indirect methods(SHELXTL Version 5.10)[25]. Non-hydrogen atoms were refined anisotropically by full-matrix least-squares method on F2.The hydrogen atoms of the organic ligand were generated geometrically(C-H,0.096 nm).Because of severe disorder, 21 water molecules and 3NO3-in the unit cell have been taken into account by the SQUEEZE.Details of the crystal parameters,data collection conditions and refinement parameters for compounds 1 and 2 aresummarized in Table 1.

    CCDC:929607,1;929608,2.

    Table 1Crystal Data and Structure Refinement Details for Compounds 1 and 2

    2 Results and discussion

    2.1Synthesis

    The reaction of TMeQ[6],Ln(NO3)3,and 1H-[3-(4-pyridyl)pyrazole]-acetic acid(1∶8∶4)in distilled water produces 1(Ln=Dy)or 2(Ln=Tb)in good yields. Originally,we intent to synthesize rare-earth-metal coordination polymers that conatin 1H-[3-(4-pyridyl) pyrazole]acetic acid ligand and TMeQ[6].However, the experimental results show that 1H-[3-(4-pyridyl) pyrazole]-acetic acid is not coordinated with rare earth ions in complexes 1 and 2.The ligand of 1H-[3-(4-pyridyl)pyrazole]-aceticacidisnecessaryforthe reactions,although it is not incorporated into the structures of 1 and 2.Absence of 1H-[3-(4-pyridyl) pyrazole]-acetic acid would result in the formation of an one-dimensional chain comprising TMeQ[6]molecules and[Ln(H2O)8]3+with a 1∶1 ratio through hydrogen bonding(Fig.S1).The ligand may play the role of controlling the hydrolysis of the rare earth ions to limitthedegreeofaggregationofthehydroxo intermediates.

    2.2Description of crystal structures

    Complexes 1 and 2 are isomorphous,so only the structure of 1 is described in detail.X-ray Singlecrystal structure analysis reveals that complex1 crystallizes in triclinic,P1 space group.As shown in Fig.2,complex 1 possesses a sandwich structure of [Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]4+unit,4 nitrate anions and 26 guest water molecules.It shouldbe noted that all dysprosium ions and μ3-OH atoms have an occupancy factor of 50%,owing to positional disorder,similar to that reported disordered Ln cluster cores[16a-b].

    Fig.2 Crystal structure of[Dy4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2]4+units in 1

    The cationic cluster of 1 has a distorted cubaneshaped core of[Dy4(μ3-OH)4]8+.Four Dy atoms form a nearly perfect tetrahedron.Two opposite edges of the tetrahedron are further bridged by two μ2-OH anions, while another two opposite edges are bridged by two NO3-anions(Fig.3a).This[Dy4(μ3-OH)4]8+cubane cluster core is sandwiched by two TMeQ[6]macrocycles displaying an antiparallel orientation.As shown in Fig.3b,each of Dy ion locates in the center of a square antiprism geometry and is octa-coordinated with contributions from three μ3-OH,one μ2-OH anion, two O atoms from a TMeQ[6]ligand,one O atom from nitrate anion,and one terminal aqua ligands.The bond lengths of Dy-O rang from 0.195 4(12)to 0.271 8(9)nm (Table S1),comparable to those in the reported complexes containing the same[Dy4(μ3-OH)4]8+core[10-11,17b]. The Dy-Ohydroxy-Dy angles in the[Dy4(μ3-OH)4]8+cubane of 1 are in the range of 99.8(5)°~113.6(7)°obviously larger than 99°[10c].

    Complex 2 is isomorphic to 1.The bond lengths of Tb-O range from 0.210 0(5)to 0.269 0(4)nm and the angles of Tb-Ohydroxy-Tb range from 99.7(2)°to 113.5(4)°(Table S2),comparable to those in reported Tb complex[24b,26].

    Fig.3 (a)Structure of the[Dy4(μ3-OH)4(μ2-OH)2(NO3)2]4+core unit of 1;(b)the coordination geometry of Dy ion in 1

    2.3TG analysis

    The thermogravimetric(TG)curve of the two complexes under N2atmosphere are shown in Fig.4.1 exhibitsthefirstweightlossof12%inthe temperature range from 24 to 125℃,corresponding to the weight loss of 26 lattice water molecules in 1 (Calculated weight loss 12%),and the second weight loss of 2%in the temperature range from 125 to 335℃corresponding to the loss of four coordination water molecules in 1(Calculated weight loss 2%),and then themetal-organiccomplexstartstodecompose accompanying loss of organic ligands.The TGA curve of complex 2 is similar to that of complex 1,the first and second weight loss of complex 2 are 12%(Calcd. 12%)and 2%(Calcd.2%),corresponding to the weight loss of 26 lattice water molecules and 4 coordination water molecules,respectively.Thesimulatedand experimental PXRD patterns for complex 1 and 2 areare almost identical as indicated in Fig.S10 and Fig. S11.

    Fig.4 Thermogram of 1 and 2 showing TGA at the heating rate of 10℃·min-1

    2.4Magnetic properties

    The temperature dependence of direct-current (dc)magnetic susceptibility of crushed crystalline sample of 1 and 2 were carried out in an applied magnetic field of 1 000 Oe in the temperature range of 2~300 K.As shown in Fig.5,the observed χMT value of 1 is 55.78 cm3·mol-1·K at 300 K,close to the expected value of 56.68 cm3·mol-1·K for four uncoupled Dy3+ions(S=5/2,L=5,6H15/2,g=4/3).The χMT gradually decreases until 50 K and then quickly decreases to a minimum of 36.35 cm3·mol-1·K at 2 K, which is lower than four times the χMT value of an isolated mononuclear Dy complex at 2 K,suggesting antiferromagnetic coupling between Dy3+ion.Thus the decreaseinχMTwithdecreasingtemperatureis probably ascribed to a combination of the antiferromagnetic interaction between the Dy3+ions and the thermal depopulation of excited Stark sublevels[27].The data in the range of 30~300 K can be fitted to the Curie-Weiss law,yielding C=63.69 cm3·mol-1·K and θ=-5.01 K for 1.

    Fig.5 Plots of temperature dependence of χMT vs T and χM-1vs T for 1

    The field dependence of magnetization of 1 is shown in Fig.6.The magnetization at 2 K increases rapidly below 1.5 T,and then slowly and linearly increases without complete saturation up to 7 T.The maximum value for M is 23.08μBat 7 T,which is slightly larger than the calculated value for four uncorrelated Dy3+magnetic moments(4×5.23μB)[10]. Indeed,the values are lower than the expected saturation value of 40μB(10μBfor each Dy3+ion for J= 15/2 and g=4/3)[10c-10d],which suggests the presence of a significant anisotropy and low-lying excited states, consistent with the observed nonsuperposition M vs H/ T plots at different magnetic fields(Fig.6)[9].

    Fig.6 M vs H/T plots for 1 measured in different fields below 7 T

    To probe the dynamics of magnetization for 1,the temperature dependence of ac magnetic susceptibility under Hdc=0 Oe and Hac=3 Oe was characterized at the indicated frequencies(1~1500 Hz).As shown in Fig.7,complex1displaysanobviousfrequency dependent out-of-phase signal,indicating the slow relaxation of the magnetization.However,the energy barriercannotbederivedbyfittingthepeak temperatures to an Arrhenius type expression due to the absence of maxima of out-of-phase susceptibility signals above 2.0 K(Fig.S5).However,the Eaand τ0valuescanbeobtainedfromfittingtheac susceptibility data by adopting Debye model and using the relationship ln(χ″/χ′=lnτ0+Ea/(KBT),if it is assumed thatthereisonlyonecharacteristicrelaxationprocess[28].The obtained Ea=35.4 K,τ0=1.5×10-5s(Fig. 8)are in agreement with the observed values for some other Dy4SMMs.For 1,the slow magnetic relaxation may result from a coupled system involving the four Dy (III)and the magnetic exchange coupling,although the interactions are expected to be very weak.

    Fig.7 Temperature dependence of the out-of-phase ac susceptibilities at the indicated frequencies for 1 under zero dc field

    The χMT value of 2 is 45.66 cm3·mol-1·K at 300 K (Fig.S4),which is slightly lower than the expected value of 47.28 cm3·mol-1·K for four uncoupled Tb3+ions(S=3, L=3,7F6,g=3/2).Similar to 1,a steady decrease of the χMT values of 2 is observed with deceasing temperature down to 50 K,and then decrease dramatically to 33.05 cm3·mol-1·K at 2 K.The data from 30 to 300 K are fitted to the Curie-Weiss law,leading to C=44.52 cm3· mol-1·K and θ=-5.80 K.As shown in Fig.S6,the magnetization increases rapidly below 1.5 T at 2 K,and then slowly and linearly increases to 18.91μBat 7 T. Notably,the ac susceptibility results of 2 show that no frequency dependent out-of-phase signal is observed in the region of 2~10 K(Fig.S7).Although Dy3+and Tb3+ions have large spin and high anisotropy,only the Dy4cluster exhibits slow paramagnetic relaxation,which may be ascribed to the spin parity effect[26a,29].

    Fig.8 Plots of natural logarithm of χ″/χ′vs 1/T for 1

    2.5Luminescent properties

    The solid-state luminescence of complex 2 at room temperature is shown in Fig.9.Complex 2 exhibits intense photoluminescence upon excitation at 375 nm. The emission spectrum of 2 can be ascribed to the characteristic5D4→7FJtransitions(J=6,5,4,3).The most intense peak with its maximum at 546 nm is attributed to the5D4→7F5transition.Besides this main emission line,the second intense peak at 492 nm(J=6), and much less intense two peaks at 588 nm(J=4)and 622 nm(J=3),respectively,are also observed.This means that TMeQ[6]ligand exhibits efficient energy transfer to Tb3+ion.When excited at 265 nm in the solid state at room temperature,compound 1 displays a wide luminescence spectrum with emission maximum at 390 nm(Fig.S8),whichcanbeassignedtoligand fluorescence(Fig.S9).Compared with the emission of the free ligand at 378 nm,the red shift in 1 may be ascribed to the increase of ligand conformational rigidity.

    Fig.9 Emission spectrum of 2 under 375 nm excitation in the solid state at room temperature

    3 Conclusions

    In summary,two TMeQ[6]-supported lanthanide sandwich complexes containing a cubane-like[Ln4(μ3-OH)4]8+cluster core were prepared and characterized. MagneticstudiesrevealthatDy4exhibitsslowmagnetic relaxation behavior.While the Tb3+analogue of[Ln4(μ3-OH)4]8+cluster core displays interesting luminescent property.The present work not only affords the first example of TMeQ[6]supported lanthanide hydroxide cluster with slow magnetic relaxation behavior,but also provides a new synthetic approach to prepare new lanthanide SMMs based on Cucurbit[n] urils.

    Supportinginformationisavailableathttp://www.wjhxxb.cn

    References:

    [1]Troiani F,Affronte M.Chem.Soc.Rev.,2011,40:3119-3129

    [2]Rogez G,Donnio B,Terazzi E,et al.Adv.Mater.,2009,21: 4323-4333

    [3](a)Sessoli R,Gatteschi D,Caneschi A,et al.Nature,1993, 365:141-143

    (b)Benelli C,Gatteschi D.Chem.Rev.,2002,102:2369-2387

    (c)Bagai R,Christou G.Chem.Soc.Rev.,2009,38:1011-1026

    (d)Kostakis G E,Akoab A M,Powell A K.Chem.Soc.Rev., 2010,39:2238-2271

    [4](a)Coronado E,Day P.Chem.Rev.,2004,104:5419-5448 (b)Sanvito S.Chem.Soc.Rev.,2011,40:3336-3355

    [5]Sokol J J,Hee A G,Long J R.J.Am.Chem.Soc.,2002, 124:7656-7657

    [6]Sessoli R,Tsai H L,Schake A R,et al.J.Am.Chem.Soc., 1993,115:1804-1816

    [7]Murrie M.Chem.Soc.Rev.,2010,39:1986-1995

    [8](a)Woodruff D N,Winpenny R E P,Layfield R A.Chem. Rev.,2013,113:5110-5148

    (b)Hewitt I J.Tang J K,Madhu N T,et al.Angew.Chem. Int.Ed.,2010,49:6352-6356

    (c)Guo Y N,Xu G F,Gamez P,et al.J.Am.Chem.Soc., 2010,132:8538-8539

    [9]Bi Y F,Wang X T,Liao W P,et al.Inorg.Chem.,2009,48: 11743-11747

    [10](a)Abbas G,Lan Y H,Kostakis G E,et al.Inorg.Chem., 2010,49:8067-8072

    (b)Lin P H,Burchell T J,Ungur L,et al.Angew.Chem. Int.Ed.,2009,48:9489-9492

    (c)Ke H S,Gamez P,Zhao L,et al.Inorg.Chem.,2010,49: 7549-7557

    (d)Tang J K,Hewitt I,Madhu N T,et al.Angew.Chem.Int. Ed.,2006,45:1729-1733

    [11]Kong X J,Wu Y L,Long L S,et al.J.Am.Chem.Soc., 2009,131:6918-6919

    [12]Wang R,Selby H D,Liu H,et al.Inorg.Chem.,2002,41: 278-286

    [13]Deacon G B,Feng T,Hockless D C R,et al.Chem.Commun., 1997:341-342

    [14]Peng J B,Kong X J,Zhang Q C,et al.J.Am.Chem.Soc., 2014,136:17938-17941

    [15]Bürgstein M R,Gamer M T,Roesky P W,et al.J.Am. Chem.Soc.,2004,126:5213-5218

    [16]Liu C M,Zhang D Q,Hao X,et al.Cryst.Growth Des., 2012,12:2948-2954

    [17](a)Hewitt I J,Lan Y,Anson C E,et al.Chem.Commun., 2009:6765-6767

    (b)Gao Y,Xu G F,Zhao L,et al.Inorg.Chem.,2010,48: 11495-11497

    (c)Habib F,Lin P O,Long J,et al.J.Am.Chem.Soc., 2011,133:8830-8833

    [18](a)Behrend R,Meyer E,Rusche F.Justus Liebigs Ann. Chem.,1905,339:1-37

    (b)Freeman W A,Mock W L,Shih N Y.J.Am.Chem.Soc., 1981,103:7367-7368

    (d)Day A I,Blanch R J,Arnold A,et al.Angew.Chem., Int.Ed.,2002,41:275-277

    [19](a)Flinn A,Hough G C,Stoddart J F,et al.Angew.Chem. Int.Ed.,1992,31:1475-1477

    (b)Zhao J Z,Kim H J,Oh J,et al.Angew.Chem.,Int.Ed., 2001,40:4233-4235

    (c)Jon S Y,Selvapalam N,Oh D H.et al.J.Am.Chem. Soc.,2003,125:10186-10187

    (d)Huang W H,Zavalij P Y,Isaacs L.Angew.Chem.Int. Ed.,2007,119:7569-7571

    (e)Zhao Y J,Xue S F,Zhu Q J,et al.Chin.Sci.Bull., 2004,49:1111-1116

    [20]Chen W J,Yu D H,Xiao X,et al.Inorg.Chem.,2011,50: 6956-6964

    [21](a)Hernandez-Molina R,Sokolov M N,Sykes A G.Acc. Chem.Res.,2001,34:223-230

    (b)Fedin V P.J.Coord.Chem.,2004,30:151-152

    (c)Hernandez-Molina R,Sokolov M N,Clausen M,et al. Inorg.Chem.,2006,45:10567-10575

    (d)Gushchin A L,Ooi B,Harris P,et al.Inorg.Chem., 2009,48:3832-3839

    [22](a)Lü J,Lin J X,Cao M N,et al.Coord.Chem.Rev.,2013, 257:1334-1357

    (b)Ni X L,Xue S F,Tao Z.Coord.Chem.Rev.,2015,287:

    89-113

    [23](a)Tripolskaya A A,Mainicheva E A,Mitkina T V,et al. Russ.J.Coord.Chem.,2005,31:768-774

    (b)Thuery P.Inorg.Chem.,2009,48:4497-4513

    (c)Thuery P.Inorg.Chem.,2010,49:9078-9085

    (d)Thuery P.Inorg.Chem.,2011,50:10558-10560

    (e)Kushwaha S,Rao S A,Sudhakar P P.Inorg.Chem., 2012,51:267-273

    (f)Liang L L,Ni X L,Zhao Y,et al.Inorg.Chem.,2013, 52:1909-1915

    (g)Liang L L,Zhao Y,Tao Z,et al.CrystEngComm,2013, 15:3943-3950

    (h)Liu J X,Hu Y F,Lin R L,et al.CrystEngComm,2012, 14:6983-6989

    [24](a)Gerasko O A,Mainicheva E A,Naumova M I,et al. Inorg.Chem.,2008,47:8869-8880

    (b)Gerasko O A,Mainicheva E A,Naumova M I,et al. Eur.J.Inorg.Chem.,2008,3:416-424

    [25]SHELXTL Program Package,Version 6.10,Bruker AXS, Inc.,Madison,WI,2000.

    [26](a)Yan P F,Lin P H,Habib F.et al.Inorg.Chem.,2011, 50:7059-7065

    (b)Jami A K,Baskar V,Sanudo E C,et al.Inorg.Chem., 2013,52:2432-2438

    [27]Langley S K,Moubaraki B,Forsyth C M,et al.Dalton Trans.,2010,39:1705-1708

    [28]Bartolomé J,Filoti G,Kuncser V,et al.Phys.Rev.B,2009, 80:014430

    [29](a)Wernsdorfer W,Bhaduri S,Boskovic C,et al.Phys.Rev. B,2002,65:180403

    (b)Wernsdorfer W,Chakov N E,Christou G,et al.Phys. Rev.Lett.,2005,95:037203

    Slow Magnetic Relaxation in Sandwich-Type Tetranuclear Dysprosium Complex with TMeQ[6](TMeQ[6]=α,α,δ,δ-Tetramethylcucurbit[6]uril)

    CHEN Wen-JianKONG Xiang-Jian*LONG La-Sheng*ZHENG Lan-Sun
    (State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen,Fujian 361005,China)

    Two TMeQ[6]-supported sandwich tetranuclear complexes,[Ln4(μ3-OH)4(μ2-OH)2(H2O)4(NO3)2(TMeQ[6])2] (NO3)4·26H2O(Ln=Dy,1;Ln=Tb,2),have been prepared and characterized.Crystal structural analysis reveals that both complexes contain a cubane-like[Ln4(μ3-OH)4]8+cluster core sandwiched between two TMeQ[6]macrocycles.Magnetic investigations indicate that complex 1 displays slow magnetization relaxation.Complex 2 exhibits intense photoluminescence owing to the efficient energy transfer from TMeQ[6]ligand to Tb3+ion.CCDC: 929607,1;929608,2.

    cluster;magnetism;photoluminescence;curcurbit[6]

    O614.342

    A

    1001-4861(2015)09-1867-08

    10.11862/CJIC.2015.226

    2015-06-01。收修改稿日期:2015-07-07。

    國家自然科學基金(nos.21422106,21371144,21431005)資助項目。

    *通訊聯(lián)系人。E-mail:xjkong@xmu.edu.cn;lslong@xmu.edu.cn;會員登記號:S06N455S1203(陳文建);S06N3944M1007(龍臘生)。

    猜你喜歡
    化工學院稀土甲基
    使固態(tài)化學反應100%完成的方法
    中國的“稀土之都”
    UIO-66熱解ZrO2負載CoMoS對4-甲基酚的加氫脫氧性能
    分子催化(2022年1期)2022-11-02 07:10:56
    1,2,4-三甲基苯氧化制備2,3,5-三甲基苯醌的技術進展
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    稀土鈰與鐵和砷交互作用的研究進展
    四川冶金(2019年5期)2019-12-23 09:04:36
    廢棄稀土拋光粉的綜合利用綜述
    聚甲基亞膦酸雙酚A酯阻燃劑的合成及其應用
    中國塑料(2016年2期)2016-06-15 20:30:00
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    亚洲欧洲日产国产| 大香蕉久久成人网| 国产有黄有色有爽视频| a级毛片在线看网站| 少妇人妻久久综合中文| 黄色a级毛片大全视频| 免费日韩欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 丝袜人妻中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡| 欧美+亚洲+日韩+国产| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 日韩大码丰满熟妇| 亚洲精品乱久久久久久| netflix在线观看网站| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人| 极品人妻少妇av视频| 看免费av毛片| 黄网站色视频无遮挡免费观看| 日韩视频在线欧美| 国产免费福利视频在线观看| 国产成人欧美在线观看 | 亚洲av综合色区一区| 极品少妇高潮喷水抽搐| 夫妻性生交免费视频一级片| 午夜老司机福利片| 国产成人a∨麻豆精品| 曰老女人黄片| 国产亚洲午夜精品一区二区久久| 天堂中文最新版在线下载| 18禁国产床啪视频网站| 国产在线免费精品| 免费在线观看黄色视频的| www.熟女人妻精品国产| 欧美日韩av久久| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 亚洲 国产 在线| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影 | 日日摸夜夜添夜夜爱| 久久人人爽人人片av| 日韩视频在线欧美| 久久免费观看电影| 久久ye,这里只有精品| 欧美国产精品va在线观看不卡| 国产爽快片一区二区三区| 亚洲,欧美,日韩| 麻豆av在线久日| 成人三级做爰电影| 午夜激情av网站| 国产一区有黄有色的免费视频| 精品久久久久久久毛片微露脸 | 99国产综合亚洲精品| 欧美精品高潮呻吟av久久| 狂野欧美激情性xxxx| 欧美精品人与动牲交sv欧美| 成人免费观看视频高清| 亚洲视频免费观看视频| 热99久久久久精品小说推荐| 国产日韩欧美亚洲二区| 三上悠亚av全集在线观看| 亚洲 欧美一区二区三区| 高清av免费在线| 国产高清videossex| 久久人人爽av亚洲精品天堂| 在线观看免费高清a一片| 91九色精品人成在线观看| 午夜福利影视在线免费观看| 一边摸一边抽搐一进一出视频| 九色亚洲精品在线播放| 亚洲av综合色区一区| 少妇精品久久久久久久| 国产伦理片在线播放av一区| 尾随美女入室| 亚洲av综合色区一区| 日本wwww免费看| 欧美精品人与动牲交sv欧美| 免费看十八禁软件| 成在线人永久免费视频| 成人亚洲欧美一区二区av| 欧美av亚洲av综合av国产av| 日韩制服丝袜自拍偷拍| 国产精品三级大全| 亚洲美女黄色视频免费看| 久久亚洲国产成人精品v| 免费观看人在逋| 免费不卡黄色视频| 人妻人人澡人人爽人人| 精品亚洲成国产av| 久久99一区二区三区| 最新在线观看一区二区三区 | 欧美+亚洲+日韩+国产| 久久女婷五月综合色啪小说| 国产成人免费观看mmmm| 97人妻天天添夜夜摸| 搡老岳熟女国产| 免费观看人在逋| 最新在线观看一区二区三区 | 久久鲁丝午夜福利片| 久久九九热精品免费| 欧美大码av| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区 | 国语对白做爰xxxⅹ性视频网站| 999精品在线视频| 久久狼人影院| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡| e午夜精品久久久久久久| 精品久久久精品久久久| 精品一品国产午夜福利视频| 亚洲人成电影观看| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 少妇裸体淫交视频免费看高清 | 2018国产大陆天天弄谢| 免费看av在线观看网站| 黑丝袜美女国产一区| 一级毛片 在线播放| 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频 | av在线app专区| 天堂中文最新版在线下载| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 成人亚洲精品一区在线观看| www.精华液| 亚洲三区欧美一区| 99国产综合亚洲精品| 日韩av免费高清视频| 一级黄片播放器| 国产在线视频一区二区| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 99热网站在线观看| 日韩一区二区三区影片| 国产男女超爽视频在线观看| av一本久久久久| 蜜桃国产av成人99| 国产熟女欧美一区二区| 国产日韩一区二区三区精品不卡| av天堂在线播放| 亚洲欧美一区二区三区黑人| 久久影院123| 丝瓜视频免费看黄片| 亚洲一码二码三码区别大吗| 国产一区二区激情短视频 | 亚洲欧美成人综合另类久久久| 人人妻人人添人人爽欧美一区卜| 欧美大码av| 亚洲 国产 在线| 在线天堂中文资源库| 操美女的视频在线观看| 99国产精品一区二区三区| 国产精品国产三级国产专区5o| 在线天堂中文资源库| 午夜av观看不卡| www.精华液| 国产高清视频在线播放一区 | 久久精品成人免费网站| 高清黄色对白视频在线免费看| 美国免费a级毛片| 青草久久国产| 热re99久久精品国产66热6| 久久久久久久国产电影| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 免费高清在线观看日韩| 成人黄色视频免费在线看| 久久性视频一级片| 亚洲国产精品一区二区三区在线| 成在线人永久免费视频| 午夜福利在线免费观看网站| 免费女性裸体啪啪无遮挡网站| 国产免费福利视频在线观看| 日韩欧美一区视频在线观看| 999精品在线视频| 啦啦啦视频在线资源免费观看| 国产精品免费大片| 日本wwww免费看| 久久久久久亚洲精品国产蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲伊人久久精品综合| 亚洲伊人久久精品综合| 国产精品欧美亚洲77777| 久久ye,这里只有精品| 欧美中文综合在线视频| 女警被强在线播放| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 午夜福利影视在线免费观看| av线在线观看网站| 久久国产精品大桥未久av| 欧美日韩一级在线毛片| 啦啦啦在线观看免费高清www| 黄片播放在线免费| 精品福利观看| 国产精品久久久人人做人人爽| 精品久久久久久久毛片微露脸 | av福利片在线| 黑人欧美特级aaaaaa片| 老司机在亚洲福利影院| av在线app专区| 日本黄色日本黄色录像| 后天国语完整版免费观看| 男女高潮啪啪啪动态图| 欧美性长视频在线观看| 91字幕亚洲| 色94色欧美一区二区| 一级,二级,三级黄色视频| 老司机午夜十八禁免费视频| 脱女人内裤的视频| 丰满饥渴人妻一区二区三| 亚洲国产日韩一区二区| 日韩av在线免费看完整版不卡| 十分钟在线观看高清视频www| 免费在线观看日本一区| 亚洲精品第二区| 国产欧美日韩精品亚洲av| 亚洲黑人精品在线| 欧美黄色淫秽网站| 久久青草综合色| 欧美成人午夜精品| 男人添女人高潮全过程视频| 人体艺术视频欧美日本| 日本午夜av视频| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 女性生殖器流出的白浆| 久久99精品国语久久久| 高清av免费在线| 欧美日韩国产mv在线观看视频| 久久久久久久大尺度免费视频| 亚洲第一青青草原| 国产三级黄色录像| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站| 一级毛片女人18水好多 | 两个人免费观看高清视频| 性色av乱码一区二区三区2| 精品国产一区二区久久| 久久青草综合色| 极品少妇高潮喷水抽搐| 深夜精品福利| 亚洲黑人精品在线| 首页视频小说图片口味搜索 | 久久毛片免费看一区二区三区| 日韩熟女老妇一区二区性免费视频| 视频区图区小说| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一区蜜桃| av有码第一页| 在线天堂中文资源库| 欧美日韩亚洲综合一区二区三区_| 国产免费现黄频在线看| 婷婷色麻豆天堂久久| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 老司机影院成人| 国产在线一区二区三区精| 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 久久久久久久国产电影| 大香蕉久久网| 中文字幕人妻熟女乱码| 欧美少妇被猛烈插入视频| 欧美日韩精品网址| 国产精品免费视频内射| 九草在线视频观看| 免费看十八禁软件| 国产亚洲欧美精品永久| 2021少妇久久久久久久久久久| 一个人免费看片子| 深夜精品福利| 男女边摸边吃奶| 只有这里有精品99| 99热国产这里只有精品6| 国产男女内射视频| 一级毛片女人18水好多 | 麻豆乱淫一区二区| 国产日韩欧美在线精品| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 日韩av免费高清视频| 在线观看国产h片| 99久久99久久久精品蜜桃| 亚洲国产精品成人久久小说| 久热爱精品视频在线9| 亚洲精品国产区一区二| 我要看黄色一级片免费的| 欧美精品啪啪一区二区三区 | 亚洲色图 男人天堂 中文字幕| 高清欧美精品videossex| www.av在线官网国产| 十分钟在线观看高清视频www| 飞空精品影院首页| 人成视频在线观看免费观看| 久久ye,这里只有精品| 国产视频首页在线观看| svipshipincom国产片| 我的亚洲天堂| 欧美国产精品va在线观看不卡| 精品少妇一区二区三区视频日本电影| 在线观看www视频免费| 国产成人系列免费观看| 婷婷色麻豆天堂久久| av国产久精品久网站免费入址| 人妻 亚洲 视频| 日本午夜av视频| 不卡av一区二区三区| 男女无遮挡免费网站观看| 欧美日韩亚洲综合一区二区三区_| 老司机午夜十八禁免费视频| av天堂在线播放| 久久99精品国语久久久| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久 | 亚洲精品久久午夜乱码| 国产野战对白在线观看| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 天天躁狠狠躁夜夜躁狠狠躁| 男的添女的下面高潮视频| 日本av手机在线免费观看| 亚洲第一av免费看| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| av线在线观看网站| 国产精品一国产av| 国产欧美日韩一区二区三区在线| 18在线观看网站| 咕卡用的链子| 亚洲久久久国产精品| 久久久久久久久免费视频了| 国产淫语在线视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩av久久| 亚洲黑人精品在线| 亚洲欧美清纯卡通| 在线天堂中文资源库| 久久精品久久精品一区二区三区| 午夜福利视频在线观看免费| 欧美成狂野欧美在线观看| 久久精品亚洲熟妇少妇任你| 国产三级黄色录像| 精品国产国语对白av| 久久久欧美国产精品| 免费不卡黄色视频| 久久久久久久大尺度免费视频| 美女主播在线视频| 亚洲精品第二区| 亚洲av日韩精品久久久久久密 | 在线 av 中文字幕| 亚洲久久久国产精品| 黄色怎么调成土黄色| 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 亚洲熟女毛片儿| 国产精品国产三级专区第一集| 婷婷色综合www| 在线精品无人区一区二区三| 在线观看国产h片| 亚洲第一av免费看| av一本久久久久| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 午夜激情av网站| 久久久久精品人妻al黑| 99久久综合免费| 欧美人与善性xxx| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 亚洲专区国产一区二区| 久久精品国产亚洲av高清一级| 美女福利国产在线| 你懂的网址亚洲精品在线观看| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 少妇人妻 视频| 极品少妇高潮喷水抽搐| 又大又黄又爽视频免费| 国产精品一二三区在线看| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| avwww免费| www.精华液| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 超碰97精品在线观看| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| 母亲3免费完整高清在线观看| 少妇 在线观看| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看| 黄片播放在线免费| 亚洲av美国av| 大片免费播放器 马上看| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| 国产成人精品久久二区二区免费| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 一区二区三区精品91| 国产成人啪精品午夜网站| 一级毛片我不卡| 久久人人爽人人片av| 在线精品无人区一区二区三| 国产一区二区三区av在线| 国产av国产精品国产| 国产欧美日韩一区二区三区在线| 午夜免费鲁丝| 老司机影院成人| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 99国产精品99久久久久| 在线观看人妻少妇| 日韩一本色道免费dvd| 国产精品亚洲av一区麻豆| 一本综合久久免费| 女人高潮潮喷娇喘18禁视频| 亚洲九九香蕉| 男女边吃奶边做爰视频| 一边摸一边做爽爽视频免费| 亚洲国产精品999| 精品久久久精品久久久| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 啦啦啦在线观看免费高清www| 日本五十路高清| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三区在线| 国产精品一国产av| 一区二区三区激情视频| 久久这里只有精品19| 在线亚洲精品国产二区图片欧美| 久久九九热精品免费| 欧美成人午夜精品| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 我要看黄色一级片免费的| 99香蕉大伊视频| 最近手机中文字幕大全| 成人免费观看视频高清| av不卡在线播放| 亚洲激情五月婷婷啪啪| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| av在线播放精品| 波野结衣二区三区在线| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀 | 日本欧美国产在线视频| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| av在线老鸭窝| 最新在线观看一区二区三区 | av有码第一页| 高清不卡的av网站| 日本黄色日本黄色录像| 一区二区av电影网| 日韩 欧美 亚洲 中文字幕| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 日本午夜av视频| 晚上一个人看的免费电影| 香蕉国产在线看| 国产精品一二三区在线看| 超色免费av| 亚洲 国产 在线| 精品国产一区二区久久| 久久精品国产a三级三级三级| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 99久久精品国产亚洲精品| 999精品在线视频| 午夜av观看不卡| 久久久久久免费高清国产稀缺| 免费不卡黄色视频| 亚洲精品一区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久精品aⅴ一区二区三区四区| 美女扒开内裤让男人捅视频| 欧美97在线视频| 一级毛片 在线播放| 免费少妇av软件| 啦啦啦在线观看免费高清www| 日韩视频在线欧美| 精品久久蜜臀av无| 欧美人与善性xxx| 久久青草综合色| 亚洲成av片中文字幕在线观看| 免费不卡黄色视频| 亚洲中文字幕日韩| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区| 午夜免费成人在线视频| 欧美日韩视频精品一区| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 激情视频va一区二区三区| 大香蕉久久网| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 满18在线观看网站| 成人影院久久| 亚洲中文字幕日韩| 美女高潮到喷水免费观看| 午夜久久久在线观看| 午夜精品国产一区二区电影| 亚洲九九香蕉| 国产有黄有色有爽视频| a级片在线免费高清观看视频| 黄色视频在线播放观看不卡| 欧美成人午夜精品| 国产成人精品久久久久久| 高清欧美精品videossex| 黄片小视频在线播放| 精品久久蜜臀av无| 久久久久久人人人人人| 久久女婷五月综合色啪小说| 国产精品一区二区免费欧美 | 国产1区2区3区精品| 在线观看人妻少妇| 这个男人来自地球电影免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲专区中文字幕在线| 日韩av在线免费看完整版不卡| 91精品伊人久久大香线蕉| 精品人妻在线不人妻| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 国产成人免费观看mmmm| 丝袜喷水一区| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 2021少妇久久久久久久久久久| 欧美在线黄色| e午夜精品久久久久久久| 日本五十路高清| 婷婷丁香在线五月| 欧美黑人精品巨大| av网站在线播放免费| 国产主播在线观看一区二区 | 尾随美女入室| 人人澡人人妻人| 欧美黄色片欧美黄色片| 欧美国产精品va在线观看不卡| 日韩人妻精品一区2区三区| 曰老女人黄片| 亚洲伊人久久精品综合| 亚洲国产看品久久| 国产日韩一区二区三区精品不卡| 你懂的网址亚洲精品在线观看| 老司机在亚洲福利影院| 中文欧美无线码| 精品视频人人做人人爽| 久久午夜综合久久蜜桃| 国产精品九九99| av天堂久久9| 两个人免费观看高清视频| 日本猛色少妇xxxxx猛交久久| 欧美av亚洲av综合av国产av| 19禁男女啪啪无遮挡网站| 51午夜福利影视在线观看| 欧美日韩福利视频一区二区| 午夜91福利影院| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 国产片内射在线| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 老司机靠b影院| 国产成人91sexporn| 蜜桃国产av成人99| 日韩伦理黄色片| 亚洲av综合色区一区| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看 | 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 成人免费观看视频高清| 男女边吃奶边做爰视频| 在线观看一区二区三区激情|