• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hochschild Cohomology Rings of Temperley-Lieb Algebras?

    2015-06-01 07:34:40HuanhuanLIYungeXUYuanCHEN
    關(guān)鍵詞:排除故障原始記錄限值

    Huanhuan LI Yunge XU Yuan CHEN

    1 Introduction

    The Temperley-Lieb algebras were first introduced in 1971 in[24]to study the single bond transfer matrices for the ice model and the Potts model.Later they were independently found by Jones when he characterized the algebras arising from the tower construction of semisimple algebras in the study of subfactors(see[18]).These algebras have played a central role in the discovery by Jones of his new polynomial invariant of knots and links(see[19]),and in the subsequent developments over the past four decades relating to knot theory,topological quantum field theory,and statistical physics(see[20]).Their relationship with knot theory comes from their role in the Definition of the Jones polynomial.The theory of quantum invariants of links nowadays involves many research fields.Thus,many important kinds of algebras related to the invariants of braids or links,such as Birman Wenzl algebras(see[5]),Hecke algebras and Brauer algebras,have been of great interest in mathematics and physics.They are all deformations of certain group algebras or other well-known algebras.

    Let K be a field and m a positive integer.Recall that the Temperley-Lieb algebra Am(δ)for δ∈ K is defined to be a K-algebra with identity generated by t1,t2,···,tm?1subject tothe relations:

    It was shown in[25]that a block of a non-semisimple Temperley-Lieb algebra is Morita equivalent to the quotient algebra A=Am=KQ/I given by the quiver

    and the relations I=〈αi+1αi,βiβi+1,βi+1αi+1?αiβi,αm?1βm?1|i=1,2,···,m?2〉.As was shown in[26],the non-trivial block of the representation- finite q-Schur algebras Sq(n,r)with n≥r is also Morita equivalent to an algebra of the form Am.

    Hochschild cohomology HH?(A,M)of A with coefficients in M was introduced in[16]in order to classify,up to equivalence,all extensions of A with Kernel M,which is one-to-one correspondence with HH2(A,M).Many other applications of this cohomology have been discovered since then(see[15]).For example,separable algebras are characterized by the fact that their Hochschild(cohomology)dimension is zero,that is,HH1(A,M)=0 for every bimodule M(see[16]);the deformation theory of an algebra is controlled by its Hochschild cohomology as a graded Lie algebra under the Gerstenhaber bracket(see[11]);Hochschild cohomology is also closely related to simple connectedness,formal smoothness(or quasi-freeness in literature)(see[1,22])and so on.It is well known that HH?(A)is endowed with the so-called Gerstenhaber algebra structure under the cup product

    and the Gerstenhaber Lie bracket

    However,for most finite dimensional algebras,little is known about the Hochschild cohomology groups and even less about the Hochschild cohomology rings(see[2,4,7–10,13,27]).

    Since Hochschild cohomology is invariant under Morita equivalence(see[15]),to describe the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r,it is sufficient to deal with the basic algebra A defined as above.The K-dimensions of Hochschild cohomology groups of A were obtained in[17]by a long exact sequence of cohomology groups relating to a homological epimorphism of K-algebras,but there K-bases were not given.We begin the paper by giving a minimal projective resolution of A as an Ae-module,and then apply it to obtain K-bases of the cohomology groups in terms of parallel paths.In Section 4 we give an explicit description of the “comultiplicative” map Δ:P→P?AP to determine the cup product of HH?(A)using the composition

    P→P?AP→A?AA→A.

    As a consequence,we will give an explicit presentation of the multiplicative structure of HH?(A)under the cup product by generators and relations.

    2 The Minimal Projective Bimodule Resolution

    Throughout the paper we always assume that A is the algebra defined as in the introduction.We denote by eithe trivial path at the vertex i.Given a path p in Q,we denote by o(p)and t(p)the origin and the terminus of p respectively.

    We will employ the strategy due to Green et al in[12,14]to construct a minimal projective Ae-module resolution of A.Seti=1,2,···,m.For 1≤n≤2m?2,one defines the following elements recursively:

    Noticing that gl.dimA=2m?2,one takesif n>2m?2.Note thatis just an algebraic sum of paths of length n with the original i and containing exactly r arrows of type α.Denote by gnthe set of elements of the formThen,

    For 3≤n≤2m?2,when n=2k,

    when n=2k+1,

    In particular,we have

    In order to define the differential δ,we need the following lemma so that we have two di ff erent ways of expressing the elements of the set gnin terms of the elements of the set gn?1.The proof of Lemma 2.1 is straightforward and therefore omitted.

    Lemma 2.1For n≤1,we have

    Denote?:=?K.define

    and for 1≤n≤2m?2,δn:Pn→ Pn?1is given by

    The following theorem follows immediately from Lemma 2.1 and[12,Theorem 2.1].

    Theorem 2.1With the above notation,the complex

    is a minimal projective Ae-resolution of A,where δ0:P0→ A is the multiplication map.

    ProofLet X=g1and R=g2be the set of generators of I as above.Since A is a Koszul alg?ebra,by[3,Sect.9],it suffices to show that gnis a K-basis of the K-vector space

    We f i rst show that all thebelong to Kninductively.It is trivial for n=2.Assume that the assertion holds for n?1 and we prove it for n.By the induction hypothesis and the formula(2.1),The induction hypothesis and Lemma 2.1 show thatThe assertion follows from the fact that Kn=RXn?2∩ Xn?2R ∩XKn?1∩ Kn?1X.

    Next,gnis K-linearly independent since they have distinct supports.Also,the quadratic duality A!=kQ/I⊥of A is isomorphic to the Yoneda algebra E(A)of A,where I⊥is the ideal of KQ generated by R⊥={β1α1,βi+1αi+1+ αiβi|i=1,2,···,m ? 2}.So the Betti number of the minimal projective resolution of A over Aeis

    Hence gnis a K-basis of Kn.Then the result follows.

    3 Hochschild Cohomology Groups

    This section is devoted to finding K-bases of the Hochschild cohomology groups of A based on the minimal projective Ae-resolution constructed in the previous section.

    Applying HomAe(?,A)to the minimal resolution(P,δ),we have the complex

    Let B={e1,e2,···,em,β1,β2,···,βm?1,α1,α2,···,αm?1,β1α1,β2α2,···,βm?1αm?1}be a K-basis of algebra A,and K(B//gn)denote the vector space with a K-basis B//gn={(b,gnr,i)|We say that two paths α and β are parallel if o(α)=o(β)and t(α)=t(β).

    The following lemma is immediate,see[6,21]for details.

    Lemma 3.1HomAe(Pn,A)~=K(B//gn)as vector spaces.

    ProofIt is easy to see that

    as vector spaces.

    We fix an isomorphism φ :K(B//gn) → HomAe(Pn,A)sending(b,γ) ∈ (B//gn)to the Ae-homomorphism f(b,γ)∈ HomAe(Pn,A),which assigns o(γ)? t(γ)to b,and zero otherwise.The cochain complex above changes into

    where we still denote bythe induced linear maps.

    Lemma 3.2Kerhas a K-basisand dimKIm=m?1.

    ProofUnder the K-bases,

    B//g0={(e1,e1),(e2,e2),···,(em,em),(β1α1,e1),(β2α2,e2),···,(βm?1αm?1,em?1)}and

    B//g1={(β1,β1),(β2,β2),···,(βm?1,βm?1)(α1,?α1),(α2,?α2),···,(αm?1,?αm?1}.It is not difficult to calculate the matrix of the linear map δ?1which is

    with the right m?1 columns zero.It is clear that rankA1=m?1,and hence dimKIm=rankA1=m?1,and dimKKer=|B//g0|?rankA1=(m+m?1)?(m?1)=m.One can easily check that

    Noticing that HHn(A)=Kerwe next find out a K-basis of the kernel space Kerand the image space Imfor n>0,respectively.They will be discussed in four cases.

    Case I:n=4t,t≠0.Set

    Case II:n=4t+1,t≠0.Set

    Case III:n=4t+2.Set

    Case IV:n=4t+3.Set

    Lemma 3.3U forms a K-basis of Imand V forms a K-basis of Ker.

    ProofWe only prove the case I,and the other cases are similar and their proofs are omitted here.It is not difficult to calculate the matrix of the linear mapunder the K-bases B//gn?1=The matrix Anis

    whose first m?2t rows are zero.The rank of Anis m?2t?1 and hence dimKIm=rankAn=m?2t?1 and dimKKer=|B//gn?1|?dimKIm=2(m?2t)?(m?2t?1)=m?2t+1.

    It is easy to see that

    可靠性監(jiān)控(圖2)主要用于監(jiān)控汽車使用和維修過程的可靠性,同時(shí)也監(jiān)控系統(tǒng)功能,例如結(jié)構(gòu)改變原始記錄、維修記錄、故障庫、限值數(shù)據(jù)、排除故障數(shù)據(jù)、質(zhì)量數(shù)據(jù)、費(fèi)用數(shù)據(jù)、零部件和用于管理維修過程的其他各種程序等。

    Since the setis K-linear independent and has m?2t?1 elements,it is a K-basis of Im.

    Clearly,

    It follows that

    which is obviously K-linear independent and has m?2t+1 elements,so it is a K-basis of Ker.The proof is finished.

    Now it is a position to give a K-basis of the Hochschild cohomological space HHn(A).

    Theorem 3.1Let A=KQ/I be the K-algebra defined as in the introduction.Then we have

    (1)dimKHHi(A)=

    (2)HH0(A)has a basis

    HH4t(A)has a basis

    HH4t+1(A)has a basis

    HH4t+2(A)has a basis

    HH4t+3(A)has a basis

    Here these basis elements represent the representatives of the corresponding elements in HHn(A).

    ProofIt follows from Lemmas 3.2–3.3 and the fact that HHi(A)=Kerdirectly.

    Remark 3.1The dimension of the Hochschild cohomological space HHn(A) was obtained by de la Pea and Xi in[17]in a different way.

    4 The Cup Product

    In this section we will describe the multiplicative structure of the Hochschild cohomology ring of A in terms of parallel paths.In[23]it was shown that for any projective Ae-resolution P of a f i nite dimensional algebra A,there exists a unique(up to homotopy)chain map Δ :P → P?AP lifting the identity.P gives rise to a “cup product” of two elements η in HHm(A)and θ in HHn(A)by using the composition

    coinciding with the ordinary cup product and being independent of the projective resolution P of A and the chain map Δ.

    The following lemma provides an explicit description of the so-called“comultiplicative structure” of the generators of each Pnin(P,δ),which is key to def i ning a chain map Δ.

    Lemma 4.1For any given p=0,1,···,n,we have

    ProofWe use induction on p.There is nothing to prove provided that p=0.If p=1,thenwhich is just the de fining formula of

    Suppose now that the formula holds true for p=k.We consider the case p=k+1.By the induction hypothesis and the formula(2.1),we have

    The result follows.

    The lemma allows us to give the Definition of the map Δ :P → P?AP.First we recall the tensor product chain complex(P?AP,D)of(P,δ).Its n-th object isand the differential Dn:(P?AP)n→(P?AP)n?1is given byBy abuse of notations,we denote by othe corresponding idempotent eo(gnr,i)(resp.),and bythe generator oof Pn.

    Definition 4.1The A-A-bimodule map Δ =(Δn):P → P?AP is defined by

    for 0≤n≤2m?2 and the other Δnare all zero.

    Lemma 4.2The map Δ :(P,δ)→ (P?AP,D)defined as above is a chain map.

    ProofTo prove the result,it suffices to show that the diagram

    is commutative for n≥1.

    Letdenote the element of Pt?APn?1?t.By the Definition of Δ and=(?1)nei?βi+n?2r?1+ei?αi+n?2r+(?1)rβi?ei+n?2r+(?1)rαi?1?ei+n?2r,we have

    On the other hand,noting that

    and

    we can directly check that

    and thus Δn?1δn=DnΔnas desired.The proof is finished.

    In order to give an explicit description of the Hochschild cohomology ring of A,we first give the cup product on the level of cochains,which is essentially juxtaposition of parallel paths up to sign.

    Lemma 4.3Let A=KQ/I be the K-algebra defined as in the introduction.Then

    Hereis viewed as 0 whenever b1b2∈I.

    ProofLet ηn1=and ηn2=Using the composition

    we have

    When s≠r1or i≠k,we haveAnd when r?s≠r2or j≠k+n1?2s,we haveThus,only in the case of s=r1,i=k,r?s=r2and j=i+n1?2r1we haveBy the isomorphism of Lemma 3.1,it is easy to see that in the case of j=i+n1? 2r1,we haveand otherwise is zero.

    Theorem 4.1Let A=KQ/I be the K-algebra defined as in the introduction.

    (1)is the identity of HH?(A),and for any ηj=(βjαj,ej)∈ HH0(A),ξ∈ HH?(A),ξ/∈K,we have ηj︶ξ=ξ︶ηj=0.

    (2)Let ηn1and ηn2be the unique basis elements of HHn1(A)and HHn2(A)with n1n2>0,respectively.We have

    ProofIt follows from Lemma 4.3 directly.

    Now we can give a description of the multiplication structure of the Hochschild cohomology ring of A by giving an explicit presentation by generators and relations.Let x1,x2,···,xm?1,y,z be the indeterminates of degree 0,0,···,0,1,2 respectively.Let Λ =K[x1,x2,···,xm?1,y,z]/J,where J is the two-sided ideal of the polynomial algebra K[x1,x2,···,xm?1,y,z]generated by

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Theorem 4.2Let A=KQ/I be the K-algebra defined as in the introduction.Then HH?(A) ~= Λ.

    ProofWe omit the symbol of the cup product ︶ of two elements of HH?(A)for simplicity.Clearlyis the identity of HH?(A).Denote

    By Theorem 4.1,we have

    Hence HH?(A)can be generated by x1,x2,···,xm?1,y,z over K.Also,by Theorem 4.1,it is easy to find that any two elements in HH?(A)are commutative and the following relations hold true:

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Then we construct an epimorphic algebra homomorphism

    ? :K[x1,x2,···,xm?1,y,z]→ HH?(A)

    sending x1,x2,···,xm?1,y,z to x1,x2,···,xm?1,y,z,respectively.Clearly,J ? Ker? by the relations above.Noticing thatas a graded algebra satisfies that dimKΛ0=m and dimKΛj=1 for j≥ 1,we can immediately obtain that HH?(A) ~= Λ by comparing the dimensions of graded algebras HH?(A)and Λ.

    Remark 4.1Since the Hochschild cohomology of algebras is Morita-invariant,the above theorem describes the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r.

    [1]Ardizzoni,A.,Menini,C.and Stefan,D.,Hochschild cohomology and smoothness in monoidal categories,J.Pure Appl.Algebra,208,2007,297–330.

    [2]Buchweitz,R.O.,Green,E.L.,Snashall,N.and Solberg,?.,Multiplicative structures for Koszul algebras,Quart.J.Math.,59(4),2008,441–454.

    [3]Bulter,M.C.R.and King,A.D.,Minimal resolution of algebras,J.Algebra,212,1999,323–362.

    [4]Bustamante,J.C.,The cohomology structure of string algebras,J.Pure Appl.Algebra,204,2006,616–626.[5]Birman,J.and Wenzl,H.,Braids,link polynomials and a new algebra,Trans.Amer.Math.Soc.,313,1989,249–273.

    [6]Cibils,C.,Rigidity of truncated quiver algebras,Adv.Math.,79,1990,18–42.

    [7]Erdmann,K.and Holm,T.,Twisted bimodules and Hochschild cohomology for self-injective algebras of class An,Forum Math.,11,1999,177–201.

    [8]Erdmann,K.and Schroll,S.,On the Hochschild cohomology of tame Hecke algebras,Arch.Math.,94,2010,117–127.

    [9]Erdmann,K.and Snashall,N.,On Hochschild cohomology of preprojective algebras,II,J.Algebra,205,1998,413–434.

    [10]Fan,J.M.and Xu,Y.G.,On Hochschild cohomology ring of Fibonacci algebras,Frontiers of Mathematics in China,1(4),2006,526–537.

    [11]Gerstenhaber,M.,On the deformation of rings and algebras,Ann.Math.,79,1964,59–103.

    [12]Green,E.L.,Hartman,G.,Marcos,E.N.and Solberg,?.,Resolutions over Koszul algebras,Arch.Math.,85,2005,118–127.

    [13]Green,E.L.and Solberg,?.,Hochschild cohomology rings and triangular rings,Happel,D.and Zhang,Y.B.(eds.),Proceedings of the Ninth International Conference,Beijing Normal University Press,Beijing,2,2002,192–200.

    [14]Green,E.L.,Solberg,? and Zacharia,D.,Minimal projective resolutions,Trans.Amer.Math.Soc.,353,2001,2915–2939.

    [15]Happel,D.,Hochschild cohomology of finite-dimensional algebras,Lecture Notes in Mathematics,1404,Springer-Verlag,New York,1989,108–126.

    [16]Hochschild,G.,On the cohomology groups of an associative algebra,Ann.Math.,46(1),1945,58–67.

    [17]De la Pena,J.A.and Xi,C.C.,Hochschild cohomology of algebras with homological ideals,Tsukuba J.Math.,30(1),2006,61–80.

    [18]Jones,V.F.R.,Index for subfactors,Invent.Math.,72,1983,1–25.

    [19]Jones,V.F.R.,A polynomial invariant for links via von Neumann algebras,Bulletin of the Amer.Math.Soc.,129,1985,103–112.

    [20]Kau ff man,L.H.,Knots in Physics,World Scientic Press,River Edge,NJ,1994.

    [21]Strametz,C.,The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra,Comptes Rendus Mathematique,334,2002,733–738.

    [22]Skowro′nski,A.,Simply connected algebras and Hochschild cohomology,Can.Math.Soc.Proc.,14,1993,431–447.

    [23]Siegel,S.F.and Witherspoon,S.J.,The Hochschild cohomology ring of a group algebra,Proc.London Math.Soc.,79(3),1999,131–157.

    [24]Temperley,H.N.V.and Lieb,E.H.,Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices:Some exact results for the percolation problem,Proc.R.Soc.Lon.(Ser.A),322,1971,251–280.

    [25]Westbury,B.W.,The representation theory of the Temperley-Lieb algebras,Math.Z.,219(4),1995,539–565.

    [26]Xi,C.C.,On representation types of q-Schur algebras,J.Pure Appl.Algebra,84,1993,73–84.

    [27]Xu,Y.G.and Xiang,H.L.,Hochschild cohomology rings of d-Koszul algebras,J.Pure Appl.Algebra,215,2011,1–12.

    猜你喜歡
    排除故障原始記錄限值
    計(jì)量檢定中原始記錄的重要性
    光通信傳輸網(wǎng)排除故障的關(guān)鍵技術(shù)分析
    電子測試(2018年22期)2018-12-19 05:12:22
    關(guān)于廢水排放特別限值的思考
    維修電工的五項(xiàng)操作技巧
    遼寧省遼河流域石油煉制排放限值的制定
    DZZ5溫度異常偏大的原因與分析
    中美煉鋼行業(yè)污染物排放限值研究
    淺析數(shù)字電視前端設(shè)備的技術(shù)應(yīng)用研究
    環(huán)境保護(hù)部解讀新發(fā)布的大氣污染物特別排放限值
    模板化原始記錄在應(yīng)用中存在的問題分析
    亚洲av片天天在线观看| 久久午夜亚洲精品久久| 制服人妻中文乱码| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看 | 亚洲精华国产精华精| 国产精品秋霞免费鲁丝片| 天堂影院成人在线观看| 成年版毛片免费区| 在线视频色国产色| 99国产精品一区二区蜜桃av| 首页视频小说图片口味搜索| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 日韩人妻精品一区2区三区| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 男女做爰动态图高潮gif福利片 | 在线观看免费日韩欧美大片| 我的亚洲天堂| 中文亚洲av片在线观看爽| 黄色女人牲交| 交换朋友夫妻互换小说| 夫妻午夜视频| 国产精品乱码一区二三区的特点 | 久久中文字幕一级| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 一级a爱片免费观看的视频| 免费高清在线观看日韩| e午夜精品久久久久久久| 日韩大尺度精品在线看网址 | 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片 | 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 久久伊人香网站| 老司机在亚洲福利影院| 午夜免费观看网址| 波多野结衣一区麻豆| 精品一区二区三区av网在线观看| 悠悠久久av| 亚洲av成人av| 女警被强在线播放| 日韩免费高清中文字幕av| 最好的美女福利视频网| 大陆偷拍与自拍| 无人区码免费观看不卡| 午夜日韩欧美国产| 国产精品影院久久| 欧美激情高清一区二区三区| 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 99在线视频只有这里精品首页| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 国产一区二区在线av高清观看| 一区在线观看完整版| 精品久久久久久久久久免费视频 | a级毛片在线看网站| 多毛熟女@视频| 老司机在亚洲福利影院| 国产成年人精品一区二区 | 久久人人精品亚洲av| 亚洲人成77777在线视频| 免费在线观看亚洲国产| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频网站a站| 亚洲精品中文字幕一二三四区| 中文字幕色久视频| 少妇 在线观看| 久热这里只有精品99| 久久亚洲真实| 久久久久久久久免费视频了| 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 国产免费av片在线观看野外av| 久久久久国内视频| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| 国产精品九九99| 免费在线观看黄色视频的| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品久久久久久毛片| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 美国免费a级毛片| 亚洲国产精品sss在线观看 | 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 久久精品亚洲av国产电影网| 99久久99久久久精品蜜桃| 午夜影院日韩av| 亚洲av第一区精品v没综合| www.精华液| 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 欧美日韩视频精品一区| 高清欧美精品videossex| 亚洲国产看品久久| 制服诱惑二区| 看黄色毛片网站| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 看免费av毛片| 国产真人三级小视频在线观看| av网站免费在线观看视频| 免费av中文字幕在线| 久久精品91蜜桃| 在线天堂中文资源库| 日本wwww免费看| 亚洲av成人一区二区三| 另类亚洲欧美激情| 美女 人体艺术 gogo| 国产亚洲精品一区二区www| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 国产精品久久久久成人av| 99久久人妻综合| 51午夜福利影视在线观看| 黑人猛操日本美女一级片| 久久久久久免费高清国产稀缺| 美女高潮到喷水免费观看| 极品人妻少妇av视频| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 人妻久久中文字幕网| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 欧美日韩黄片免| 在线免费观看的www视频| 夜夜爽天天搞| 免费久久久久久久精品成人欧美视频| 欧美一区二区精品小视频在线| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 国产99白浆流出| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 黄色 视频免费看| 黑丝袜美女国产一区| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 国产精品二区激情视频| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 一个人免费在线观看的高清视频| 国产av一区在线观看免费| 老司机靠b影院| av在线天堂中文字幕 | 嫩草影视91久久| 国产成人精品久久二区二区91| 久久午夜综合久久蜜桃| 亚洲成人精品中文字幕电影 | 国产成+人综合+亚洲专区| 日韩欧美一区视频在线观看| av福利片在线| 久久国产精品影院| 国产有黄有色有爽视频| 免费观看精品视频网站| 久久亚洲精品不卡| 女警被强在线播放| 午夜激情av网站| 久久精品影院6| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 亚洲aⅴ乱码一区二区在线播放 | 免费搜索国产男女视频| 美女福利国产在线| 欧美午夜高清在线| 久久久国产成人精品二区 | 精品久久久久久电影网| 手机成人av网站| 一二三四社区在线视频社区8| 亚洲成国产人片在线观看| 97人妻天天添夜夜摸| 在线观看免费高清a一片| 亚洲一区二区三区不卡视频| 美女大奶头视频| av网站免费在线观看视频| 大码成人一级视频| 高清欧美精品videossex| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 精品电影一区二区在线| 国产亚洲欧美在线一区二区| 亚洲人成电影免费在线| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 国产精品九九99| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 女人被躁到高潮嗷嗷叫费观| 午夜福利,免费看| 一级作爱视频免费观看| 成人精品一区二区免费| 亚洲成人免费av在线播放| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 精品少妇一区二区三区视频日本电影| 亚洲av成人av| 亚洲成国产人片在线观看| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 三级毛片av免费| 午夜免费鲁丝| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 韩国av一区二区三区四区| 一区二区日韩欧美中文字幕| 国产色视频综合| 高潮久久久久久久久久久不卡| 亚洲欧美激情在线| 欧美激情 高清一区二区三区| 久99久视频精品免费| 国产激情久久老熟女| 亚洲一区二区三区不卡视频| 亚洲成人免费av在线播放| 麻豆av在线久日| 成熟少妇高潮喷水视频| 女性被躁到高潮视频| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 亚洲全国av大片| 中亚洲国语对白在线视频| 精品卡一卡二卡四卡免费| 在线永久观看黄色视频| 女人精品久久久久毛片| 日本免费一区二区三区高清不卡 | 男人的好看免费观看在线视频 | 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕 | 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 三上悠亚av全集在线观看| 亚洲五月天丁香| 亚洲欧美一区二区三区久久| 久久久水蜜桃国产精品网| svipshipincom国产片| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 一级黄色大片毛片| 夜夜爽天天搞| 757午夜福利合集在线观看| av有码第一页| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 日韩一卡2卡3卡4卡2021年| 动漫黄色视频在线观看| 国产成人影院久久av| 老司机亚洲免费影院| videosex国产| 亚洲色图综合在线观看| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 欧美av亚洲av综合av国产av| 亚洲免费av在线视频| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 国产午夜精品久久久久久| 伦理电影免费视频| 精品一区二区三卡| 大码成人一级视频| 国产成人系列免费观看| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 91国产中文字幕| 亚洲av五月六月丁香网| 最近最新中文字幕大全免费视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久av网站| 伦理电影免费视频| 另类亚洲欧美激情| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人精品中文字幕电影 | 欧美日韩黄片免| av超薄肉色丝袜交足视频| 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 天天影视国产精品| 久久久国产成人精品二区 | 多毛熟女@视频| 国产成人系列免费观看| 少妇的丰满在线观看| 亚洲伊人色综图| 在线观看日韩欧美| 一进一出抽搐gif免费好疼 | 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼 | 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 日本五十路高清| av福利片在线| 999久久久国产精品视频| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉激情| 成人av一区二区三区在线看| 精品熟女少妇八av免费久了| 亚洲精品国产区一区二| 成人黄色视频免费在线看| 夜夜看夜夜爽夜夜摸 | 欧美 亚洲 国产 日韩一| 久久久久久久午夜电影 | 亚洲精品中文字幕一二三四区| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 无人区码免费观看不卡| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 国产精品综合久久久久久久免费 | 国产精品亚洲av一区麻豆| 神马国产精品三级电影在线观看 | 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 在线播放国产精品三级| 一进一出好大好爽视频| 丰满迷人的少妇在线观看| 久久天堂一区二区三区四区| 精品第一国产精品| 欧美黄色片欧美黄色片| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 免费在线观看完整版高清| 最近最新中文字幕大全电影3 | 丰满饥渴人妻一区二区三| 午夜福利在线观看吧| a级毛片黄视频| 亚洲一码二码三码区别大吗| 手机成人av网站| 交换朋友夫妻互换小说| 久久国产精品影院| 国产精品成人在线| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 久久久久久免费高清国产稀缺| 亚洲五月婷婷丁香| 丝袜在线中文字幕| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 一进一出抽搐动态| 午夜免费成人在线视频| 女人精品久久久久毛片| 色在线成人网| 久久久国产一区二区| 亚洲国产看品久久| 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| av视频免费观看在线观看| 欧洲精品卡2卡3卡4卡5卡区| a级片在线免费高清观看视频| 国产片内射在线| 免费av毛片视频| 一级黄色大片毛片| 午夜亚洲福利在线播放| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区久久| 午夜免费成人在线视频| 精品欧美一区二区三区在线| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 热re99久久国产66热| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 欧美日韩瑟瑟在线播放| 久久精品成人免费网站| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 美女大奶头视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲视频免费观看视频| 国产成人av激情在线播放| 成年人免费黄色播放视频| 久久国产亚洲av麻豆专区| 国产精品爽爽va在线观看网站 | 成人国语在线视频| 日本 av在线| 国产av一区在线观看免费| 黄片小视频在线播放| 怎么达到女性高潮| 午夜福利在线免费观看网站| 热99国产精品久久久久久7| 啪啪无遮挡十八禁网站| 亚洲欧美激情在线| 日韩有码中文字幕| 午夜影院日韩av| 精品日产1卡2卡| 精品一品国产午夜福利视频| 欧美大码av| 十八禁网站免费在线| 91精品国产国语对白视频| 国产成人精品在线电影| 久久精品亚洲熟妇少妇任你| 又大又爽又粗| 一进一出抽搐gif免费好疼 | 欧美激情 高清一区二区三区| 精品国产乱子伦一区二区三区| 国产亚洲欧美在线一区二区| 日韩国内少妇激情av| 国产成人精品无人区| 又紧又爽又黄一区二区| 午夜精品在线福利| 婷婷精品国产亚洲av在线| 大码成人一级视频| 国产一卡二卡三卡精品| 久久 成人 亚洲| 香蕉丝袜av| 亚洲va日本ⅴa欧美va伊人久久| 啪啪无遮挡十八禁网站| 身体一侧抽搐| 色婷婷av一区二区三区视频| 欧美日韩av久久| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费 | 50天的宝宝边吃奶边哭怎么回事| 成人亚洲精品一区在线观看| 女性被躁到高潮视频| 久久久久国内视频| 日韩免费av在线播放| 桃色一区二区三区在线观看| 国产精品香港三级国产av潘金莲| xxx96com| 午夜福利免费观看在线| 亚洲午夜精品一区,二区,三区| 桃红色精品国产亚洲av| 自线自在国产av| 在线av久久热| 午夜免费观看网址| 成人精品一区二区免费| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 国产国语露脸激情在线看| 在线视频色国产色| 亚洲精品国产色婷婷电影| 啦啦啦 在线观看视频| 日韩免费高清中文字幕av| 国产精品 国内视频| 不卡一级毛片| av片东京热男人的天堂| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 国产有黄有色有爽视频| 黑人巨大精品欧美一区二区mp4| 99香蕉大伊视频| 亚洲欧美日韩无卡精品| 国产aⅴ精品一区二区三区波| 老汉色av国产亚洲站长工具| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 少妇粗大呻吟视频| 成人国语在线视频| 久久中文看片网| 热re99久久国产66热| 男女下面插进去视频免费观看| 精品国产超薄肉色丝袜足j| 免费在线观看亚洲国产| 午夜福利一区二区在线看| 亚洲欧美日韩高清在线视频| 极品教师在线免费播放| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 国产一区在线观看成人免费| 国产aⅴ精品一区二区三区波| 国产免费现黄频在线看| 777久久人妻少妇嫩草av网站| 国产熟女午夜一区二区三区| 精品久久久久久,| 制服人妻中文乱码| 成在线人永久免费视频| av免费在线观看网站| 精品熟女少妇八av免费久了| 精品一区二区三卡| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 中文亚洲av片在线观看爽| 很黄的视频免费| 久热这里只有精品99| 免费一级毛片在线播放高清视频 | 日本三级黄在线观看| 欧美激情极品国产一区二区三区| 在线十欧美十亚洲十日本专区| 青草久久国产| 涩涩av久久男人的天堂| 国产精品一区二区在线不卡| 亚洲性夜色夜夜综合| 黑人巨大精品欧美一区二区mp4| 国产成人一区二区三区免费视频网站| 男女做爰动态图高潮gif福利片 | 老司机在亚洲福利影院| 国产极品粉嫩免费观看在线| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 久久亚洲真实| 97碰自拍视频| 多毛熟女@视频| 色综合站精品国产| 变态另类成人亚洲欧美熟女 | 欧美日韩国产mv在线观看视频| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 国产精品九九99| 午夜激情av网站| 国产国语露脸激情在线看| 精品人妻在线不人妻| 中文字幕av电影在线播放| 国产精品久久久久久人妻精品电影| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 女生性感内裤真人,穿戴方法视频| 曰老女人黄片| 日韩有码中文字幕| 黄色女人牲交| 在线观看舔阴道视频| 日韩大码丰满熟妇| 亚洲自拍偷在线| 50天的宝宝边吃奶边哭怎么回事| а√天堂www在线а√下载| 亚洲国产欧美日韩在线播放| 精品久久久久久成人av| 久久精品人人爽人人爽视色| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 日本一区二区免费在线视频| 国产精品国产av在线观看| netflix在线观看网站| 一边摸一边抽搐一进一小说| 午夜影院日韩av| 亚洲欧美日韩高清在线视频| 欧美在线一区亚洲| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波| 欧美日韩乱码在线| 亚洲一区二区三区色噜噜 | 国产av在哪里看| xxx96com| 国产成人精品久久二区二区91| 精品电影一区二区在线| 天堂影院成人在线观看| 国产亚洲精品久久久久5区| 国产无遮挡羞羞视频在线观看| 久久久久国产一级毛片高清牌| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女 | 在线十欧美十亚洲十日本专区| 亚洲人成电影免费在线| 另类亚洲欧美激情| 无限看片的www在线观看| 久久久国产成人免费| 久热这里只有精品99| 91九色精品人成在线观看| 成年人黄色毛片网站| avwww免费| 久久精品国产综合久久久| 久久午夜亚洲精品久久| 欧美黑人精品巨大| 香蕉久久夜色| 99香蕉大伊视频| 一进一出好大好爽视频| 国产免费男女视频| 国产精品美女特级片免费视频播放器 | 啦啦啦 在线观看视频| 一二三四在线观看免费中文在| 亚洲一区二区三区欧美精品| 亚洲美女黄片视频| 国产激情欧美一区二区| 麻豆av在线久日| 亚洲国产精品999在线| 国产日韩一区二区三区精品不卡| 久久精品人人爽人人爽视色| 又黄又爽又免费观看的视频| 国产极品粉嫩免费观看在线| a级片在线免费高清观看视频| av电影中文网址| 99riav亚洲国产免费| 大型黄色视频在线免费观看| 久久伊人香网站| 91av网站免费观看| 三上悠亚av全集在线观看| 国产日韩一区二区三区精品不卡| cao死你这个sao货|