• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models

    2015-06-01 07:34:26XiaohanYANGRongJIANGWeiminQIAN

    Xiaohan YANG Rong JIANG Weimin QIAN

    1 Introduction

    Consider a partially linear errors-in-variables(EV for short)model as follows:

    where xi∈ Rpare unobservable explanatory variables,Xi∈ Rpare manifest variables,β0∈ Rpis an unknown parameter vector,Tiis a scalar co-variate,the function g(·)is unknown,Yi∈ R are responses,and(ε,uT)T∈ Rp+1are independent with a common error distribution that is spherically symmetric.Spherical symmetry implies that εiand each component of uihave the same distribution,which ensures model identi fiability and means that(ε,uT)T=dRUp+1(R is a nonnegative random variable,Up+1is a uniform random vector on Ωp={a:a ∈ Rp+1,‖a‖=1},R and Up+1are independent),and(ε,uT)Tand x are independent.A detailed coverage of linear errors-in-variables models can be found in[7].More work on nonlinear models with measurement errors can be found in[2].Recently,the model(1.1)has been studied by Cui and Li[5],Liang et al.[13],Zhu and Cui[24]and so on.Cui and Li[5]and Liang et al.[13]discussed the least square estimators for the parametric and nonparametric components by the nearest neighbor estimation and the general kernel smoothing for the nonparametric component,respectively.The quantile estimate of the slope parameter β0has been studied by He and Liang[8].

    It is well known that the least square(LS for short)method is one of the oldest and most widely used statistical tools for linear models.But,the LS estimate can be sensitive to outliers and therefore,non-robust.Unlike the LS method,the least absolute deviation(LAD for short)method is not sensitive to outliers and produces robust estimates.Due to the developments in theoretical aspects and the availability of computing power,the LAD method has become increasingly popular.In particular,it has many applications in econometrics and biomedical studies(see[1,10]),among many others.

    However,the asymptotic distribution of the estimators by the LAD method is generally related to nuisance parameter that can not be conveniently estimated.The randomly weighted method can provide a way of assessing the distribution of the estimators without estimating the nuisance parameter.The random weighting method was first proposed by Zheng[23].An advantage of the random weighting method is that no observation is repeatedly used within each replicate of the random weighting,though each observation may be weighted unequally.This method has been used in many applications as an alternative to the bootstrap method.For example,Rao and Zhao[16]used this method to derive the approximate distribution of the M-estimator in the linear regression model.Cui et al.[6]proposed a random weighting method for the proportional hazards model.Wang et al.[19]extended the method to the censored regression model.Jiang et al.[9]discussed randomly weighted least square estimators for the unknown parameters in semi-linear EV model.A statistical analysis of the LAD method used in the partially linear regression model(1.1)with additive measurement errors,however,still seems to be missing.The objective of the present paper is to fill this gap.

    In this paper,our objective is to apply the randomly weighted LAD-estimation(RWLADE for short)to partially linear EV models,and establish the asymptotic normality of the RWLADE for the parameter.These results can be used to construct confidence intervals for β0.Furthermore,we propose a LAD-test for partially linear EV models.The LAD-test has been used by Zhao and Chen[22]to test linear hypotheses in the linear model.But the critical values of the test statistic are related to estimators of nuisance parameters.Chen et al.[3]proposed an easy and convenient randomly weighting resampling method to determine the critical values for testing linear hypotheses in the least absolute deviation regression.Motivated by this idea,we also use the randomly weighted method to determine the critical values for testing hypotheses in partially linear EV models.

    The outline of the paper is as follows.In Section 2,we define the weighting scheme to be used,hence the RWLADE for β0,and then the test statistics of it.Section 3 is the statement of the main results for β0,and the chi-square distributions of test statistics of the proposed estimators are also given in this section.In Section 4,simulations are carried out to assess the finite sample performance of the method and also an illustration of the method to a real example is given in this section.Some concluding remarks are given in Section 5.All the technical proofs are delayed in the appendix of Section 6.

    2 Definition of the Estimators

    For technical convenience we will assume that Tiare con fined to the interval[0,1].Throughout,we shall employ a constant C(0

    For any t∈ [0,1],we arrange|T1?t|,|T2?t|,···,|Tn?t|in an increasing order:

    (ties are broken by comparing indices).Obviously,R(1,t),R(2,t),···,R(n,t)is a permutation of{1,2,···,n}.Choose a group of fixed nonnegative numbers{dni:i=1,2,···,n}and let k ≡ knbe a natural number dependent solely on n.Suppose that{dni:i=1,2,···,n}and k satisfy

    Now we can define a probability weight vector wni(t)=wni(t;T1,T2,···,Tn),i=1,2,···,n which satisfies wnR(i,t)(t)=dni,i=1,2,···,n.Obviously,1 ≤ dni≤ n,1 ≤ wni(t)≤ n for any i=1,2,···,n,t∈ [0,1].These assumptions are commonly assumed when de fining weight nonnegative functions.For example,

    where Si=(T(i)+T(i?1)),i=1,···,n,S0=0,Sn=1 for any i=1,2,···,n,t∈ [0,1].

    In this paper,for any sequence of variables or functions(S1,···,Sn),we always denote ST=(S1,···,Sn),andThe conversion from S towill be applied to Yi,Xi,xi,εi,uiand g(Ti).For example,Xi?The fact that g(t)=E(Yi?|Ti=t)suggests

    as the nearest neighbor pseudo-estimator of g(·).

    However,since β0is an unknown vector,we have to estimate β0first.Sinceare unobservable,the least square method may be invalid.Instead of the generalized least square method used in[5],we can obtainthe estimator of β0,as follows:

    But the asymptotic covariance matrix ofinvolves the density of the errors and nuisance parameters and therefore is difficult to estimate reliably.To overcome this problem,we propose the following distributional approximation based on random weighting by exogenouslygenerated i.i.d.random variables.The approach can be implemented with the simple LAD programming again.

    Let v1,···,vnbe a sequence of independent and identically distributed(i.i.d.)nonnegative random variables,with mean and variance both equal to 1.The standard exponential distribution has mean and variance equal to 1.define

    In this paper,we are also interested in testing the hypothesis

    where H is a known p×q matrix of rank q,and b0∈Rpis a known vector(0

    To develop an analogue with the least absolute deviation,it is natural to consider the test statistic

    where

    But the limiting distribution of Mnalso involves the density function of the error terms.Chen et al.[3]proposed an easy and convenient randomly weighted resampling method to determine the critical values for testing nested linear hypotheses in the least absolute deviation regression.Motivated by this idea,we introduce a test statistic M?non randomly weighted method and on the suitable centering adjustments.The approach can be implemented with the simple LAD programming again.define

    where

    3 Main Results

    Let the components be xi=(xij).Denote hi=(hi1,hi2,···,hip)T=xi? E(xi|Ti),1 ≤i≤n.We make the following assumptions.

    Assumption 3.1the random weights v1,···,vnare i.i.d.with P(vi≥ 0)=1,E(vi)=Var(vi)=1,and the sequence viand Yi,Xi,xiare independent.

    Assumption 3.2the distribution function F of ε1,···,εnis absolutely continuous,with continuous density f uniformly bounded away from 0 and∞and F(0)=.

    Assumption 3.3ER2<+∞and P(R=0)=0.

    Assumption 3.4The distribution of T1is absolutely continuous and its density r(t)satisfies

    Assumption 3.5Σ =Cov(x1?E(x1|T1))is a positive de finite matrix.

    Assumption 3.6E(|ε1|2+‖x1‖2+‖u1‖2)< ∞;g and g2jare continuous functions on the interval[0,1],where g2j=E(x1j|T1=t)is the jth component of g2(t)=E(x1|T1=t)for 1≤j≤p.

    Assumption 3.7E(|ε1|4+‖x1‖4+‖u1‖4)< ∞;g and g2jsatisfy the Lipschitz condition and g2j=E(x1j|T1=t)is a bounded function of t for 1≤j≤p.

    Remark 3.1Assumption 3.1 is commonly assumed in the random weighting method(see[19]).Assumptions 3.2–3.3 are often used in the LAD estimator(see[4,H1–H4]).Assumptions 3.4–3.6 are necessary for studying the optimal convergence rate of the nonparametric regression estimates and Assumption 3.7 guarantees the asymptotic normality of√n(?β),essentially the same as the conditions 1–4 of[5].

    3.1 Random weighting LAD-estimation

    Theorem 3.1Suppose that Assumptions 3.1–3.7 and(2.2)–(2.3)hold,and then

    Particularly,when vi≡1,we have

    where

    Theorem 3.2Suppose that the conditions of Theorem 3.1 hold,and then

    Comparing(3.1)with(3.3),for the multivariate Kolmogorov-Smirnov distance betweenandwe have

    where L?,P?denote the corresponding distribution and probability conditionally on(X1,Y1,T1),···,(Xn,Yn,Tn).And the approximate to the distribution ofby using random weights is valid in the weak sense.

    Remark 3.2From Theorems 3.1–3.2,it is clear thatis a consistent estimator of β0and the conditionally limiting distribution offor observations given is the same as that ofConsequently,we can take the conditional distribution ofas an approximation to that ofwithout estimating the asymptotic covariance matrix when making the confidence interval for parameters.In practical applications,this can be done by the Monte Carlo method.Speci fically,one can generate random weights repeatedly for(2.6)and then obtain RWLADE of the regression parameters.Then the empirical distribution of the produced estimates is used as an approximation to the distribution of the LAD-estimator of β0.For example,in deriving the(1 ? α)100%confidence interval for β0,one can implement the random weighting N times to obtain the estimates,···,and hence use the lower and upperquantiles of these quantities as the approximation of the lower and upper limits of the confidence interval.

    3.2 LAD-test

    Theorem 3.3Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    where Hn=H(HTΣH)?12,Ai=and

    where“”denotes approximation to the corresponding distribution,S=

    3.3 Random weighting LAD-test

    Theorem 3.4Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    and

    Further by(3.6)–(3.7),we have

    where Z is the chi-squared variable with q degrees of freedom.

    Remark 3.3Theorems 3.3–3.4 show that the limiting distribution ofunder the null hypothesis(2.7)is the same as the null limiting distribution of Mn.Therefore,we can directly use the conditional distribution ofas an approximation to the null distribution of Mnand determine the critical values of the test statistic Mnwithout estimating the nuisance parameters.It is desired to determine a sequence cn(α)such thatP(Mn>cn(α))= α under H0,for a given level α ∈ (0,1).As shown in the sequel,the(1 ? α)quantile(α)of the conditional distribution offor givencan be taken as an approximation to cn(α),and this can be carried out by the following procedure.Take N large enough and generate N independent replicates of random weights to obtain N randomly weighting estimates,j=1,···,N,so then the p-value of testing the hypothesis is approximately equal to ? {j:>Mn,j=1,···,N}/N.A test at the nominal signi ficance level α is to reject H0if Mnis larger than the sample(1?α)quantile ofand to accept H0otherwise.It is easy to show that,for the given nominal signi ficant level α∈(0,1),the test Mnwith the critical value(α)has the same asymptotic level and asymptotic power as the test with the critical value cn(α)obtained by estimating nuisance parameters.

    4 Simulation and Real Data Study

    In this section,we conduct simulation studies to assess the finite sample performance of the proposed procedures and illustrate the proposed methodology on AIDS clinical trials.

    Example 4.1The data are generated from model(1.1),where the explanatory variable x is generated from uniform distribution on the interval(3,5)and β0=2. ε ~ N(0,1),u ~N(0,1),g(t)=sin(2πt),T ~ U(0,1).The randomly weighting variables viare taken to be exponential distribution and Poisson distribution with means 1 respectively(Exp(1)and P(1)).We use the Nadaraya-Watson kernel K(u)=I(|u|≤1);and then

    is the weight function with the bandwidth h=Since the objective is to estimate β0,our limited experience indicates that the choice of the bandwidth h here is not as critical as it is in direct nonparametric function estimation.Sample size n is taken to be 50,100 and 200,respectively,and we do 500 repetitions for each sample size.The number of randomly weighting is N=500.

    We first study the performance of parameter estimators by using our proposed method(RWLADE for short).The mean values of parameter estimators and their standard errors are respectively reported in Table 1.Table 1 shows that the performance ofis very close to the true value in all terms.Moreover,is much more accurate when sample sizes increase.

    Table 1 Simulation results for β?

    We then investigate the length of confidence intervals and empirical coverage rates by the randomly weighted method at the nominal levels 90%and 95%.Simulation results are respectively reported in Tables 2–3.From Table 2,it can be seen that the empirical coverage rates are reasonably close to the true values in all cases,which indicates that the randomly weighted method is valid.As expected,the coverage levels based on the di ff erent cases are much closer to the nominal levels when sample sizes increase.Table 3 shows that the length of confidence intervals is small.Not unexpectedly,the length of confidence intervals decreases with sample sizes.Finally,Tables 1–3 show that the performances of Poisson weights are exactly similar to those of exponential weights.

    Table 2 Simulation results for coverage probability of confidence intervals

    Next,the approximation of the null distribution of the LAD-test statistics Mn,by its randomly weighted version,is evaluated under the null hypotheses.We also study the empirical signi ficance level and the powers of the M-test with the critical values given by the random weighting method.Throughout our simulation study,the convex function is taken as ρ(u)=|u|.The null hypothesis isH0:β0=0.Here,the randomly weighted variables are only taken to be the exponential distribution with means 1.

    Table 3 Simulation results for length of confidence intervals

    Table 4 lists the power functions at signi ficance levelsα=0.10 and 0.05 for various choices of error distributions(N(0,1),t(2)andt(3)),di ff erent sample sizesn=100 and 200,and di ff erentβvalues 0,0.1,0.2 and 0.5.Note that the empirical signi ficant levels when the trueβ=0 are close to the nominal levels,implying that the randomly weighted LAD-test is a valid test.As expected,the test has a bigger power for the larger sample sizes.

    Table 4 Empirical signi ficant levels and power values

    Figure 1 shows quantile-quantile plots ofMnwith respect tofor various choices of error distributions(N(0,1),t(2)andt(3)),and di ff erent sample sizesn=100 and 200,in which the straight lice indicates thatapproximates well to the distribution ofMn.It shows that,when the sample size is increased from 100 to 200,the distribution approximation for the larger size is much more accurate than that for the small one.

    Example 4.2In this section,we model the relationship between viral load and CD4+cell counts in HIV-infected individuals during potent antiviral treatments based on the data from ACTG 315 study.In general,it is believed that the virologic response RNA(measured by viral load)and immunologic response(measured by CD4+cell counts)are negatively correlated during antiviral treatment(see[12,21]).And also the discordance between virologic and immunologic responses has been observed from several recent clinical studies(see[14–15,17,20])which model the relationship between viral load and CD4+cell counts by the mixed-e ff ect varying-coefficient model based on these data.In their studies,exact tests and confidence intervals for parameters are not available.Instead,we present these analysis results by model(1.1).Here,we also focus on the data for the first 24 weeks of treatment,since virological or immunologic responses during this period are popular endpoints for many AIDS clinical trials.So both viral load and CD4+cell counts were scheduled to be measured on days t=0,2,7,10,14,28,56,84,168 after initiation of an antiviral therapy.We obtained 441 complete paries of viral load and CD4+cell count observations from 48 evaluable patients.Let Yibe the viral load and let xibe the CD4+cell count for subject i.To reduce the marked skewness of CD4+cell counts and to make treatment times equal space,we take log-transformations of both variables(this is commonly used in AIDS clinical trials(see[14])).The xiare measured with error.The model we used is

    Y= β0+xβ1+g(T)+ε,X=x+u,

    where X is the observed CD4 cell counts and T is time.

    Figure 1 Q-Q plot ofv.s.Mn

    The parameter estimators,by using our proposed methods,are(β0,β1)=(2.7234,?0.1301).The 95%confidence interval of β0is(2.6496,2.7924)and that of β1is(?0.1498,?0.1085).It can be seen that the length of confidence intervals is small.Furthermore,we test the linear hypothesis H0:β1=0.The resulting p-value is 0,suggesting that β1is signi ficant.

    5 Discussion

    The primary goal of this paper is to provide a convenient inference and a linear hypothesis testing for the partially linear EV model based on the LAD-estimate.The proposed inference procedure via resampling avoids the difficulty of density estimation and is convenient to implement with the availability of the standard linear programming and computing power.All simulation studies con firm that the performance of the random weighting method works well.We believe that the proposed statistical method is methodologically valuable.Some of the conditions assumed for the main results may be dropped or relaxed and,in particular,the samples usually may not be independent in many applications.In addition,it allows that the LAD can be extended to the M method,and the random weighting method can be used in other nonparametric regression models,such as the mixed-e ff ect varying-coefficient model for AIDS data;the censored model or longitudinal data,which are common in survival analysis,and they are valuable subjects for future research.

    6 Appendix

    To prove the theorem,we first introduce the following three lemmas.

    Lemma 6.1(1)Suppose that Assumption 3.6 and(2.2)–(2.3)hold,and then

    (2)Suppose that(2.2)–(2.3)hold,E(|ε1|l+‖x1‖l+‖u1‖l)< ∞,and g and g2jsatisfy the Lipschitz condition.Then

    for l=3 or 4.

    ProofThis result is due to Lemma 1 of[5].

    Lemma 6.2(1)Assume that Assumption 3.2 holds and that f is a continuous function on interval[0,1],andThen

    (2)Assume that Assumption 2.2 holds and that f satisfies the Lipschitz condition and(n→∞).Then

    ProofThis result is due to Lemma 2 of[5].

    Lemma 6.3Under the condition of Theorem 3.1,we have

    ProofObserve that xi=hi+g2(Ti),1≤i≤n,and we have

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    and therefore,

    so

    Next we proceed to prove the theorems.

    Proof of Theorem 3.1In this section,for simplicity in notation,let θ = √n(β ? β0).

    Write

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    By applying the identity in Knight[11],

    We have

    Qn(θ)=Qn1(θ)+Qn2(θ),

    where

    Since

    where=dstands for obeying the same distribution,we have

    EQn2(θ)=EQn(θ)? EQn1(θ)

    By the Schwarz’s inequality and the control limited theorem,it is easy to see that

    and Assumption 3.2 then implies that

    The convextiy of the limiting objective function Q0(θ)assures the uniqueness of the minimizer and consequently

    Furthermore,

    where

    particularly,when v1≡1,we have

    By the central limited theorem,we have

    Proof of Theorem 3.2By the result of Theorem 3.1,we have

    From Lemma 2.9.5 in[20],it follows that conditionally on

    for almost every sequenceThus,by(6.12)–(6.13),it is easy to show that(3.3)holds true,

    By using the similar argument as in[16],(3.4)can be shown to hold true.

    Proof of Theorem 3.3define K as a known p×(p?q)matrix of rank p?q(0

    and then

    and

    Without loss of generality,H0:HT(β ?b0)=0 can be written as

    β?β0=Kγ

    for some γ ∈Rp?q,so

    Let vi≡1.By Theorem 3.1,we have

    It thus follows that

    Replacing(6.14)into(6.15),we get

    Similarly

    whereWhen H0is true,

    Under the condition of Theorem 3.3.This means that the Lindeberg’s condition holds.Moreover,note that

    Proof of Theorem 3.4Similar to the proof of Theorem 3.3,define

    and replacing into Qn(θ?),we have

    Similarly,it is easy to show that

    So

    where

    Therefore

    From Lemma 2.9.5 in[18],it follows that conditionally on

    AcknowledgementThe authors are extremely grateful to the referees for their valuable comments and suggestions.

    [1]Buchinsky,M.,Recent advances in quantile regression models:A practical guideline for empirical research.Journal of Human Resources,33,1998,88–126.

    [2]Carroll,R.J.,Ruppert,D.and Stefanski,L.A.,Nonlinear Measurement Error Models,Chapman and Hall,New York,1995.

    [3]Chen,K.,Ying,Z.and Zhang,H.,Analysis of least absolute deviation,Biometrika,95,2008,107–122.

    [4]Cui,H.J.,Asymptotic properties of generalized minimum L1-norm estimates in EV model,Science in China,Series A,27,1997,119–131(in Chinese).

    [5]Cui,H.J.and Li,R.C.,On parameter estimation for semi-linear errors-in-variables models,Journal of Multivariate Analysis,64,1998,1–24.

    [6]Cui,W.Q.,Li,K.and Yang,Y.N.,Random weighting method for Cox’s proportional hazards model,Science in China,Series A,51,2008,1843–1854.

    [7]Fuller,W.A.,Measurement Error Models,John Wiley and Sons,New York,1987.

    [8]Hardle,W.,Liang,H.and Gao,J.T.,Partially Linear Models,Physica-Verlag,Beilin,2000.

    [9]Jiang,R.,Qian,W.M.and Zhou,Z.G.,Randomly weighted estimators for parametric component in semi-linear errors-in-variables models,Journal of Tongji University,Natural Science,39,2011,768–772(in Chinese).

    [10]Jin,Z.,Ying,Z.and Wei,L.J.,A simple resampling method by perturbing the minimand,Biometrika,88,2001,381–390.

    [11]Knight,K.,Limiting distributions for L1regression estimators under general conditions,Ann.Stat.,26,1998,755–770.

    [12]Lederman,M.M.,Connick,E.and Landay,A.,Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine and ritonavir:Results of AIDS clinical trials group protocol 315,The Journal of Infectious Diseases,178,1998,70–79.

    [13]Liang,H.,Hardle,W.and Carroll,R.J.,Estimation in a semiparametric partially linear errors-in-variables model,Annual Statistics,27,1999,1519–1535.

    [14]Liang,H.,Wu,H.L.and Carroll,R.J.,The relationship between virologic and immunologic responses in AIDS clinical research using mixed-e ff ect varying-coefficient semiparametric models with measurement error,Biostatistics,4,2003,297–312.

    [15]Mallolas,J.,Li,W.and Del,R.A.,Clinical Outcome,CD4+Cell Count,and HIV-1 Reverse Transcriptase and Protease Sequences in Patients Remaining Viremic during HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?334,Jan 30-Feb 2,San Francisco,CA,2000.

    [16]Rao,C.R.and Zhao,L.C.,Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap,SankhyA,54,1992,323–331.

    [17]Sabin,C.,Staszewski,S.and Phillips,A.,Discordant Immunological and Virological Responses to HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?333,Jan 30-Feb 2,San Francisco,CA,2000.

    [18]Van der Vaart,A.W.and Wellner,J.A.,Weak Convergence and Empirical Processes,Springer-Verlag,New York,1996.

    [19]Wang,Z.,Wu,Y.and Zhao,L.C.,Approximation by randomly weighting method in censored regression model,Science in China Series A,52,2009,561–576.

    [20]Wu,H.,Connick,E.and Kuritzkes,D.R.,Cell Kinetic Patterns and Their Relationships with Virologic Responses in HIV-1-Infected Patients Treated with HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?340,Jan 30-Feb 2,San Francisco,CA,2000.

    [21]Wu,H.and Ding,A.,Population HIV-1 dynamics in vivo:Applicable models and inferential tools for virological data from AIDS clinical trials,Biometrics,55,1999,410–418.

    [22]Zhao,L.C.and Chen,X.R.,Asymptotic behavior of M-test statistics in linear models,Journal of Combine Information System Science,16,1991,234–248.

    [23]Zheng,Z.G.,Random weighting method,Acta Mathematicae Applilcate Sinica,10,1987,247–253(in Chinese).

    [24]Zhu,L.and Cui,H.J.,A semiparametric regression model with errors in variables,Scan.Journal Statistics,30,2003,429–442.

    一本一本综合久久| 偷拍熟女少妇极品色| 国产精品国产三级国产av玫瑰| 少妇人妻一区二区三区视频| 日韩中字成人| 日韩伦理黄色片| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| 欧美日韩亚洲高清精品| 国产成人一区二区在线| 日韩一本色道免费dvd| 日韩av在线免费看完整版不卡| 一级,二级,三级黄色视频| av免费观看日本| 欧美另类一区| 青春草国产在线视频| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载| 日本vs欧美在线观看视频 | 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 国产 一区精品| av天堂久久9| 丰满少妇做爰视频| 亚洲高清免费不卡视频| 新久久久久国产一级毛片| 日韩一区二区三区影片| 国产综合精华液| 亚洲欧洲日产国产| 高清av免费在线| 多毛熟女@视频| 久久人人爽人人爽人人片va| 成人国产麻豆网| 3wmmmm亚洲av在线观看| 一级毛片 在线播放| 2018国产大陆天天弄谢| 国产视频首页在线观看| 久久ye,这里只有精品| 亚洲成人手机| 亚洲精品456在线播放app| 亚洲无线观看免费| 亚洲精品日韩av片在线观看| 国产成人免费无遮挡视频| 嘟嘟电影网在线观看| 国产伦在线观看视频一区| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 一级av片app| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 精品亚洲成a人片在线观看| av天堂中文字幕网| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| 国产日韩一区二区三区精品不卡 | 99久久综合免费| 一本一本综合久久| 国产亚洲5aaaaa淫片| 日产精品乱码卡一卡2卡三| 一级毛片电影观看| 成人二区视频| 免费av不卡在线播放| 免费播放大片免费观看视频在线观看| videossex国产| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 最新中文字幕久久久久| 夜夜骑夜夜射夜夜干| 久久久国产欧美日韩av| 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 熟女av电影| 黄片无遮挡物在线观看| 久久国产亚洲av麻豆专区| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 色吧在线观看| 国产美女午夜福利| 九草在线视频观看| 亚洲美女视频黄频| 老司机影院成人| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 高清av免费在线| 97精品久久久久久久久久精品| 成人美女网站在线观看视频| 国产精品不卡视频一区二区| 国产精品成人在线| 大片免费播放器 马上看| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 男女国产视频网站| 久久久久久久国产电影| 亚洲av日韩在线播放| 多毛熟女@视频| 国产视频内射| 国产一区二区三区综合在线观看 | 日韩一本色道免费dvd| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 久久精品国产自在天天线| 热re99久久国产66热| 高清在线视频一区二区三区| 在线观看av片永久免费下载| 啦啦啦中文免费视频观看日本| 99热这里只有精品一区| 成人毛片60女人毛片免费| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 国产成人一区二区在线| 国产精品成人在线| 成人国产麻豆网| 国产毛片在线视频| 久久久久久久久久久免费av| 大话2 男鬼变身卡| 国产成人91sexporn| 在线观看免费高清a一片| 午夜激情福利司机影院| 国产一级毛片在线| 亚洲丝袜综合中文字幕| 免费观看在线日韩| 日韩一本色道免费dvd| 国产精品福利在线免费观看| 久久久久久久久大av| 伦理电影免费视频| 最近手机中文字幕大全| 青春草国产在线视频| 99久久人妻综合| 91成人精品电影| 少妇被粗大的猛进出69影院 | 亚洲精品视频女| 99久久精品热视频| 日韩强制内射视频| 午夜老司机福利剧场| 国产精品一二三区在线看| 夜夜爽夜夜爽视频| 老司机影院毛片| 亚洲精品,欧美精品| 久久久久精品久久久久真实原创| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 国产日韩欧美视频二区| 久久99热6这里只有精品| 新久久久久国产一级毛片| 人妻 亚洲 视频| 插逼视频在线观看| 久久精品国产自在天天线| 日本av手机在线免费观看| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 日日摸夜夜添夜夜添av毛片| 大陆偷拍与自拍| 天天躁夜夜躁狠狠久久av| 高清黄色对白视频在线免费看 | av不卡在线播放| 久久狼人影院| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 国产白丝娇喘喷水9色精品| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 天天操日日干夜夜撸| 国产综合精华液| 十八禁高潮呻吟视频 | 国产亚洲一区二区精品| 久久婷婷青草| 老司机影院毛片| 久久久久久久久久久久大奶| 蜜臀久久99精品久久宅男| www.色视频.com| 成人影院久久| 色婷婷久久久亚洲欧美| 中文字幕亚洲精品专区| 亚洲在久久综合| 亚洲激情五月婷婷啪啪| 日韩三级伦理在线观看| 午夜福利影视在线免费观看| 两个人免费观看高清视频 | 99热全是精品| 精品一品国产午夜福利视频| 国产精品不卡视频一区二区| 久久国产精品大桥未久av | 午夜福利视频精品| 婷婷色av中文字幕| 蜜桃在线观看..| 伦理电影大哥的女人| 亚洲国产精品一区二区三区在线| 精品国产一区二区久久| 成人影院久久| 中文乱码字字幕精品一区二区三区| 99久久人妻综合| 色网站视频免费| 日韩制服骚丝袜av| 91在线精品国自产拍蜜月| 亚洲婷婷狠狠爱综合网| 一本大道久久a久久精品| 久久精品久久久久久久性| 新久久久久国产一级毛片| 岛国毛片在线播放| 黄片无遮挡物在线观看| 一级二级三级毛片免费看| 国产日韩欧美视频二区| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 亚洲伊人久久精品综合| 免费观看无遮挡的男女| 少妇被粗大的猛进出69影院 | 日韩av免费高清视频| 亚洲综合色惰| 免费不卡的大黄色大毛片视频在线观看| 美女xxoo啪啪120秒动态图| 国产淫片久久久久久久久| 精品亚洲乱码少妇综合久久| 少妇高潮的动态图| 少妇的逼好多水| 久热久热在线精品观看| 日日啪夜夜撸| 亚洲四区av| 十八禁网站网址无遮挡 | 国产精品99久久久久久久久| 日韩中文字幕视频在线看片| 中文字幕免费在线视频6| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 日本欧美视频一区| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 成年美女黄网站色视频大全免费 | 高清欧美精品videossex| 美女视频免费永久观看网站| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 亚洲性久久影院| xxx大片免费视频| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 人妻人人澡人人爽人人| 国产成人精品福利久久| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 各种免费的搞黄视频| 极品教师在线视频| 日日啪夜夜撸| 国产精品一区www在线观看| 波野结衣二区三区在线| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 一本色道久久久久久精品综合| 免费看日本二区| 中文天堂在线官网| 夜夜骑夜夜射夜夜干| 欧美日本中文国产一区发布| 9色porny在线观看| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久久电影| 大片免费播放器 马上看| 人妻一区二区av| 国产男女内射视频| 久久久久久久亚洲中文字幕| 最黄视频免费看| 国产黄色视频一区二区在线观看| 两个人的视频大全免费| 亚洲欧美清纯卡通| .国产精品久久| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 我的女老师完整版在线观看| 欧美成人午夜免费资源| av福利片在线| 亚洲精品456在线播放app| 亚洲成色77777| 中国三级夫妇交换| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 简卡轻食公司| 永久网站在线| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 久久精品久久精品一区二区三区| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区| 成人综合一区亚洲| 777米奇影视久久| 国产欧美日韩一区二区三区在线 | 青青草视频在线视频观看| 久久国产乱子免费精品| 久久99热6这里只有精品| av网站免费在线观看视频| 国产在视频线精品| 国产熟女欧美一区二区| 好男人视频免费观看在线| 国产一区二区三区综合在线观看 | 在线观看三级黄色| av在线老鸭窝| 黑人高潮一二区| 日日啪夜夜爽| 久久久久久久久大av| 香蕉精品网在线| 自拍偷自拍亚洲精品老妇| 国产精品一区www在线观看| av.在线天堂| 一区二区三区免费毛片| 国产探花极品一区二区| 久久人人爽av亚洲精品天堂| 亚洲性久久影院| 成人特级av手机在线观看| 一级爰片在线观看| 亚洲av男天堂| 亚洲不卡免费看| 夫妻性生交免费视频一级片| 午夜久久久在线观看| videos熟女内射| 一区二区av电影网| 内地一区二区视频在线| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 这个男人来自地球电影免费观看 | 国产av一区二区精品久久| 国产欧美另类精品又又久久亚洲欧美| 一级爰片在线观看| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 欧美国产精品一级二级三级 | 天天躁夜夜躁狠狠久久av| 国产亚洲91精品色在线| a级毛色黄片| 黑丝袜美女国产一区| 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| 欧美三级亚洲精品| 偷拍熟女少妇极品色| 国产精品国产三级国产专区5o| .国产精品久久| 亚洲欧洲精品一区二区精品久久久 | 国产精品.久久久| 五月伊人婷婷丁香| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| 三级国产精品欧美在线观看| 亚洲精品国产成人久久av| 国产一级毛片在线| 国产白丝娇喘喷水9色精品| 黑人高潮一二区| 麻豆乱淫一区二区| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 亚洲av男天堂| 亚洲精品成人av观看孕妇| av有码第一页| 成人特级av手机在线观看| 日日啪夜夜爽| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 国产 精品1| 女性生殖器流出的白浆| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 一区二区三区四区激情视频| 人妻 亚洲 视频| 十分钟在线观看高清视频www | 欧美+日韩+精品| 亚洲美女视频黄频| 午夜激情福利司机影院| av福利片在线观看| 国产亚洲午夜精品一区二区久久| 欧美丝袜亚洲另类| 中文字幕人妻丝袜制服| 亚洲精品国产色婷婷电影| 亚洲不卡免费看| 蜜臀久久99精品久久宅男| 国内精品宾馆在线| 99国产精品免费福利视频| 日韩中文字幕视频在线看片| 99热这里只有是精品在线观看| 成人毛片60女人毛片免费| 久久 成人 亚洲| 两个人免费观看高清视频 | 九九爱精品视频在线观看| 午夜日本视频在线| 最近手机中文字幕大全| 久久久a久久爽久久v久久| 观看av在线不卡| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 午夜av观看不卡| videossex国产| 日日摸夜夜添夜夜添av毛片| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 国产女主播在线喷水免费视频网站| 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 精品国产一区二区久久| 人妻系列 视频| 久久人妻熟女aⅴ| 91在线精品国自产拍蜜月| 久热这里只有精品99| 一本色道久久久久久精品综合| 特大巨黑吊av在线直播| 国产极品天堂在线| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 少妇人妻久久综合中文| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 欧美日韩国产mv在线观看视频| 精品酒店卫生间| av一本久久久久| av在线app专区| av在线观看视频网站免费| 三级国产精品片| 国产一区二区三区av在线| 99热这里只有精品一区| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 天美传媒精品一区二区| 国产黄片美女视频| 午夜老司机福利剧场| 成人毛片60女人毛片免费| 99热6这里只有精品| 街头女战士在线观看网站| 国产一级毛片在线| 亚洲av男天堂| 久热这里只有精品99| 免费大片18禁| 久久久久久久久久人人人人人人| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 香蕉精品网在线| 少妇人妻久久综合中文| av专区在线播放| 狂野欧美激情性xxxx在线观看| 另类亚洲欧美激情| 午夜激情久久久久久久| av在线老鸭窝| 亚洲欧洲国产日韩| 亚洲成人一二三区av| 永久网站在线| 观看美女的网站| 久久久a久久爽久久v久久| 人人妻人人澡人人看| 亚洲av综合色区一区| 2022亚洲国产成人精品| 亚洲国产色片| 永久网站在线| 久久午夜福利片| 最近中文字幕2019免费版| 精品国产国语对白av| 精品酒店卫生间| 最近中文字幕高清免费大全6| 久久久久国产网址| 久久久久人妻精品一区果冻| 大香蕉久久网| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 国产伦在线观看视频一区| 亚洲成人手机| 边亲边吃奶的免费视频| 超碰97精品在线观看| 少妇人妻久久综合中文| 欧美变态另类bdsm刘玥| 高清不卡的av网站| 我的老师免费观看完整版| 丰满饥渴人妻一区二区三| 免费播放大片免费观看视频在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲av电影在线观看一区二区三区| 性高湖久久久久久久久免费观看| 女性被躁到高潮视频| 2022亚洲国产成人精品| 老熟女久久久| 国产精品三级大全| 大香蕉久久网| 久久久久精品性色| 日本av免费视频播放| 97在线人人人人妻| 91久久精品国产一区二区三区| 国产成人精品福利久久| 麻豆成人午夜福利视频| 日本午夜av视频| 国产色爽女视频免费观看| 久久午夜综合久久蜜桃| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 婷婷色综合大香蕉| 欧美97在线视频| 我要看日韩黄色一级片| 色网站视频免费| 在线免费观看不下载黄p国产| 国产一区二区在线观看日韩| 国产一区有黄有色的免费视频| 成人影院久久| 看免费成人av毛片| 免费观看无遮挡的男女| 亚洲成色77777| 国产精品久久久久成人av| 婷婷色麻豆天堂久久| 高清毛片免费看| 国产精品欧美亚洲77777| 久久鲁丝午夜福利片| 国产精品嫩草影院av在线观看| 91aial.com中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃 | 久久免费观看电影| 免费在线观看成人毛片| 午夜av观看不卡| 又黄又爽又刺激的免费视频.| 成人漫画全彩无遮挡| 精品国产露脸久久av麻豆| 人妻系列 视频| av免费在线看不卡| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 午夜av观看不卡| 免费少妇av软件| 日本爱情动作片www.在线观看| 在线看a的网站| 晚上一个人看的免费电影| 国产欧美另类精品又又久久亚洲欧美| 免费看不卡的av| 久久人人爽av亚洲精品天堂| h日本视频在线播放| 国模一区二区三区四区视频| 在线看a的网站| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 国产毛片在线视频| 国产亚洲精品久久久com| 国产精品福利在线免费观看| 老女人水多毛片| 久久ye,这里只有精品| 色94色欧美一区二区| 97精品久久久久久久久久精品| www.色视频.com| 中国美白少妇内射xxxbb| 婷婷色综合www| 亚洲熟女精品中文字幕| 免费人成在线观看视频色| 91精品国产国语对白视频| 日韩av在线免费看完整版不卡| 伊人久久国产一区二区| 18禁在线播放成人免费| 中文字幕人妻丝袜制服| 欧美成人精品欧美一级黄| 又粗又硬又长又爽又黄的视频| 久久久久国产网址| 最近的中文字幕免费完整| 国产精品秋霞免费鲁丝片| 国产在线男女| 能在线免费看毛片的网站| 中文欧美无线码| 亚洲三级黄色毛片| av卡一久久| freevideosex欧美| 国产精品麻豆人妻色哟哟久久| 午夜免费鲁丝| 永久免费av网站大全| 久久久久久久国产电影| 亚洲欧洲精品一区二区精品久久久 | 日韩视频在线欧美| 美女福利国产在线| 亚洲一区二区三区欧美精品| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 日韩欧美 国产精品| 老熟女久久久| 国产综合精华液| 交换朋友夫妻互换小说| 伊人久久国产一区二区| 综合色丁香网| 国内少妇人妻偷人精品xxx网站| 黑人巨大精品欧美一区二区蜜桃 | 国产精品欧美亚洲77777| 精品国产露脸久久av麻豆| 香蕉精品网在线| 成人特级av手机在线观看| 日本免费在线观看一区| 欧美 日韩 精品 国产| 激情五月婷婷亚洲| 夜夜看夜夜爽夜夜摸| 国产精品蜜桃在线观看| 国产视频首页在线观看| 永久网站在线| 欧美成人午夜免费资源| 男女边吃奶边做爰视频| 亚洲在久久综合| 婷婷色综合www| 亚洲精品,欧美精品| 成人美女网站在线观看视频| 国产成人免费无遮挡视频| av在线观看视频网站免费| 久久狼人影院| av国产久精品久网站免费入址| 国产午夜精品久久久久久一区二区三区| 成年女人在线观看亚洲视频| 性色avwww在线观看|