• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models

    2015-06-01 07:34:26XiaohanYANGRongJIANGWeiminQIAN

    Xiaohan YANG Rong JIANG Weimin QIAN

    1 Introduction

    Consider a partially linear errors-in-variables(EV for short)model as follows:

    where xi∈ Rpare unobservable explanatory variables,Xi∈ Rpare manifest variables,β0∈ Rpis an unknown parameter vector,Tiis a scalar co-variate,the function g(·)is unknown,Yi∈ R are responses,and(ε,uT)T∈ Rp+1are independent with a common error distribution that is spherically symmetric.Spherical symmetry implies that εiand each component of uihave the same distribution,which ensures model identi fiability and means that(ε,uT)T=dRUp+1(R is a nonnegative random variable,Up+1is a uniform random vector on Ωp={a:a ∈ Rp+1,‖a‖=1},R and Up+1are independent),and(ε,uT)Tand x are independent.A detailed coverage of linear errors-in-variables models can be found in[7].More work on nonlinear models with measurement errors can be found in[2].Recently,the model(1.1)has been studied by Cui and Li[5],Liang et al.[13],Zhu and Cui[24]and so on.Cui and Li[5]and Liang et al.[13]discussed the least square estimators for the parametric and nonparametric components by the nearest neighbor estimation and the general kernel smoothing for the nonparametric component,respectively.The quantile estimate of the slope parameter β0has been studied by He and Liang[8].

    It is well known that the least square(LS for short)method is one of the oldest and most widely used statistical tools for linear models.But,the LS estimate can be sensitive to outliers and therefore,non-robust.Unlike the LS method,the least absolute deviation(LAD for short)method is not sensitive to outliers and produces robust estimates.Due to the developments in theoretical aspects and the availability of computing power,the LAD method has become increasingly popular.In particular,it has many applications in econometrics and biomedical studies(see[1,10]),among many others.

    However,the asymptotic distribution of the estimators by the LAD method is generally related to nuisance parameter that can not be conveniently estimated.The randomly weighted method can provide a way of assessing the distribution of the estimators without estimating the nuisance parameter.The random weighting method was first proposed by Zheng[23].An advantage of the random weighting method is that no observation is repeatedly used within each replicate of the random weighting,though each observation may be weighted unequally.This method has been used in many applications as an alternative to the bootstrap method.For example,Rao and Zhao[16]used this method to derive the approximate distribution of the M-estimator in the linear regression model.Cui et al.[6]proposed a random weighting method for the proportional hazards model.Wang et al.[19]extended the method to the censored regression model.Jiang et al.[9]discussed randomly weighted least square estimators for the unknown parameters in semi-linear EV model.A statistical analysis of the LAD method used in the partially linear regression model(1.1)with additive measurement errors,however,still seems to be missing.The objective of the present paper is to fill this gap.

    In this paper,our objective is to apply the randomly weighted LAD-estimation(RWLADE for short)to partially linear EV models,and establish the asymptotic normality of the RWLADE for the parameter.These results can be used to construct confidence intervals for β0.Furthermore,we propose a LAD-test for partially linear EV models.The LAD-test has been used by Zhao and Chen[22]to test linear hypotheses in the linear model.But the critical values of the test statistic are related to estimators of nuisance parameters.Chen et al.[3]proposed an easy and convenient randomly weighting resampling method to determine the critical values for testing linear hypotheses in the least absolute deviation regression.Motivated by this idea,we also use the randomly weighted method to determine the critical values for testing hypotheses in partially linear EV models.

    The outline of the paper is as follows.In Section 2,we define the weighting scheme to be used,hence the RWLADE for β0,and then the test statistics of it.Section 3 is the statement of the main results for β0,and the chi-square distributions of test statistics of the proposed estimators are also given in this section.In Section 4,simulations are carried out to assess the finite sample performance of the method and also an illustration of the method to a real example is given in this section.Some concluding remarks are given in Section 5.All the technical proofs are delayed in the appendix of Section 6.

    2 Definition of the Estimators

    For technical convenience we will assume that Tiare con fined to the interval[0,1].Throughout,we shall employ a constant C(0

    For any t∈ [0,1],we arrange|T1?t|,|T2?t|,···,|Tn?t|in an increasing order:

    (ties are broken by comparing indices).Obviously,R(1,t),R(2,t),···,R(n,t)is a permutation of{1,2,···,n}.Choose a group of fixed nonnegative numbers{dni:i=1,2,···,n}and let k ≡ knbe a natural number dependent solely on n.Suppose that{dni:i=1,2,···,n}and k satisfy

    Now we can define a probability weight vector wni(t)=wni(t;T1,T2,···,Tn),i=1,2,···,n which satisfies wnR(i,t)(t)=dni,i=1,2,···,n.Obviously,1 ≤ dni≤ n,1 ≤ wni(t)≤ n for any i=1,2,···,n,t∈ [0,1].These assumptions are commonly assumed when de fining weight nonnegative functions.For example,

    where Si=(T(i)+T(i?1)),i=1,···,n,S0=0,Sn=1 for any i=1,2,···,n,t∈ [0,1].

    In this paper,for any sequence of variables or functions(S1,···,Sn),we always denote ST=(S1,···,Sn),andThe conversion from S towill be applied to Yi,Xi,xi,εi,uiand g(Ti).For example,Xi?The fact that g(t)=E(Yi?|Ti=t)suggests

    as the nearest neighbor pseudo-estimator of g(·).

    However,since β0is an unknown vector,we have to estimate β0first.Sinceare unobservable,the least square method may be invalid.Instead of the generalized least square method used in[5],we can obtainthe estimator of β0,as follows:

    But the asymptotic covariance matrix ofinvolves the density of the errors and nuisance parameters and therefore is difficult to estimate reliably.To overcome this problem,we propose the following distributional approximation based on random weighting by exogenouslygenerated i.i.d.random variables.The approach can be implemented with the simple LAD programming again.

    Let v1,···,vnbe a sequence of independent and identically distributed(i.i.d.)nonnegative random variables,with mean and variance both equal to 1.The standard exponential distribution has mean and variance equal to 1.define

    In this paper,we are also interested in testing the hypothesis

    where H is a known p×q matrix of rank q,and b0∈Rpis a known vector(0

    To develop an analogue with the least absolute deviation,it is natural to consider the test statistic

    where

    But the limiting distribution of Mnalso involves the density function of the error terms.Chen et al.[3]proposed an easy and convenient randomly weighted resampling method to determine the critical values for testing nested linear hypotheses in the least absolute deviation regression.Motivated by this idea,we introduce a test statistic M?non randomly weighted method and on the suitable centering adjustments.The approach can be implemented with the simple LAD programming again.define

    where

    3 Main Results

    Let the components be xi=(xij).Denote hi=(hi1,hi2,···,hip)T=xi? E(xi|Ti),1 ≤i≤n.We make the following assumptions.

    Assumption 3.1the random weights v1,···,vnare i.i.d.with P(vi≥ 0)=1,E(vi)=Var(vi)=1,and the sequence viand Yi,Xi,xiare independent.

    Assumption 3.2the distribution function F of ε1,···,εnis absolutely continuous,with continuous density f uniformly bounded away from 0 and∞and F(0)=.

    Assumption 3.3ER2<+∞and P(R=0)=0.

    Assumption 3.4The distribution of T1is absolutely continuous and its density r(t)satisfies

    Assumption 3.5Σ =Cov(x1?E(x1|T1))is a positive de finite matrix.

    Assumption 3.6E(|ε1|2+‖x1‖2+‖u1‖2)< ∞;g and g2jare continuous functions on the interval[0,1],where g2j=E(x1j|T1=t)is the jth component of g2(t)=E(x1|T1=t)for 1≤j≤p.

    Assumption 3.7E(|ε1|4+‖x1‖4+‖u1‖4)< ∞;g and g2jsatisfy the Lipschitz condition and g2j=E(x1j|T1=t)is a bounded function of t for 1≤j≤p.

    Remark 3.1Assumption 3.1 is commonly assumed in the random weighting method(see[19]).Assumptions 3.2–3.3 are often used in the LAD estimator(see[4,H1–H4]).Assumptions 3.4–3.6 are necessary for studying the optimal convergence rate of the nonparametric regression estimates and Assumption 3.7 guarantees the asymptotic normality of√n(?β),essentially the same as the conditions 1–4 of[5].

    3.1 Random weighting LAD-estimation

    Theorem 3.1Suppose that Assumptions 3.1–3.7 and(2.2)–(2.3)hold,and then

    Particularly,when vi≡1,we have

    where

    Theorem 3.2Suppose that the conditions of Theorem 3.1 hold,and then

    Comparing(3.1)with(3.3),for the multivariate Kolmogorov-Smirnov distance betweenandwe have

    where L?,P?denote the corresponding distribution and probability conditionally on(X1,Y1,T1),···,(Xn,Yn,Tn).And the approximate to the distribution ofby using random weights is valid in the weak sense.

    Remark 3.2From Theorems 3.1–3.2,it is clear thatis a consistent estimator of β0and the conditionally limiting distribution offor observations given is the same as that ofConsequently,we can take the conditional distribution ofas an approximation to that ofwithout estimating the asymptotic covariance matrix when making the confidence interval for parameters.In practical applications,this can be done by the Monte Carlo method.Speci fically,one can generate random weights repeatedly for(2.6)and then obtain RWLADE of the regression parameters.Then the empirical distribution of the produced estimates is used as an approximation to the distribution of the LAD-estimator of β0.For example,in deriving the(1 ? α)100%confidence interval for β0,one can implement the random weighting N times to obtain the estimates,···,and hence use the lower and upperquantiles of these quantities as the approximation of the lower and upper limits of the confidence interval.

    3.2 LAD-test

    Theorem 3.3Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    where Hn=H(HTΣH)?12,Ai=and

    where“”denotes approximation to the corresponding distribution,S=

    3.3 Random weighting LAD-test

    Theorem 3.4Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    and

    Further by(3.6)–(3.7),we have

    where Z is the chi-squared variable with q degrees of freedom.

    Remark 3.3Theorems 3.3–3.4 show that the limiting distribution ofunder the null hypothesis(2.7)is the same as the null limiting distribution of Mn.Therefore,we can directly use the conditional distribution ofas an approximation to the null distribution of Mnand determine the critical values of the test statistic Mnwithout estimating the nuisance parameters.It is desired to determine a sequence cn(α)such thatP(Mn>cn(α))= α under H0,for a given level α ∈ (0,1).As shown in the sequel,the(1 ? α)quantile(α)of the conditional distribution offor givencan be taken as an approximation to cn(α),and this can be carried out by the following procedure.Take N large enough and generate N independent replicates of random weights to obtain N randomly weighting estimates,j=1,···,N,so then the p-value of testing the hypothesis is approximately equal to ? {j:>Mn,j=1,···,N}/N.A test at the nominal signi ficance level α is to reject H0if Mnis larger than the sample(1?α)quantile ofand to accept H0otherwise.It is easy to show that,for the given nominal signi ficant level α∈(0,1),the test Mnwith the critical value(α)has the same asymptotic level and asymptotic power as the test with the critical value cn(α)obtained by estimating nuisance parameters.

    4 Simulation and Real Data Study

    In this section,we conduct simulation studies to assess the finite sample performance of the proposed procedures and illustrate the proposed methodology on AIDS clinical trials.

    Example 4.1The data are generated from model(1.1),where the explanatory variable x is generated from uniform distribution on the interval(3,5)and β0=2. ε ~ N(0,1),u ~N(0,1),g(t)=sin(2πt),T ~ U(0,1).The randomly weighting variables viare taken to be exponential distribution and Poisson distribution with means 1 respectively(Exp(1)and P(1)).We use the Nadaraya-Watson kernel K(u)=I(|u|≤1);and then

    is the weight function with the bandwidth h=Since the objective is to estimate β0,our limited experience indicates that the choice of the bandwidth h here is not as critical as it is in direct nonparametric function estimation.Sample size n is taken to be 50,100 and 200,respectively,and we do 500 repetitions for each sample size.The number of randomly weighting is N=500.

    We first study the performance of parameter estimators by using our proposed method(RWLADE for short).The mean values of parameter estimators and their standard errors are respectively reported in Table 1.Table 1 shows that the performance ofis very close to the true value in all terms.Moreover,is much more accurate when sample sizes increase.

    Table 1 Simulation results for β?

    We then investigate the length of confidence intervals and empirical coverage rates by the randomly weighted method at the nominal levels 90%and 95%.Simulation results are respectively reported in Tables 2–3.From Table 2,it can be seen that the empirical coverage rates are reasonably close to the true values in all cases,which indicates that the randomly weighted method is valid.As expected,the coverage levels based on the di ff erent cases are much closer to the nominal levels when sample sizes increase.Table 3 shows that the length of confidence intervals is small.Not unexpectedly,the length of confidence intervals decreases with sample sizes.Finally,Tables 1–3 show that the performances of Poisson weights are exactly similar to those of exponential weights.

    Table 2 Simulation results for coverage probability of confidence intervals

    Next,the approximation of the null distribution of the LAD-test statistics Mn,by its randomly weighted version,is evaluated under the null hypotheses.We also study the empirical signi ficance level and the powers of the M-test with the critical values given by the random weighting method.Throughout our simulation study,the convex function is taken as ρ(u)=|u|.The null hypothesis isH0:β0=0.Here,the randomly weighted variables are only taken to be the exponential distribution with means 1.

    Table 3 Simulation results for length of confidence intervals

    Table 4 lists the power functions at signi ficance levelsα=0.10 and 0.05 for various choices of error distributions(N(0,1),t(2)andt(3)),di ff erent sample sizesn=100 and 200,and di ff erentβvalues 0,0.1,0.2 and 0.5.Note that the empirical signi ficant levels when the trueβ=0 are close to the nominal levels,implying that the randomly weighted LAD-test is a valid test.As expected,the test has a bigger power for the larger sample sizes.

    Table 4 Empirical signi ficant levels and power values

    Figure 1 shows quantile-quantile plots ofMnwith respect tofor various choices of error distributions(N(0,1),t(2)andt(3)),and di ff erent sample sizesn=100 and 200,in which the straight lice indicates thatapproximates well to the distribution ofMn.It shows that,when the sample size is increased from 100 to 200,the distribution approximation for the larger size is much more accurate than that for the small one.

    Example 4.2In this section,we model the relationship between viral load and CD4+cell counts in HIV-infected individuals during potent antiviral treatments based on the data from ACTG 315 study.In general,it is believed that the virologic response RNA(measured by viral load)and immunologic response(measured by CD4+cell counts)are negatively correlated during antiviral treatment(see[12,21]).And also the discordance between virologic and immunologic responses has been observed from several recent clinical studies(see[14–15,17,20])which model the relationship between viral load and CD4+cell counts by the mixed-e ff ect varying-coefficient model based on these data.In their studies,exact tests and confidence intervals for parameters are not available.Instead,we present these analysis results by model(1.1).Here,we also focus on the data for the first 24 weeks of treatment,since virological or immunologic responses during this period are popular endpoints for many AIDS clinical trials.So both viral load and CD4+cell counts were scheduled to be measured on days t=0,2,7,10,14,28,56,84,168 after initiation of an antiviral therapy.We obtained 441 complete paries of viral load and CD4+cell count observations from 48 evaluable patients.Let Yibe the viral load and let xibe the CD4+cell count for subject i.To reduce the marked skewness of CD4+cell counts and to make treatment times equal space,we take log-transformations of both variables(this is commonly used in AIDS clinical trials(see[14])).The xiare measured with error.The model we used is

    Y= β0+xβ1+g(T)+ε,X=x+u,

    where X is the observed CD4 cell counts and T is time.

    Figure 1 Q-Q plot ofv.s.Mn

    The parameter estimators,by using our proposed methods,are(β0,β1)=(2.7234,?0.1301).The 95%confidence interval of β0is(2.6496,2.7924)and that of β1is(?0.1498,?0.1085).It can be seen that the length of confidence intervals is small.Furthermore,we test the linear hypothesis H0:β1=0.The resulting p-value is 0,suggesting that β1is signi ficant.

    5 Discussion

    The primary goal of this paper is to provide a convenient inference and a linear hypothesis testing for the partially linear EV model based on the LAD-estimate.The proposed inference procedure via resampling avoids the difficulty of density estimation and is convenient to implement with the availability of the standard linear programming and computing power.All simulation studies con firm that the performance of the random weighting method works well.We believe that the proposed statistical method is methodologically valuable.Some of the conditions assumed for the main results may be dropped or relaxed and,in particular,the samples usually may not be independent in many applications.In addition,it allows that the LAD can be extended to the M method,and the random weighting method can be used in other nonparametric regression models,such as the mixed-e ff ect varying-coefficient model for AIDS data;the censored model or longitudinal data,which are common in survival analysis,and they are valuable subjects for future research.

    6 Appendix

    To prove the theorem,we first introduce the following three lemmas.

    Lemma 6.1(1)Suppose that Assumption 3.6 and(2.2)–(2.3)hold,and then

    (2)Suppose that(2.2)–(2.3)hold,E(|ε1|l+‖x1‖l+‖u1‖l)< ∞,and g and g2jsatisfy the Lipschitz condition.Then

    for l=3 or 4.

    ProofThis result is due to Lemma 1 of[5].

    Lemma 6.2(1)Assume that Assumption 3.2 holds and that f is a continuous function on interval[0,1],andThen

    (2)Assume that Assumption 2.2 holds and that f satisfies the Lipschitz condition and(n→∞).Then

    ProofThis result is due to Lemma 2 of[5].

    Lemma 6.3Under the condition of Theorem 3.1,we have

    ProofObserve that xi=hi+g2(Ti),1≤i≤n,and we have

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    and therefore,

    so

    Next we proceed to prove the theorems.

    Proof of Theorem 3.1In this section,for simplicity in notation,let θ = √n(β ? β0).

    Write

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    By applying the identity in Knight[11],

    We have

    Qn(θ)=Qn1(θ)+Qn2(θ),

    where

    Since

    where=dstands for obeying the same distribution,we have

    EQn2(θ)=EQn(θ)? EQn1(θ)

    By the Schwarz’s inequality and the control limited theorem,it is easy to see that

    and Assumption 3.2 then implies that

    The convextiy of the limiting objective function Q0(θ)assures the uniqueness of the minimizer and consequently

    Furthermore,

    where

    particularly,when v1≡1,we have

    By the central limited theorem,we have

    Proof of Theorem 3.2By the result of Theorem 3.1,we have

    From Lemma 2.9.5 in[20],it follows that conditionally on

    for almost every sequenceThus,by(6.12)–(6.13),it is easy to show that(3.3)holds true,

    By using the similar argument as in[16],(3.4)can be shown to hold true.

    Proof of Theorem 3.3define K as a known p×(p?q)matrix of rank p?q(0

    and then

    and

    Without loss of generality,H0:HT(β ?b0)=0 can be written as

    β?β0=Kγ

    for some γ ∈Rp?q,so

    Let vi≡1.By Theorem 3.1,we have

    It thus follows that

    Replacing(6.14)into(6.15),we get

    Similarly

    whereWhen H0is true,

    Under the condition of Theorem 3.3.This means that the Lindeberg’s condition holds.Moreover,note that

    Proof of Theorem 3.4Similar to the proof of Theorem 3.3,define

    and replacing into Qn(θ?),we have

    Similarly,it is easy to show that

    So

    where

    Therefore

    From Lemma 2.9.5 in[18],it follows that conditionally on

    AcknowledgementThe authors are extremely grateful to the referees for their valuable comments and suggestions.

    [1]Buchinsky,M.,Recent advances in quantile regression models:A practical guideline for empirical research.Journal of Human Resources,33,1998,88–126.

    [2]Carroll,R.J.,Ruppert,D.and Stefanski,L.A.,Nonlinear Measurement Error Models,Chapman and Hall,New York,1995.

    [3]Chen,K.,Ying,Z.and Zhang,H.,Analysis of least absolute deviation,Biometrika,95,2008,107–122.

    [4]Cui,H.J.,Asymptotic properties of generalized minimum L1-norm estimates in EV model,Science in China,Series A,27,1997,119–131(in Chinese).

    [5]Cui,H.J.and Li,R.C.,On parameter estimation for semi-linear errors-in-variables models,Journal of Multivariate Analysis,64,1998,1–24.

    [6]Cui,W.Q.,Li,K.and Yang,Y.N.,Random weighting method for Cox’s proportional hazards model,Science in China,Series A,51,2008,1843–1854.

    [7]Fuller,W.A.,Measurement Error Models,John Wiley and Sons,New York,1987.

    [8]Hardle,W.,Liang,H.and Gao,J.T.,Partially Linear Models,Physica-Verlag,Beilin,2000.

    [9]Jiang,R.,Qian,W.M.and Zhou,Z.G.,Randomly weighted estimators for parametric component in semi-linear errors-in-variables models,Journal of Tongji University,Natural Science,39,2011,768–772(in Chinese).

    [10]Jin,Z.,Ying,Z.and Wei,L.J.,A simple resampling method by perturbing the minimand,Biometrika,88,2001,381–390.

    [11]Knight,K.,Limiting distributions for L1regression estimators under general conditions,Ann.Stat.,26,1998,755–770.

    [12]Lederman,M.M.,Connick,E.and Landay,A.,Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine and ritonavir:Results of AIDS clinical trials group protocol 315,The Journal of Infectious Diseases,178,1998,70–79.

    [13]Liang,H.,Hardle,W.and Carroll,R.J.,Estimation in a semiparametric partially linear errors-in-variables model,Annual Statistics,27,1999,1519–1535.

    [14]Liang,H.,Wu,H.L.and Carroll,R.J.,The relationship between virologic and immunologic responses in AIDS clinical research using mixed-e ff ect varying-coefficient semiparametric models with measurement error,Biostatistics,4,2003,297–312.

    [15]Mallolas,J.,Li,W.and Del,R.A.,Clinical Outcome,CD4+Cell Count,and HIV-1 Reverse Transcriptase and Protease Sequences in Patients Remaining Viremic during HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?334,Jan 30-Feb 2,San Francisco,CA,2000.

    [16]Rao,C.R.and Zhao,L.C.,Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap,SankhyA,54,1992,323–331.

    [17]Sabin,C.,Staszewski,S.and Phillips,A.,Discordant Immunological and Virological Responses to HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?333,Jan 30-Feb 2,San Francisco,CA,2000.

    [18]Van der Vaart,A.W.and Wellner,J.A.,Weak Convergence and Empirical Processes,Springer-Verlag,New York,1996.

    [19]Wang,Z.,Wu,Y.and Zhao,L.C.,Approximation by randomly weighting method in censored regression model,Science in China Series A,52,2009,561–576.

    [20]Wu,H.,Connick,E.and Kuritzkes,D.R.,Cell Kinetic Patterns and Their Relationships with Virologic Responses in HIV-1-Infected Patients Treated with HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?340,Jan 30-Feb 2,San Francisco,CA,2000.

    [21]Wu,H.and Ding,A.,Population HIV-1 dynamics in vivo:Applicable models and inferential tools for virological data from AIDS clinical trials,Biometrics,55,1999,410–418.

    [22]Zhao,L.C.and Chen,X.R.,Asymptotic behavior of M-test statistics in linear models,Journal of Combine Information System Science,16,1991,234–248.

    [23]Zheng,Z.G.,Random weighting method,Acta Mathematicae Applilcate Sinica,10,1987,247–253(in Chinese).

    [24]Zhu,L.and Cui,H.J.,A semiparametric regression model with errors in variables,Scan.Journal Statistics,30,2003,429–442.

    在线免费观看的www视频| a级毛片a级免费在线| 亚洲自拍偷在线| 男女视频在线观看网站免费| 女同久久另类99精品国产91| 色尼玛亚洲综合影院| a级毛片免费高清观看在线播放| 日韩欧美国产一区二区入口| 亚洲va日本ⅴa欧美va伊人久久| 日本一二三区视频观看| 99久久中文字幕三级久久日本| 免费看光身美女| 国产激情偷乱视频一区二区| 日韩欧美免费精品| av在线观看视频网站免费| 伦精品一区二区三区| 最近最新中文字幕大全电影3| 亚洲人成伊人成综合网2020| 我要搜黄色片| 悠悠久久av| 亚洲中文日韩欧美视频| 性欧美人与动物交配| 国产不卡一卡二| 国产色爽女视频免费观看| 日本一二三区视频观看| 亚洲精品国产成人久久av| 精华霜和精华液先用哪个| 三级男女做爰猛烈吃奶摸视频| 日韩一区二区视频免费看| 在线免费观看不下载黄p国产 | 3wmmmm亚洲av在线观看| 欧美最新免费一区二区三区| 国产色婷婷99| 人妻少妇偷人精品九色| 观看美女的网站| 51国产日韩欧美| 国产91精品成人一区二区三区| 国产精品久久久久久久电影| 成人一区二区视频在线观看| 桃色一区二区三区在线观看| 欧美激情在线99| 精品久久久久久久久av| 成人国产综合亚洲| 在线播放无遮挡| 午夜福利在线观看吧| 欧美又色又爽又黄视频| 国产精品99久久久久久久久| 婷婷丁香在线五月| 好男人在线观看高清免费视频| 国产av在哪里看| 午夜日韩欧美国产| 精品人妻一区二区三区麻豆 | 91在线观看av| 99热6这里只有精品| 99国产精品一区二区蜜桃av| 亚洲av日韩精品久久久久久密| 国产精品一区二区性色av| 在线观看舔阴道视频| 99久久精品国产国产毛片| 综合色av麻豆| 3wmmmm亚洲av在线观看| 亚洲第一区二区三区不卡| 国产激情偷乱视频一区二区| 特大巨黑吊av在线直播| 日本欧美国产在线视频| 国产男人的电影天堂91| 亚洲电影在线观看av| 国产大屁股一区二区在线视频| 一进一出抽搐动态| 欧美在线一区亚洲| 国产一区二区三区在线臀色熟女| 久久精品久久久久久噜噜老黄 | 搞女人的毛片| 欧美潮喷喷水| 韩国av在线不卡| 一级黄片播放器| 岛国在线免费视频观看| 99热这里只有精品一区| 日韩一区二区视频免费看| 老司机午夜福利在线观看视频| 99久久精品国产国产毛片| 国产伦人伦偷精品视频| 亚洲自偷自拍三级| 国产 一区精品| 久久久久久九九精品二区国产| 毛片女人毛片| 久久精品国产亚洲av香蕉五月| 美女大奶头视频| 国产视频一区二区在线看| 中文字幕高清在线视频| 九九爱精品视频在线观看| 男人的好看免费观看在线视频| 亚洲一级一片aⅴ在线观看| 悠悠久久av| 国产免费男女视频| 国产aⅴ精品一区二区三区波| 性欧美人与动物交配| 夜夜爽天天搞| 长腿黑丝高跟| av国产免费在线观看| 日本成人三级电影网站| 久久久久久久久久成人| 国产在线精品亚洲第一网站| 日本三级黄在线观看| 色视频www国产| 美女cb高潮喷水在线观看| 欧美激情在线99| 一个人免费在线观看电影| 在线免费观看的www视频| 午夜福利欧美成人| 久久人人精品亚洲av| 一区二区三区高清视频在线| 少妇的逼水好多| 日日摸夜夜添夜夜添小说| 女的被弄到高潮叫床怎么办 | 精品一区二区三区av网在线观看| 99久国产av精品| 韩国av在线不卡| 国产人妻一区二区三区在| 91在线精品国自产拍蜜月| 村上凉子中文字幕在线| 不卡一级毛片| 伦理电影大哥的女人| 精品久久久久久久人妻蜜臀av| 国产精品电影一区二区三区| 欧美丝袜亚洲另类 | 又黄又爽又免费观看的视频| 亚洲性久久影院| 中文资源天堂在线| 亚洲无线观看免费| 欧美最黄视频在线播放免费| 亚洲欧美激情综合另类| 欧美xxxx性猛交bbbb| 在线免费十八禁| 午夜免费激情av| 久久久久九九精品影院| 亚洲狠狠婷婷综合久久图片| 国产精品久久久久久精品电影| 午夜福利在线在线| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 欧美zozozo另类| 女生性感内裤真人,穿戴方法视频| 久久婷婷人人爽人人干人人爱| 搡老岳熟女国产| avwww免费| 少妇丰满av| 一级a爱片免费观看的视频| 村上凉子中文字幕在线| 成人国产麻豆网| 黄色女人牲交| eeuss影院久久| 九九久久精品国产亚洲av麻豆| 黄片wwwwww| 国产不卡一卡二| 搞女人的毛片| 黄色一级大片看看| h日本视频在线播放| 欧美潮喷喷水| 欧美一级a爱片免费观看看| 观看免费一级毛片| 国内精品久久久久精免费| 91麻豆av在线| 久久草成人影院| 女的被弄到高潮叫床怎么办 | 国产视频一区二区在线看| 精品不卡国产一区二区三区| 又紧又爽又黄一区二区| 麻豆成人av在线观看| 日本黄色视频三级网站网址| 欧美一区二区精品小视频在线| 国内少妇人妻偷人精品xxx网站| 亚洲人成网站在线播放欧美日韩| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 成人av在线播放网站| 乱系列少妇在线播放| 久久久久性生活片| 成人鲁丝片一二三区免费| 桃色一区二区三区在线观看| 美女 人体艺术 gogo| 搡老妇女老女人老熟妇| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区在线臀色熟女| 18禁在线播放成人免费| 91久久精品国产一区二区三区| 偷拍熟女少妇极品色| 欧美zozozo另类| 欧美成人a在线观看| 制服丝袜大香蕉在线| 中文字幕熟女人妻在线| 欧美性感艳星| 夜夜爽天天搞| 日本欧美国产在线视频| 男人和女人高潮做爰伦理| av女优亚洲男人天堂| 一级黄片播放器| 最新在线观看一区二区三区| 两人在一起打扑克的视频| 成年免费大片在线观看| 久久久久久久久久久丰满 | 在线观看66精品国产| 亚洲一区二区三区色噜噜| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 色综合站精品国产| 制服丝袜大香蕉在线| 欧美成人a在线观看| 久99久视频精品免费| 性欧美人与动物交配| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩高清专用| 亚洲成人久久爱视频| 亚洲av不卡在线观看| 亚洲欧美日韩高清在线视频| 麻豆一二三区av精品| 成人国产综合亚洲| 免费在线观看影片大全网站| 大型黄色视频在线免费观看| 久久精品国产自在天天线| 一a级毛片在线观看| 九色成人免费人妻av| 18禁在线播放成人免费| 亚洲国产精品成人综合色| 午夜精品久久久久久毛片777| 很黄的视频免费| 欧美成人免费av一区二区三区| 国产aⅴ精品一区二区三区波| 久久久久免费精品人妻一区二区| 欧美精品啪啪一区二区三区| 亚洲中文字幕日韩| 亚洲精品日韩av片在线观看| 国产精品人妻久久久影院| 偷拍熟女少妇极品色| 一本一本综合久久| 成熟少妇高潮喷水视频| 亚洲av中文字字幕乱码综合| 88av欧美| 美女免费视频网站| 国产91精品成人一区二区三区| 深爱激情五月婷婷| 久久午夜福利片| 不卡一级毛片| 欧美丝袜亚洲另类 | 国产伦一二天堂av在线观看| 欧美日韩黄片免| 亚洲自拍偷在线| 亚洲av免费在线观看| 免费观看人在逋| 欧美激情在线99| 免费在线观看成人毛片| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 欧美三级亚洲精品| 欧美一区二区精品小视频在线| 久久国产乱子免费精品| 天堂动漫精品| 久久6这里有精品| 精品人妻熟女av久视频| 九九爱精品视频在线观看| 麻豆一二三区av精品| 日本熟妇午夜| 亚洲成人久久性| 日韩欧美一区二区三区在线观看| 我要搜黄色片| 最近在线观看免费完整版| 一级av片app| 国产在线精品亚洲第一网站| 国语自产精品视频在线第100页| 看十八女毛片水多多多| 嫩草影院入口| 欧美日韩亚洲国产一区二区在线观看| 国产老妇女一区| 国产精品久久久久久久电影| 又黄又爽又免费观看的视频| 国产一区二区三区视频了| 自拍偷自拍亚洲精品老妇| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6 | 亚洲美女搞黄在线观看 | 午夜精品一区二区三区免费看| 黄色配什么色好看| 在线观看av片永久免费下载| 日韩欧美一区二区三区在线观看| 免费观看人在逋| 1024手机看黄色片| 直男gayav资源| 中国美白少妇内射xxxbb| 国产一级毛片七仙女欲春2| 一区二区三区高清视频在线| 婷婷色综合大香蕉| 久久久国产成人免费| 男插女下体视频免费在线播放| 老司机午夜福利在线观看视频| 又爽又黄a免费视频| 亚洲欧美日韩东京热| 亚洲精品亚洲一区二区| 日韩欧美一区二区三区在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲最大成人手机在线| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 国内揄拍国产精品人妻在线| 一级毛片久久久久久久久女| 少妇人妻精品综合一区二区 | 日日夜夜操网爽| 天天一区二区日本电影三级| 色哟哟哟哟哟哟| 欧美日本亚洲视频在线播放| 国产成人福利小说| 色播亚洲综合网| 免费在线观看成人毛片| 精品久久久噜噜| 久久精品91蜜桃| 丰满的人妻完整版| 我要搜黄色片| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 国产视频一区二区在线看| 少妇人妻一区二区三区视频| 欧美又色又爽又黄视频| 日本精品一区二区三区蜜桃| 九九热线精品视视频播放| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 亚洲无线观看免费| 男人舔奶头视频| 天堂动漫精品| 久久九九热精品免费| 黄色丝袜av网址大全| 看免费成人av毛片| 久久热精品热| 国产亚洲91精品色在线| 午夜老司机福利剧场| 别揉我奶头 嗯啊视频| 色综合色国产| 精华霜和精华液先用哪个| 综合色av麻豆| 国产成人av教育| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 久久天躁狠狠躁夜夜2o2o| 九九爱精品视频在线观看| 欧美不卡视频在线免费观看| 悠悠久久av| 成年女人永久免费观看视频| 99精品久久久久人妻精品| 久久国产精品人妻蜜桃| 欧美区成人在线视频| 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 国产精品av视频在线免费观看| 欧美在线一区亚洲| 亚洲欧美精品综合久久99| 亚洲午夜理论影院| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清| 一级av片app| 国产毛片a区久久久久| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 动漫黄色视频在线观看| 日日撸夜夜添| 桃红色精品国产亚洲av| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 国产精品免费一区二区三区在线| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 国产精品亚洲一级av第二区| 欧美日韩精品成人综合77777| 香蕉av资源在线| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 日日摸夜夜添夜夜添av毛片 | 九色成人免费人妻av| 狠狠狠狠99中文字幕| 一级黄片播放器| 日韩欧美在线乱码| 国产三级在线视频| 欧美zozozo另类| 99久久成人亚洲精品观看| 日本-黄色视频高清免费观看| 国产私拍福利视频在线观看| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 国产高清视频在线观看网站| 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 免费观看在线日韩| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 少妇猛男粗大的猛烈进出视频 | 男人的好看免费观看在线视频| 直男gayav资源| 动漫黄色视频在线观看| 女生性感内裤真人,穿戴方法视频| 一进一出抽搐动态| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 亚洲av成人精品一区久久| 又粗又爽又猛毛片免费看| 久久午夜亚洲精品久久| 久久久国产成人精品二区| 婷婷亚洲欧美| 国产精品一及| 三级毛片av免费| 国产精品乱码一区二三区的特点| avwww免费| 在现免费观看毛片| 午夜日韩欧美国产| 成人国产麻豆网| 国产精品嫩草影院av在线观看 | 日韩中文字幕欧美一区二区| 亚洲av成人av| 精品人妻熟女av久视频| 免费看光身美女| 国产精品免费一区二区三区在线| 一本久久中文字幕| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 国模一区二区三区四区视频| 国产色婷婷99| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频| 国产乱人视频| 久久久久久久精品吃奶| 99热这里只有是精品50| 日本与韩国留学比较| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 少妇丰满av| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| av国产免费在线观看| 日本欧美国产在线视频| 久久久久免费精品人妻一区二区| 国内揄拍国产精品人妻在线| 亚洲最大成人手机在线| 国产亚洲精品av在线| 国产免费av片在线观看野外av| 久久久国产成人免费| 国产毛片a区久久久久| 精品久久久久久久久av| 亚洲自偷自拍三级| 亚洲人与动物交配视频| 黄色配什么色好看| 亚洲熟妇熟女久久| 色视频www国产| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 国产大屁股一区二区在线视频| 亚洲av中文av极速乱 | 国产激情偷乱视频一区二区| 精品人妻视频免费看| 嫁个100分男人电影在线观看| 天堂av国产一区二区熟女人妻| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱 | 啦啦啦韩国在线观看视频| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 成年版毛片免费区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av不卡在线观看| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 精华霜和精华液先用哪个| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 国产精品女同一区二区软件 | 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 午夜福利在线观看吧| 国产精品99久久久久久久久| 深夜精品福利| 欧美另类亚洲清纯唯美| 久久久午夜欧美精品| 国产精品嫩草影院av在线观看 | av天堂在线播放| 久久九九热精品免费| 免费无遮挡裸体视频| 中文字幕熟女人妻在线| 精品久久久噜噜| 一区福利在线观看| 夜夜夜夜夜久久久久| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| 91在线精品国自产拍蜜月| 国产精品人妻久久久久久| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品 | bbb黄色大片| 日本-黄色视频高清免费观看| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添av毛片 | av黄色大香蕉| 黄片wwwwww| 色视频www国产| 此物有八面人人有两片| 国产精华一区二区三区| 亚洲专区国产一区二区| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添av毛片 | 伊人久久精品亚洲午夜| 国产精品日韩av在线免费观看| 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 成人二区视频| 无遮挡黄片免费观看| 非洲黑人性xxxx精品又粗又长| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 波野结衣二区三区在线| 欧美zozozo另类| 两性午夜刺激爽爽歪歪视频在线观看| 日韩强制内射视频| 看片在线看免费视频| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 在线免费观看的www视频| 直男gayav资源| 国产主播在线观看一区二区| 亚洲av不卡在线观看| 91av网一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲精品亚洲一区二区| 久99久视频精品免费| 1000部很黄的大片| 真人一进一出gif抽搐免费| 亚洲国产高清在线一区二区三| 久久天躁狠狠躁夜夜2o2o| 少妇高潮的动态图| 成人午夜高清在线视频| 日韩,欧美,国产一区二区三区 | 一级黄色大片毛片| 免费观看的影片在线观看| 国产极品精品免费视频能看的| 麻豆国产av国片精品| 亚洲 国产 在线| 色视频www国产| 午夜福利欧美成人| 亚洲第一电影网av| 亚洲18禁久久av| 国产在线男女| 免费观看人在逋| 婷婷亚洲欧美| 亚洲va在线va天堂va国产| 我的老师免费观看完整版| 狂野欧美白嫩少妇大欣赏| 亚洲成人精品中文字幕电影| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久精品电影| 成人美女网站在线观看视频| 国产一区二区亚洲精品在线观看| 国产精品不卡视频一区二区| 国产高清有码在线观看视频| 小说图片视频综合网站| 最近在线观看免费完整版| 亚洲精品在线观看二区| 亚洲av不卡在线观看| 99久久中文字幕三级久久日本| 大又大粗又爽又黄少妇毛片口| 黄色视频,在线免费观看| 永久网站在线| 亚洲男人的天堂狠狠| 中文字幕熟女人妻在线| 国产一级毛片七仙女欲春2| 一卡2卡三卡四卡精品乱码亚洲| 九九热线精品视视频播放| 成人特级黄色片久久久久久久| 蜜桃亚洲精品一区二区三区| 亚洲国产欧美人成| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| 色综合站精品国产| 成人特级黄色片久久久久久久| 精品日产1卡2卡| 淫秽高清视频在线观看| 日本-黄色视频高清免费观看| 精品日产1卡2卡| 日韩强制内射视频| 欧美日韩黄片免| 国产久久久一区二区三区| 欧美一区二区亚洲| 久久久久久九九精品二区国产| 精品人妻一区二区三区麻豆 | 毛片女人毛片| 久久精品久久久久久噜噜老黄 | www.www免费av| 亚洲精品成人久久久久久| 人人妻人人看人人澡| 久久午夜亚洲精品久久| 婷婷六月久久综合丁香| 熟妇人妻久久中文字幕3abv| bbb黄色大片|