• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Result on the Quasi-periodic Solutions of Forced Isochronous Oscillators at Resonance?

    2015-06-01 11:36:28BinLIUYingchaoTANG

    Bin LIU Yingchao TANG

    1 Introduction

    In this paper,we consider the existence of quasi-periodic solutions and the boundedness of all solutions for forced isochronous oscillators with a repulsive singularity.We also assume that the equation we considered depends on the velocity.

    Consider the second-order ordinary differential equation

    in which the potential functionVis continuous.We callx=0 an isochronous center if

    and there is a fixed numberT>0 such that every solution is periodic with periodT.Ifx=0 is an isochronous center,we call the equation above an isochronous system.A typical example of the isochronous system is

    It is easy to see that every solution of this equation is-periodic int.Another important class of isochronous systems is the asymmetric equation

    wherex+=max(x,0),x?=x?x+.This is because all solutions are periodic with the periodπ().In the above examples,the equations are both defined on the whole real line.People also consider the system

    Obviously,all solutions are 2π-periodic.The di ff erence between this equation and the first two equations is that,this equation is not defined on R,and the potential tends to in finity asx→?1.More information of isochronous centers can be found in[3].

    In 1969,Lazer and Leach studied the equation

    with a 2π-periodic functionp.They showed in[12]that,ifg(±∞)=exists and

    then this equation has at least one 2π-periodic solution.The above inequality is called the Lazer-Landesman condition.

    Since then,many mathematicians investigated the existence of periodic solutions for the equations

    wherepis periodic with period 2π(see[4–5,7–11]and the references therein).In their works,they assumed the functionto be of the form(x)=m2xor(x)=ax+?bx?.So the equation(1.1)can be viewed as a perturbation of an isochronous system.They showed that the type of Lazer-Landesman condition always plays a key role for the existence of periodic solutions.

    Bonheure,Fabry and Smets[1]studied the forced isochronous oscillators with jumping nonlinearities and a repulsive singularity.The Lazer-Landesman-type condition is a key assumption to guarantee the existence of periodic solutions in their work.In the following,we brie fly go over their result.

    Assume that the functiongis smooth and bounded,and the functionVsatisfies

    wherem∈Z+,a∈(?∞,0)andVis defined on(a,+∞).We also assume that all solutions of the unperturbed equation

    are-periodic,that is,(1.3)is an isochronous oscillator with period.In this case,the equation(1.1)is a bounded perturbation of isochronous oscillators at resonance.The second condition in(1.2)means that the equation(1.3)has a repulsive singularity ata.

    Let

    Then(1.1)has at least one 2π-periodic solution if there isg0∈[,],which is a regular value ofp?,and the number of zeros ofp??g0in[0,)is di ff erent from 2,where

    In particular,as a corollary,if the limitexists,then the condition of the Lazer-Landesman type

    guarantees the existence of 2π-periodic solutions of(1.1).

    In[17],Ortega considered the boundedness of solutions and the existence of quasi-periodic solutions for asymmetric oscillators.Following his result,there are several results(see[14,18–19]and the references therein)on the boundedness of solutions for(1.1).However,in these works,the functionVis globally defined in R.That is,they do not include the case of the oscillators with a singularity.

    In[18],Ortega also proved a variant of Moser’s small twist theorem.Under some reasonable assumptions,he showed that aC6small twist area-preserving mapping has invariant curves.Moreover,he used the variant of Moser’s small twist theorem to obtain the boundedness of a piecewise linear equation

    wherep(t)is a 2π-periodic function of classC5,hL(x)is of the following form:

    andp(t)satisfies

    In 2009,Capietto,Dambrosio and Liu[2]studied(1.1)withg(x)=0 and

    whereγis a positive integer.They showed the boundedness of solutions and the existence of quasi-periodic solutions via Moser’s twist theorem.Here,Vhas a singularity?1.As far as we know,this is the first example of the boundedness of solutions for the equations with singularities.However,this equation is not isochronous.

    In[15],Liu showed that,under the condition(1.4)and other regular assumptions onV,gandp,the equation(1.1)has many quasi-periodic solutions and all solutions are bounded.It seems that this is the first result on the existence of quasi-periodic solutions and the boundedness of all solutions for isochronous oscillators with a singularity.

    In this paper,we extend the results in[15]to the case of the equation whereedepends on the velocity.More precisely,we study the equation

    where the functionsV,gandesatisfy the following assumptions:

    (1)The functionVis defined in the interval(?1,+∞)andforx≠0,and the condition(1.2)holds.

    (2)The function

    is smooth in(?1,∞)and the limitW(x)exists.Furthermore,we assume that the following estimates hold:For each 1≤k≤6,there is a constantc0,such that

    (3) The positive functionVis smooth and for 0≤k≤6,

    whereis a positive constant.

    (4) The functiongis bounded on the interval[?1,+∞)andg(x)>0 forx>0.Moreover,the following equalities hold:

    (5) Forx>0,let Φ(x)=V(x)and the function Φ satisfies

    for every positive integerk.

    (6) There is a constantM>0,such that|e(t,x,y)|≤M,and for 1≤j+i+l≤7,

    Furthermore,there exists a function(t),such that

    Moreover,the functioneis 2π-periodic int,and

    e(?t,x,?y)=e(t,x,y).

    Then we have the following theorem.

    Theorem 1.1Under the hypotheses(1)–(6)above,for a smooth function e=e(t,x,y),if the Lazer-Landesman-type condition

    holds,wherethen all solutions of(1.5)are bounded,i.e.,foreach solution x,we have

    Furthermore,in this case,the equation(1.5)has in finite many quasi-periodic solutions.

    The idea for proving our theorem is that,under the hypothesis(1)–(6)of our theorem,we can obtain that the Poincaré map of(1.5)satisfies the assumptions of a variant of Moser’s twist theorem in[16].These conditions are analogous to those in[13].

    In the following,for simplicity and brevity,we assume thatm=1,i.e.,the solutions of the equationx″+Vx(x)=0 are 2π-periodic,andm=1 in(1.2)and the assumption(5).The proof of our statements for generalm(the functioneis also 2π-periodic int)can be treated analogously.

    The paper is organized as follows.In Section 2,we introduce action and angle variables.After that we state and prove some technical lemmas in Section 3,which are employed in the proof of our main result.In Sections 4–6,we will give an asymptotic expression of the Poincaré map and prove the main result by the twist theorem in[16].

    2 Action and Angle Variables

    The equation(1.5)can be written in the following form:

    In order to introduce action and angle variables,we consider the auxiliary autonomous system

    From our assumptions,we know that all solutions of this system are 2π-periodic int.For everyh>0,we denote byI(h)the area enclosed by the(closed)curve.Let?1

    Moreover,it is easy to see that

    Let

    Then

    Because all the solutions of the auxiliary equation(2.2)are 2π-periodic,we have

    which yields thatI(h)=2πh.

    For every(x,y)∈(?1,+∞)×R,let us define the angle and action variables(θ,I)by

    where

    Obviously,we have

    and

    In the new variables(θ,I),(2.1)becomes

    where

    We have used the equality

    Obviously,this equation is time-reversible with respect to the involution(θ,I)(?θ,I).

    3 Some Technical Lemmas

    The proof of the main theorem 1.1 is based on a variant of the small twist theorem in the reversible system(see[16]).Therefore,we state it first and then give some technical estimates which will be used in the next sections.More precisely,we may use these estimates to obtain an asymptotic expression of the Poincaré map of(2.8).

    3.1 A variant of the small twist theorem

    In this subsection,we will state a variant of the small twist theorem(see[16]).

    LetA=S1×[a,b]be a finite cylinder with a universal cover A=R×[a,b].The coordinate in A is denoted by(τ,v).Consider a map

    We assume that the map is reversible with respect to the involutionG:(θ,I)(?θ,I),that is,

    Suppose thatf:A→R×R,(τ0,v0)(τ1,v1)is a lift ofand it has the form

    whereNis an integer,δ∈(0,1)is a parameter andl1,l2,?1and?2are functions satisfying

    In addition,we assume that there exists a functionI:A→R satisfying

    Define the functions

    Small Twist Theorem(see[16,Theorem 2])Let be such that(3.1)–(3.3)hold.Assume in addition that there exists a function I satisfying(3.4)–(3.5)and numbers,with

    Then there exist >0andΔ>0such that if<Δand,the map has an invariant curveΓ.The constantis independent of .Furthermore,if we denote by μ(Γ,δ)∈S1the rotation number of,then

    Remark 3.1From the last inequality in(3.2),we know thatτ1is increasing asv0increases.This means that(3.1)is a twist map.By the proof in[16],one can see that the conclusions of this theorem still hold if the condition(3.2)is replaced by

    Remark 3.2Note thatl1(τ0,v0)=l1(?τ0,v0),andl2(τ0,v0)=?l2(?τ0,v0).If the functionIdoes not satisfyI(?τ0,v0)=I(τ0,v0),we can chooseJ(τ0,v0)=(I(τ0,v0)+I(?τ0,v0))instead ofI(τ0,v0).

    3.2 Some technical lemmas

    In order to obtain an asymptotic expression of the Poincaré map of(2.8),we must give some estimates first.In this subsection,we will deal with some technical estimates.Throughout this subsection,we suppose that the assumptions(1)–(5)stated in Section 1 hold.

    Lemma 3.1For every positive integer0≤k≤6,there is a constant c1>0,such that

    ProofAccording to[13],we know that

    and here and in the rest of this subsection,the functionWis defined by(1.6).By the assumption(2)in Section 1,it follows that

    From(3.6)and the equality(the proof can be found in[13])

    whereKis a smooth function,it follows that

    which yields,by the assumption(2)in Section 1 and the estimate on,that

    The general case can be obtained by an induction argument and a direct computation.

    Lemma 3.2There is a constant c2>0such that,for each positive integer k≤6,

    ProofLet

    ThenT?(h)=(h).On the other hand,similar to the proof of(3.6),it is not difficult to see that

    From the assumption(2)in Section 1,it follows thatBy Lemma 3.1,we have,for each positive integerk≤6,

    The conclusion of this lemma follows from this inequality and the identityT?(h)+T+(h)≡2π.

    Define a functionF

    and an operatorL

    wheref=f(x,I),h=h(I)andis the derivative ofhwith respect toI.

    The proof of the following lemma can be found in[13].

    Lemma 3.3For every smooth function g(x,I),we have

    Next,we give an estimate of the derivatives ofx=x(θ,I)andy=y(θ,I)with respect to the action variableI.

    Proposition 3.1There is a constant C>0such that,for?1≤k≤6,

    where x=x(θ,I)and y=y(θ,I)are defined implicitly by(2.6)and(2.7),respectively.

    The idea of the proof of this proposition is similar to the corresponding one in[13].A complete proof can be found in the appendix of[15].

    Note that?1≤?αh≤x≤βhand the assumption(5)in Section 1,there is a constantc3>0 such that for?I1,.Hence,by Proposition 3.1,we have

    wherec4>0 is a constant,not depending onI.

    4 An Asymptotic Formula of x(θ,I)

    In this section,we will give an asymptotic expression ofx(θ,I)whenI?1.

    From the Definition ofθ(cf.(2.6)),it follows that

    xθ(θ,I)=y(θ,I).

    Sincecombining with the above equality,we have

    That is,the functionx(θ,I)satisfies

    Let

    Then

    Obviously,there is aδ>0 such that(θ)>0 forθ∈(0,δ).By the assumption(5)in Section 1,we know that,if>0,then it is the solution of

    Let+(I)be the subset of the interval[0,2π]such that forθ∈+(I),(θ,I)>0.

    Lemma 4.1For θ∈+(I),the functionx has the following expression:

    where the functionsatisfies

    ProofIn the following,we assume thatθ∈+(I).Sinceis the solution of(4.1)with the initial conditionu(0)=0,(0)=1,we have

    whereHence,the functionis determined implicitly by

    From the hypothesis(5)in Section 1 and the Lebesgue dominated theorem,we have

    Taking the derivative with respect toIin both sides of the above equality,one has

    By the hypothesis(5)in Section 1 and the Gronwall inequality,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.

    By the Definition ofandwe have

    and

    Now we turn to estimate the measure of the setBy the Definitions ofθand,we

    know that

    Hence,Because(1.3)is isochronous,we have,by Lemma 3.2,that

    T+(h)=2π?T?(h).

    So

    whereμdenotes the Lebesgue measure.

    Let

    Then

    andθ∈Θ+(I)??x(θ,I)>0.

    In the next section,we introduce a canonical transformation such that the transformed system is a perturbation of an integrable system.

    5 Another Set of Action and Angle Variables

    Now we consider the system(2.8).Note that

    We have,by Lemma 3.3,

    Hence,from(2.8),we know that

    Instead of(2.8),we will consider the following system:

    The relation between(2.8)and(5.1)is that if(I(t),θ(t))is a solution of(2.8)and the inverse functiont(θ)ofθ(t)exists,then(I(t(θ)),t(θ))is a solution of(5.1)and vice versa.Hence in order to find quasi-periodic solutions of(2.8)and to obtain the boundedness of the solutions,it is sufficient to prove the existence of quasi-periodic solutions and the boundedness of solutions of(5.1).This trick was used in[13]in the proof of boundedness for superquadratic potentials.

    From the Definition ofθ,we have,fory>0,

    SinceI=2πh,take the derivative with respect to the action variableIin both sides of the above equality(the angle variableθis independent ofI),it follows that

    which yields that

    Hence,we obtain that

    Ψ1(θ,I,t)=2πxI(g(x(θ,I))?e(t,x(θ,I),y(θ,I))).

    Definition 5.1We say a function g(t,ρ,θ,)∈Ok(1)if g is smooth in(t,ρ)and for k1+k2≤k,

    for some constant C>0which is independent of the arguments t,ρ,θ and.Similarly,we say a function g(t,ρ,θ,)∈ok(1)if g is smooth in(t,ρ)and for k1+k2≤k,

    Now we introduce a new action variableρ∈[1,2]and a parameter>0 byI=?2ρ.Then,I?1??0

    where

    Obviously,if?1,the solution(t(θ,t0,ρ0),ρ(θ,t0,ρ0))of(5.2)with the initial data(t0,ρ0)∈R×[1,2]is defined in the intervalθ∈[0,2π]andρ(θ,t0,ρ0)∈[,3].So the Poincarmap of(5.2)is well defined in the domain R×[1,2].

    Lemma 5.1The Poincaré map of(5.2)is reversible with respect to the involution(t,ρ)(?t,ρ).

    By(4.4)and Lemma 3.1,we know that,there is a functionηsuch that

    whereη∈O6(1).By the Definition of Θ+and Θ?,we have

    6 Proof of the Main Result

    In this section, firstly,using the estimates in Subsection 3.2,we will obtain an asymptotic expression of the Poincaré map of(5.2)as?1.After that,we can prove the main result using a variant of Moser’s small twist theorem in[16].

    We make the ansatz that the solution of(5.2)with the initial condition(t(0),ρ(0))=(t0,ρ0) is of the form

    t=t0+θ+Σ1(t0,ρ0,θ;),ρ=ρ0+Σ2(t0,ρ0,θ;).

    Then,the Poincaré map of(5.2)is

    The functions Σ1and Σ2satisfy

    where

    By Proposition 3.1 and the assumptions(1)–(5)in Section 1,we know that the terms in the right-hand side of the above equations are bounded,so we have

    wherec8>0 is a constant.Hence,forρ0∈[1,2],we may choosesufficiently small such that

    for(t0,θ)∈[0,2π]×[0,2π].Similar to the proof in[6],one can obtain

    Lemma 6.1The following estimates hold:

    ProofLet

    By(3.11)and(6.4),we have

    Taking the derivative with respect toρ0in the both sides of(6.6),we have

    Using(3.11)and(6.5),one may find a constantc9>0 such that

    Analogously,one may obtain,by a direct but cumbersome computation,that

    The estimates forfollow from a similar argument,and we omit it here.

    Now we turn to give an asymptotic expression of the Poincaré map of(5.2),that is,we study the behavior of the functions Σ1and Σ2atθ=2πas0.

    By(6.2)and Lemma 6.1,it follows that

    and

    withx=x(θ,?2ρ0),y=y(θ,?2ρ0).Here we have used thaty(?θ,?2ρ0)=?y(θ,?2ρ0)andx(?θ,?2ρ0)=x(θ,?2ρ0).By Proposition 3.1,we know that whenθ∈Θ?(I),

    which yield that

    withx=x(θ,?2ρ0),y=y(θ,?2ρ0).

    Our next task is to estimate the above two integrals.

    Lemma 6.2Ifand the assumption(4)in Section1holds,then,forany function f∈o6(1),

    ProofLet

    Note that sin>0 forθ∈(0,2π),so by the Lebesgue dominated theorem,we have

    Since

    by the assumption(4)in Section 1 and the Lebesgue dominated theorem,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.Hence,we have proved the conclusion whenf≡0.In the general case,let

    Then

    The conclusion follows from the Lebesgue dominated theorem and the assumption(4)in Section 1.

    Lemma 6.3If the assumption(6)holds,then,for any function f1,f2∈o6(1),

    ProofLet

    Note that sin>0 forθ∈(0,2π),so by Lebesgue dominated theorem,we have

    Since

    by the assumption(6)in Section 1 and the Lebesgue dominated theorem,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.Hence,we have proved the conclusion whenf1=f2≡0.In the general case,let

    Then

    The conclusion follows from the Lebesgue dominated theorem and the assumption(6)in Section 1.

    Similarly,we have the following Lemma.

    Lemma 6.4If the assumption(6)in Section1holds,then

    From these lemmas,we have the following lemma.

    Lemma 6.5The following estimates hold:

    ProofBy(4.2)–(4.3),the Definition of Θ+and(5.3),it follows that

    Let

    Then there are two functionsφ1andφ2,such that the Poincaré map of(5.2),given by(6.1),is of the form

    whereφ1,φ2∈o6(1).

    Note that,by the Lazer-Landesman condition 4g+>maxθ?(θ),we know that

    Let

    Then

    The other assumptions of Ortega’s theorem are veri fied directly.Hence,for sufficiently small,there is an invariant curve of Φ in the annulus(t0,ρ0)∈S1×[1,2].The boundedness of the solutions to our original equation(1.5)can be obtained by the existence of such invariant curves,and the precise proof can be found in[14].

    Moreover,the solutions starting from such curves are quasi-periodic solutions.Using the Poincaré-Birkho ff fixed point theorem,there is a positive integern0,such that,for anyn≥n0,there are at least two periodic solutions of(1.5)with the minimal period 2nπ(see[6]).

    Since then,we are done with the proof of the existence of the quasi-periodic solutions and boundedness of all solutions for reversible forced isochronous oscillators with a repulsive singularity.

    [1]Bonheure,D.,Fabry,C.and Smets,D.,Periodic solutions of forced isochronous oscillators at resonance,Discrete and Continuous Dynamical Systems,8,2002,907–930.

    [2]Capietto,A.,Dambrosio,W.and Liu,B.,On the boundedness of solutions to a nonlinear singular oscillator,Z.angew.Math.Phys.60,2009,1007–1034.

    [3]Chavarriga,J.and Sabatini,M.,A survey of isochronous centers,Qualitative Theory of Dynamical Systems1,1999,1–70.

    [4]Del Pino,M.and Man′asevich,R.,In finitely many 2π-periodic solutions for a problem arising in nonlinear elasticity,J.Differential Equations,103,1993,260–277.

    [5]Del Pino,M.,Man′asevich,R.and Montero,A.,T-periodic solutions for some second order differential equations with singularities,Proc.Roy.Soc.Edinburgh Sect.A,120,1992,231–243.

    [6]Dieckerho ff,R.and Zehnder,E.,Boundedness of solutions via the twist theorem,Ann.Scula.Norm.Sup.Pisa Cl.Sci.,14(1),1987,79–95.

    [7]Fabry,C.,Landesman-Lazer conditions for periodic boundary value problems with asymmetric nonlinearities,J.Differential Equations,116,1995,405–418.

    [8]Fabry,C.,Behavior of forced asymmetric oscillators at resonance,Electron.J.Differential Equations,2000,2000,1–15.

    [9]Fabry,C.and Fonda,A.,Nonlinear resonance in asymmetric oscillators,J.Differential Equations,147,1998,58–78.

    [10]Fabry,C.and Man′asevich,R.,Equations with ap-Laplacian and an asymmetric nonlinear term,Discrete Continuous Dynamical Systems,7,2001,545–557.

    [11]Fabry,C.and Mawhin,J.,Oscillations of a forced asymmetric oscillator at resonance,Nonlinearity,13,2000,493–505.

    [12]Lazer,A.C.and Leach,D.E.,Bounded perturbations of forced harmonic oscillators at resonance,Ann.Mat.Pura Appl.,82,1969,49–68.

    [13]Levi,M.,Quasiperiodic motions in superquadratic time-periodic potentials,Commun.Math.Phys.,143,1991,43–83.

    [14]Liu,B.,Boundedness in nonlinear oscillations at resonance,J.Differential Equations,153,1999,142–174.[15]Liu,B.,Quasi-periodic solutions of forced isochronous oscillators at resonance,J.Differential Equations,246,2009,3471–3495.

    [16]Liu,B.and Song,J.,Invariant curves of reversible mappings with small twist,Acta Math.Sin.,20,2004,15–24.

    [17]Ortega,R.,Asymmetric oscillators and twist mappings,J.London Math.Soc.,53,1996,325–342.

    [18]Ortega,R.,Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,Proc.London Math.Soc.,79,1999,381–413.

    [19]Ortega,R.,Twist mappings,invariant curves and periodic differential equations,Progress in Nonlinear Differential Equations and Their Applications,43,Grossinho M.R.et al,eds,Birkh¨auser,2001,85–112.

    中文资源天堂在线| 中文字幕免费在线视频6| 久久久国产成人精品二区| 久久久精品大字幕| 欧美三级亚洲精品| 日韩精品有码人妻一区| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 级片在线观看| 日本成人三级电影网站| 亚洲美女视频黄频| 欧美一区二区亚洲| 久久99热6这里只有精品| 黄色欧美视频在线观看| 不卡一级毛片| 97超视频在线观看视频| 一本久久精品| 免费黄网站久久成人精品| 久久久久免费精品人妻一区二区| 国产亚洲5aaaaa淫片| АⅤ资源中文在线天堂| 男插女下体视频免费在线播放| 精品久久久久久成人av| 三级经典国产精品| 99热网站在线观看| 午夜免费激情av| 久久精品国产亚洲av天美| 国产伦一二天堂av在线观看| 91av网一区二区| 青春草亚洲视频在线观看| 51国产日韩欧美| 大又大粗又爽又黄少妇毛片口| 99视频精品全部免费 在线| 色噜噜av男人的天堂激情| 九九热线精品视视频播放| 亚洲av.av天堂| 久久久久性生活片| 成人无遮挡网站| 男人的好看免费观看在线视频| 一级毛片电影观看 | 午夜久久久久精精品| 老师上课跳d突然被开到最大视频| 十八禁国产超污无遮挡网站| 高清午夜精品一区二区三区 | 99热精品在线国产| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 老司机影院成人| 真实男女啪啪啪动态图| 国产亚洲精品久久久久久毛片| 男女啪啪激烈高潮av片| 欧美不卡视频在线免费观看| 亚洲精品色激情综合| 亚洲真实伦在线观看| 国产精品福利在线免费观看| 欧美日韩精品成人综合77777| 97在线视频观看| 成人av在线播放网站| 久久久久久久亚洲中文字幕| 一区二区三区高清视频在线| 日韩强制内射视频| 免费在线观看成人毛片| 久久精品国产亚洲av涩爱 | 99在线视频只有这里精品首页| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看 | 日韩欧美精品免费久久| 天堂网av新在线| 永久网站在线| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 亚洲精华国产精华液的使用体验 | 欧美高清性xxxxhd video| 国产精品一区二区三区四区免费观看| 婷婷色综合大香蕉| 亚洲成人精品中文字幕电影| 欧美3d第一页| 国产成人影院久久av| 中国美女看黄片| 成年免费大片在线观看| 欧美潮喷喷水| 免费无遮挡裸体视频| 精品人妻偷拍中文字幕| 26uuu在线亚洲综合色| 又粗又硬又长又爽又黄的视频 | 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 直男gayav资源| 麻豆成人av视频| ponron亚洲| 久久久午夜欧美精品| 22中文网久久字幕| 国产真实伦视频高清在线观看| 日韩av不卡免费在线播放| 人妻夜夜爽99麻豆av| 一个人看视频在线观看www免费| 国产探花极品一区二区| 亚洲中文字幕日韩| 免费看a级黄色片| 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 美女高潮的动态| 欧美+日韩+精品| 日本色播在线视频| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 非洲黑人性xxxx精品又粗又长| 欧美人与善性xxx| 在线观看一区二区三区| 久久午夜福利片| 亚洲av成人精品一区久久| 精品一区二区三区人妻视频| 最近视频中文字幕2019在线8| 日本黄色片子视频| 网址你懂的国产日韩在线| 色综合亚洲欧美另类图片| 男插女下体视频免费在线播放| 国产精品电影一区二区三区| 国产 一区精品| av在线播放精品| 亚洲不卡免费看| 小说图片视频综合网站| 久久久久久久久久黄片| 99热全是精品| 免费看光身美女| 男女做爰动态图高潮gif福利片| 日本欧美国产在线视频| 色5月婷婷丁香| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说 | 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| ponron亚洲| 亚洲av一区综合| 国产精品久久电影中文字幕| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 如何舔出高潮| av在线蜜桃| 淫秽高清视频在线观看| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 日韩欧美在线乱码| 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 国产午夜精品一二区理论片| 九九久久精品国产亚洲av麻豆| 麻豆国产av国片精品| 国产伦在线观看视频一区| 亚洲欧美成人综合另类久久久 | 国产精品麻豆人妻色哟哟久久 | 精品熟女少妇av免费看| 免费大片18禁| 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久| 久久久欧美国产精品| 免费观看a级毛片全部| 高清毛片免费观看视频网站| 亚洲性久久影院| 亚洲综合色惰| 亚洲精品456在线播放app| av天堂中文字幕网| 国产成人福利小说| 中文字幕免费在线视频6| 亚洲av二区三区四区| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 国产高清有码在线观看视频| 午夜免费激情av| 亚洲一区高清亚洲精品| 国产高潮美女av| 大型黄色视频在线免费观看| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 神马国产精品三级电影在线观看| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 男的添女的下面高潮视频| 国产黄片视频在线免费观看| 国产在线男女| 国产一区二区在线观看日韩| 国产美女午夜福利| 在线a可以看的网站| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站| 岛国在线免费视频观看| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 插阴视频在线观看视频| 小蜜桃在线观看免费完整版高清| 国产极品天堂在线| 国产一区二区激情短视频| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 在线播放无遮挡| 亚洲综合色惰| 一级av片app| 永久网站在线| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 精品一区二区免费观看| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 欧美成人a在线观看| 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 日日撸夜夜添| 国产精品蜜桃在线观看 | 九色成人免费人妻av| 国产精品久久久久久久久免| 久久久午夜欧美精品| 国产成人影院久久av| 亚洲性久久影院| 深夜精品福利| av黄色大香蕉| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 黄色一级大片看看| 亚洲最大成人av| 国内久久婷婷六月综合欲色啪| 成人毛片60女人毛片免费| 中文字幕熟女人妻在线| 国产日韩欧美在线精品| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 免费观看人在逋| 欧美最黄视频在线播放免费| 日韩制服骚丝袜av| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 一区二区三区四区激情视频 | av在线播放精品| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 国产精品一二三区在线看| 亚洲中文字幕一区二区三区有码在线看| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩高清在线视频| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 两个人的视频大全免费| 久久久久九九精品影院| 欧美不卡视频在线免费观看| 亚洲av第一区精品v没综合| av专区在线播放| 亚洲av.av天堂| 国产精品久久久久久久久免| 亚洲乱码一区二区免费版| 性色avwww在线观看| 国产成人freesex在线| 麻豆国产97在线/欧美| 天堂影院成人在线观看| 亚洲欧洲国产日韩| 美女高潮的动态| 久久久久久九九精品二区国产| 六月丁香七月| 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| av在线老鸭窝| 日韩欧美一区二区三区在线观看| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 久久午夜福利片| 日本熟妇午夜| 国产精品精品国产色婷婷| 国产日韩欧美在线精品| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 1000部很黄的大片| 1024手机看黄色片| 亚洲电影在线观看av| 免费搜索国产男女视频| 欧美不卡视频在线免费观看| 欧美性感艳星| 看片在线看免费视频| 日韩三级伦理在线观看| av在线老鸭窝| 久久久久久久久久黄片| 99久久人妻综合| 村上凉子中文字幕在线| 美女高潮的动态| 亚洲精品乱码久久久久久按摩| 99riav亚洲国产免费| 久久鲁丝午夜福利片| 黄色视频,在线免费观看| av专区在线播放| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免| 97人妻精品一区二区三区麻豆| 乱系列少妇在线播放| 在线天堂最新版资源| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看| 欧美zozozo另类| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 天堂av国产一区二区熟女人妻| 国产私拍福利视频在线观看| 精品久久久久久久久久久久久| 男女下面进入的视频免费午夜| 免费看日本二区| 久久欧美精品欧美久久欧美| 乱系列少妇在线播放| 永久网站在线| 欧美色视频一区免费| 久久精品91蜜桃| 亚洲婷婷狠狠爱综合网| 亚洲色图av天堂| 岛国在线免费视频观看| 伦理电影大哥的女人| 亚洲av一区综合| 国产精品不卡视频一区二区| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 亚洲欧美成人精品一区二区| 色哟哟·www| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 国产色婷婷99| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 人妻久久中文字幕网| 精品一区二区三区人妻视频| 精品免费久久久久久久清纯| 久久人妻av系列| 日本五十路高清| 18禁在线播放成人免费| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 日韩欧美 国产精品| 嫩草影院新地址| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 国模一区二区三区四区视频| 日韩欧美在线乱码| 日韩欧美三级三区| 蜜桃亚洲精品一区二区三区| 欧美日韩在线观看h| 成年免费大片在线观看| av免费观看日本| 成人鲁丝片一二三区免费| 大型黄色视频在线免费观看| 欧美色欧美亚洲另类二区| 国产极品天堂在线| 成人二区视频| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 久久这里只有精品中国| 亚洲第一电影网av| 免费不卡的大黄色大毛片视频在线观看 | 热99在线观看视频| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 老女人水多毛片| 97超视频在线观看视频| 欧美潮喷喷水| 黄色视频,在线免费观看| 色5月婷婷丁香| 在线观看美女被高潮喷水网站| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品青青久久久久久| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影小说 | 国产精品福利在线免费观看| 极品教师在线视频| 午夜a级毛片| 国产精品久久电影中文字幕| av免费在线看不卡| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 麻豆成人av视频| а√天堂www在线а√下载| 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 国语自产精品视频在线第100页| 亚洲婷婷狠狠爱综合网| 国产极品精品免费视频能看的| 好男人在线观看高清免费视频| 日本黄大片高清| 能在线免费观看的黄片| 日日啪夜夜撸| 男人狂女人下面高潮的视频| 久久精品国产亚洲av香蕉五月| 日韩欧美国产在线观看| 哪里可以看免费的av片| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 99久久人妻综合| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 久久久久久久午夜电影| 国产成人一区二区在线| 国产精品久久久久久av不卡| 亚洲中文字幕一区二区三区有码在线看| 成人性生交大片免费视频hd| 亚洲精品日韩在线中文字幕 | 久久99热这里只有精品18| 免费黄网站久久成人精品| 久久久久久久久大av| 亚洲欧美日韩高清在线视频| 久久久精品欧美日韩精品| 亚洲性久久影院| 欧美zozozo另类| 欧美日韩综合久久久久久| 精品欧美国产一区二区三| 欧美一区二区精品小视频在线| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 国产v大片淫在线免费观看| 搡女人真爽免费视频火全软件| 又爽又黄a免费视频| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 国产老妇伦熟女老妇高清| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 日韩制服骚丝袜av| 欧美潮喷喷水| 天美传媒精品一区二区| 最新中文字幕久久久久| 国产av一区在线观看免费| 国产亚洲91精品色在线| av在线亚洲专区| 亚洲国产精品成人综合色| 国产黄片美女视频| 一夜夜www| 免费看光身美女| 一个人免费在线观看电影| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 久久久久久久久久成人| 一边摸一边抽搐一进一小说| 久久热精品热| 成人二区视频| 久久中文看片网| 免费人成在线观看视频色| 一级二级三级毛片免费看| 看免费成人av毛片| 国内精品宾馆在线| 免费看a级黄色片| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看 | 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 悠悠久久av| 少妇人妻精品综合一区二区 | 国产视频内射| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 99九九线精品视频在线观看视频| 欧美最新免费一区二区三区| 可以在线观看的亚洲视频| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜福利片| 91久久精品电影网| 国产精品美女特级片免费视频播放器| 蜜臀久久99精品久久宅男| 九九爱精品视频在线观看| 亚洲av成人av| 国产成人freesex在线| 亚洲欧美清纯卡通| 又粗又爽又猛毛片免费看| 成熟少妇高潮喷水视频| 又粗又硬又长又爽又黄的视频 | 国产精品日韩av在线免费观看| 十八禁国产超污无遮挡网站| 我要看日韩黄色一级片| 亚洲av二区三区四区| 午夜爱爱视频在线播放| 看非洲黑人一级黄片| 亚洲天堂国产精品一区在线| 舔av片在线| 一级黄色大片毛片| 国产美女午夜福利| 搡女人真爽免费视频火全软件| 精品国内亚洲2022精品成人| av在线播放精品| 不卡一级毛片| 如何舔出高潮| 美女黄网站色视频| 午夜精品一区二区三区免费看| 免费观看人在逋| 日本黄色视频三级网站网址| 国产日本99.免费观看| 国产高清激情床上av| 又爽又黄a免费视频| 在线免费观看的www视频| 日韩视频在线欧美| 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 99热这里只有精品一区| avwww免费| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 禁无遮挡网站| 69av精品久久久久久| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 欧美激情在线99| 人体艺术视频欧美日本| 国模一区二区三区四区视频| 国产成人精品久久久久久| 一本久久中文字幕| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 人妻夜夜爽99麻豆av| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 极品教师在线视频| av在线观看视频网站免费| 亚洲av不卡在线观看| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 插阴视频在线观看视频| 寂寞人妻少妇视频99o| 国产精品一区www在线观看| av天堂在线播放| 女人被狂操c到高潮| 一区福利在线观看| 极品教师在线视频| 在线观看一区二区三区| 精品久久久久久久久久久久久| 日韩欧美三级三区| 久久这里有精品视频免费| 18禁在线播放成人免费| 国产精品.久久久| 男人的好看免费观看在线视频| 成人毛片a级毛片在线播放| 99热全是精品| www日本黄色视频网| 日本三级黄在线观看| 久久久久久久久大av| 联通29元200g的流量卡| 乱人视频在线观看| 国产午夜福利久久久久久| 亚洲av不卡在线观看| 欧美性猛交黑人性爽| 国产熟女欧美一区二区| 欧美3d第一页| 床上黄色一级片| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 免费电影在线观看免费观看| 国产伦在线观看视频一区| 国产片特级美女逼逼视频| 久久这里只有精品中国| 国产午夜精品论理片| 久久久久网色| 一区福利在线观看| 日日摸夜夜添夜夜添av毛片| 精品欧美国产一区二区三| 国产高清激情床上av| 色5月婷婷丁香| 亚洲国产精品成人久久小说 | 小蜜桃在线观看免费完整版高清| 插阴视频在线观看视频| 欧美日韩精品成人综合77777| 国产在线男女| 国产精华一区二区三区| 在线观看一区二区三区| 国产亚洲精品av在线| 99在线视频只有这里精品首页| 久久精品国产亚洲av香蕉五月| 亚洲,欧美,日韩| 熟女人妻精品中文字幕| 免费电影在线观看免费观看| 亚洲国产精品合色在线| 51国产日韩欧美| 国产成年人精品一区二区| 国产黄片美女视频| 免费看av在线观看网站|