• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      毛毛蟲圖的r次冪的最小斜秩

      2014-10-23 12:22:44沈小玲
      關鍵詞:奇數(shù)正整數(shù)毛毛蟲

      沈小玲

      摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

      1預備知識

      2主要結論

      參考文獻:

      [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

      [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

      [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

      [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

      [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

      [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

      [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

      [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

      [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

      [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

      [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

      [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

      摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

      1預備知識

      2主要結論

      參考文獻:

      [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

      [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

      [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

      [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

      [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

      [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

      [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

      [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

      [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

      [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

      [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

      [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

      摘要圖的最小斜秩問題是確定圖的所有斜對稱矩陣在域F上的秩的最小值.利用構造矩陣和零強迫集的方法刻畫了毛毛蟲圖的〖WTBX〗r次冪的最小斜秩.設毛毛蟲Tn有n個節(jié)點,n和r都是正整數(shù),r是奇數(shù),那么

      1預備知識

      2主要結論

      參考文獻:

      [1]〖ZK(#〗BARIOLI F, BARRETT W, BUTLER S, et al. Zero forcing sets and the minimum rank of graphs[J]. Linear Algera Appl, 2008,428(7):16281648.

      [2]BERMAN A, FRIEDLAND S, HOGBEN L, et al. An upper bound for the minimum rank of a graph[J]. Linear Algera Appl, 2008,429(7):16291638.

      [3]BARIOLI F, FALLAT S M, HERSHKOWITZ D, et al. On the minimal rank of not necessarily symmetric matrices: a preliminary study[J]. Electron J Linear Algebra, 2009,18:126145.

      [4]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two[J]. Electron J Linear Algera, 2004,11:258280.

      [5]BARRETTE W, VAN DER HOLST H, LOEWY R. Graphs whose minimalrank is two: the finite fields case[J]. Electron J Linear Algebra, 2005,14:3242.

      [6]BARRETTE W, GROUT J, LOEWY R. The minimal rank problem over the finite field of order 2:minimum rank 3[J]. Linear Algebra Appl, 2009,431(4):890923.

      [7]DEALBA L, GROUT J, HOGBEN L, et al. Universally optimal matrices and field indepence of the minimum rank of a graph[J]. Electron J Linear Algebra, 2009,18:403419.

      [8]FALLAT S M, HOGBEN L. The minimum rank of symmetric matrices described by a graph: a survey[J]. Linear Algera Appl, 2007,426(23):558582.

      [9]HOGBEN L. Minimum rank problems[J]. Linear Algera Appl, 2010,432(8):19611974.〖ZK)〗

      [10]〖ZK(#〗SHEN X, HOU Y, SHENG L. On the minimum rank of third power of a starlike tree[J]. Linear Algera Appl, 2012,436(12):45034511.

      [11]ALLISON M, BODINE E, DEALBA L M, et al. Minimum rank of skewsymmetric matrices described by a graph[J]. Linear Algebra Appl, 2010,432(10):2457472.

      [12]DEALBA L, KERZNER E, TUCKER S. A note on the minimum skew rank of powers of paths[EB/OL]. http://cn.arxiv.org/abs/1107.2450v1.

      猜你喜歡
      奇數(shù)正整數(shù)毛毛蟲
      毛毛蟲,動起來
      好餓的毛毛蟲
      奇數(shù)湊20
      奇數(shù)與偶數(shù)
      毛毛蟲和蠶
      關于奇數(shù)階二元子集的分離序列
      被k(2≤k≤16)整除的正整數(shù)的特征
      可愛的毛毛蟲
      周期數(shù)列中的常見結論及應用*
      方程xy=yx+1的全部正整數(shù)解
      滨海县| 宁化县| 商南县| 温宿县| 祁阳县| 汝阳县| 义乌市| 游戏| 如东县| 罗甸县| 奈曼旗| 绵阳市| 额尔古纳市| 易门县| 嘉峪关市| 沾益县| 资阳市| 武川县| 乐昌市| 虎林市| 全南县| 昌邑市| 微山县| 资溪县| 化德县| 阿拉尔市| 宜春市| SHOW| 特克斯县| 新田县| 黄石市| 宾川县| 巴里| 贵州省| 大兴区| 乳源| 环江| 恩平市| 井研县| 宁德市| 黎川县|