摘要利用粗糙集理論和推廣的DS 證據(jù)理論獲得了IVFD信息系統(tǒng)的信任約簡(jiǎn)和似然約簡(jiǎn).
關(guān)鍵詞IVF; IVFD; 信息系統(tǒng); RD; 信任約簡(jiǎn); 似然約簡(jiǎn)
中圖分類(lèi)號(hào)TP18文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04006606
粗糙集理論[12] 和DS 證據(jù)理論[3]都是處理不確定性問(wèn)題的數(shù)學(xué)工具, 它們之間有密切關(guān)糸. 近似空間對(duì)應(yīng)信任結(jié)構(gòu), 而信任函數(shù)和似然函數(shù)由信任結(jié)構(gòu)產(chǎn)生, 從而基于近似空間的下近似算子和上近似算子對(duì)應(yīng)信任函數(shù)和似然函數(shù)[46]. 因此, DS 證據(jù)理論可用于研究信息系統(tǒng)中的屬性約簡(jiǎn)問(wèn)題[79]. 考慮到信息系統(tǒng)的屬性值可能是語(yǔ)言或映射(例如IVF集), 運(yùn)用粗糙集理論處理時(shí), 會(huì)把這樣的值近似地按數(shù)字或符號(hào)來(lái)處理, 而忽略一些重要信息如“偏序”、“隸屬度”, 這意味著僅運(yùn)用粗糙集理論不能有效地處理這類(lèi)不確定性問(wèn)題. 本文推廣了DS 證據(jù)理論, 運(yùn)用粗糙集理論和推廣的DS 證據(jù)理論處理IVFD 信息系統(tǒng)的屬性約簡(jiǎn)問(wèn)題.
1基本概念
1.1IVF集
1.2IVFD 信息系統(tǒng)
2DS 證據(jù)理論的推廣
2.1必然性IVF測(cè)度和可能性IVF測(cè)度
2.2IVF信任函數(shù)和IVF似然函數(shù)
3IVFD 信息系統(tǒng)中的屬性約簡(jiǎn)
3.2信任約簡(jiǎn)和似然約簡(jiǎn)
參考文獻(xiàn):
[1]〖ZK(#〗PAWLAK Z. Rough sets: theoretical aspects of reasoning about data [M]. Boston: Kluwer Academic Publishers, 1991.
[2]張文修, 吳偉志, 梁吉業(yè), 等. 粗糙集理論與方法[M]. 北京:中國(guó)科技出版社, 2001.
[3]SHAFER G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976.
[4]WU W, LEUNG Y, MI J. On generalized fuzzy belief functions in infinite spaces [J]. IEEE Trans Fuzzy Syst, 2009,17(2):385397.
[5]WU W, LEUNG Y, ZHANG W. Connections between rough set theory and DempsterShafer theory of evidence [J]. Int J General Syst, 2002,31(4):405430.
[6]YAO Y Y. Interpretations of belief functions in the theory of rough sets [J]. Inf Sci,1998,104(1):81106.
[7]WU W. Attribute reduction based on evidence theory in incomplete decision systems [J]. Inf Sci, 2008,178(12):13551371.
[8]WU W, ZHANG M, LI H, et al. Knowledge reduction in random information systems via DempsterShafer theory of evidence [J]. Inf Sci, 2005,174(34):143164.
[9]ZHANG M, XU L, ZHANG W, et al. A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory [J]. Expert Syst Appl, 2003, 20(4):298304.〖ZK)〗
[10]〖ZK(#〗CHENG Y, MIAO D. Rule extraction based on granulation order in information system [J]. Expert Syst Appl, 2011,38(5):1224912261.
[11]喻光繼. 關(guān)于IVF近似空間的拓?fù)浣Y(jié)構(gòu)[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2013,36(6):2125.
[12]SUN B, GONG Z, CHEN D. Fuzzy rough set theory for the intervalvalued fuzzy information systems [J]. Inf Sci, 2008,178(6):27942815.
[13] 高寧華. 區(qū)間值模糊決策信息系統(tǒng)的屬性約簡(jiǎn)及其相關(guān)問(wèn)題[M]. 南寧: 廣西民族大學(xué), 2013.
[14]ZADEH L A. Probability measures of fuzzy events [J]. J Math Anal Appl, 1968,23(4):421427.
[15]DUBOIS D, PRADE H. Possibility theory [M]. New York: Plenum Press, 1988.
摘要利用粗糙集理論和推廣的DS 證據(jù)理論獲得了IVFD信息系統(tǒng)的信任約簡(jiǎn)和似然約簡(jiǎn).
關(guān)鍵詞IVF; IVFD; 信息系統(tǒng); RD; 信任約簡(jiǎn); 似然約簡(jiǎn)
中圖分類(lèi)號(hào)TP18文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04006606
粗糙集理論[12] 和DS 證據(jù)理論[3]都是處理不確定性問(wèn)題的數(shù)學(xué)工具, 它們之間有密切關(guān)糸. 近似空間對(duì)應(yīng)信任結(jié)構(gòu), 而信任函數(shù)和似然函數(shù)由信任結(jié)構(gòu)產(chǎn)生, 從而基于近似空間的下近似算子和上近似算子對(duì)應(yīng)信任函數(shù)和似然函數(shù)[46]. 因此, DS 證據(jù)理論可用于研究信息系統(tǒng)中的屬性約簡(jiǎn)問(wèn)題[79]. 考慮到信息系統(tǒng)的屬性值可能是語(yǔ)言或映射(例如IVF集), 運(yùn)用粗糙集理論處理時(shí), 會(huì)把這樣的值近似地按數(shù)字或符號(hào)來(lái)處理, 而忽略一些重要信息如“偏序”、“隸屬度”, 這意味著僅運(yùn)用粗糙集理論不能有效地處理這類(lèi)不確定性問(wèn)題. 本文推廣了DS 證據(jù)理論, 運(yùn)用粗糙集理論和推廣的DS 證據(jù)理論處理IVFD 信息系統(tǒng)的屬性約簡(jiǎn)問(wèn)題.
1基本概念
1.1IVF集
1.2IVFD 信息系統(tǒng)
2DS 證據(jù)理論的推廣
2.1必然性IVF測(cè)度和可能性IVF測(cè)度
2.2IVF信任函數(shù)和IVF似然函數(shù)
3IVFD 信息系統(tǒng)中的屬性約簡(jiǎn)
3.2信任約簡(jiǎn)和似然約簡(jiǎn)
參考文獻(xiàn):
[1]〖ZK(#〗PAWLAK Z. Rough sets: theoretical aspects of reasoning about data [M]. Boston: Kluwer Academic Publishers, 1991.
[2]張文修, 吳偉志, 梁吉業(yè), 等. 粗糙集理論與方法[M]. 北京:中國(guó)科技出版社, 2001.
[3]SHAFER G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976.
[4]WU W, LEUNG Y, MI J. On generalized fuzzy belief functions in infinite spaces [J]. IEEE Trans Fuzzy Syst, 2009,17(2):385397.
[5]WU W, LEUNG Y, ZHANG W. Connections between rough set theory and DempsterShafer theory of evidence [J]. Int J General Syst, 2002,31(4):405430.
[6]YAO Y Y. Interpretations of belief functions in the theory of rough sets [J]. Inf Sci,1998,104(1):81106.
[7]WU W. Attribute reduction based on evidence theory in incomplete decision systems [J]. Inf Sci, 2008,178(12):13551371.
[8]WU W, ZHANG M, LI H, et al. Knowledge reduction in random information systems via DempsterShafer theory of evidence [J]. Inf Sci, 2005,174(34):143164.
[9]ZHANG M, XU L, ZHANG W, et al. A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory [J]. Expert Syst Appl, 2003, 20(4):298304.〖ZK)〗
[10]〖ZK(#〗CHENG Y, MIAO D. Rule extraction based on granulation order in information system [J]. Expert Syst Appl, 2011,38(5):1224912261.
[11]喻光繼. 關(guān)于IVF近似空間的拓?fù)浣Y(jié)構(gòu)[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2013,36(6):2125.
[12]SUN B, GONG Z, CHEN D. Fuzzy rough set theory for the intervalvalued fuzzy information systems [J]. Inf Sci, 2008,178(6):27942815.
[13] 高寧華. 區(qū)間值模糊決策信息系統(tǒng)的屬性約簡(jiǎn)及其相關(guān)問(wèn)題[M]. 南寧: 廣西民族大學(xué), 2013.
[14]ZADEH L A. Probability measures of fuzzy events [J]. J Math Anal Appl, 1968,23(4):421427.
[15]DUBOIS D, PRADE H. Possibility theory [M]. New York: Plenum Press, 1988.
摘要利用粗糙集理論和推廣的DS 證據(jù)理論獲得了IVFD信息系統(tǒng)的信任約簡(jiǎn)和似然約簡(jiǎn).
關(guān)鍵詞IVF; IVFD; 信息系統(tǒng); RD; 信任約簡(jiǎn); 似然約簡(jiǎn)
中圖分類(lèi)號(hào)TP18文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04006606
粗糙集理論[12] 和DS 證據(jù)理論[3]都是處理不確定性問(wèn)題的數(shù)學(xué)工具, 它們之間有密切關(guān)糸. 近似空間對(duì)應(yīng)信任結(jié)構(gòu), 而信任函數(shù)和似然函數(shù)由信任結(jié)構(gòu)產(chǎn)生, 從而基于近似空間的下近似算子和上近似算子對(duì)應(yīng)信任函數(shù)和似然函數(shù)[46]. 因此, DS 證據(jù)理論可用于研究信息系統(tǒng)中的屬性約簡(jiǎn)問(wèn)題[79]. 考慮到信息系統(tǒng)的屬性值可能是語(yǔ)言或映射(例如IVF集), 運(yùn)用粗糙集理論處理時(shí), 會(huì)把這樣的值近似地按數(shù)字或符號(hào)來(lái)處理, 而忽略一些重要信息如“偏序”、“隸屬度”, 這意味著僅運(yùn)用粗糙集理論不能有效地處理這類(lèi)不確定性問(wèn)題. 本文推廣了DS 證據(jù)理論, 運(yùn)用粗糙集理論和推廣的DS 證據(jù)理論處理IVFD 信息系統(tǒng)的屬性約簡(jiǎn)問(wèn)題.
1基本概念
1.1IVF集
1.2IVFD 信息系統(tǒng)
2DS 證據(jù)理論的推廣
2.1必然性IVF測(cè)度和可能性IVF測(cè)度
2.2IVF信任函數(shù)和IVF似然函數(shù)
3IVFD 信息系統(tǒng)中的屬性約簡(jiǎn)
3.2信任約簡(jiǎn)和似然約簡(jiǎn)
參考文獻(xiàn):
[1]〖ZK(#〗PAWLAK Z. Rough sets: theoretical aspects of reasoning about data [M]. Boston: Kluwer Academic Publishers, 1991.
[2]張文修, 吳偉志, 梁吉業(yè), 等. 粗糙集理論與方法[M]. 北京:中國(guó)科技出版社, 2001.
[3]SHAFER G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976.
[4]WU W, LEUNG Y, MI J. On generalized fuzzy belief functions in infinite spaces [J]. IEEE Trans Fuzzy Syst, 2009,17(2):385397.
[5]WU W, LEUNG Y, ZHANG W. Connections between rough set theory and DempsterShafer theory of evidence [J]. Int J General Syst, 2002,31(4):405430.
[6]YAO Y Y. Interpretations of belief functions in the theory of rough sets [J]. Inf Sci,1998,104(1):81106.
[7]WU W. Attribute reduction based on evidence theory in incomplete decision systems [J]. Inf Sci, 2008,178(12):13551371.
[8]WU W, ZHANG M, LI H, et al. Knowledge reduction in random information systems via DempsterShafer theory of evidence [J]. Inf Sci, 2005,174(34):143164.
[9]ZHANG M, XU L, ZHANG W, et al. A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory [J]. Expert Syst Appl, 2003, 20(4):298304.〖ZK)〗
[10]〖ZK(#〗CHENG Y, MIAO D. Rule extraction based on granulation order in information system [J]. Expert Syst Appl, 2011,38(5):1224912261.
[11]喻光繼. 關(guān)于IVF近似空間的拓?fù)浣Y(jié)構(gòu)[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2013,36(6):2125.
[12]SUN B, GONG Z, CHEN D. Fuzzy rough set theory for the intervalvalued fuzzy information systems [J]. Inf Sci, 2008,178(6):27942815.
[13] 高寧華. 區(qū)間值模糊決策信息系統(tǒng)的屬性約簡(jiǎn)及其相關(guān)問(wèn)題[M]. 南寧: 廣西民族大學(xué), 2013.
[14]ZADEH L A. Probability measures of fuzzy events [J]. J Math Anal Appl, 1968,23(4):421427.
[15]DUBOIS D, PRADE H. Possibility theory [M]. New York: Plenum Press, 1988.