• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      甘油醛-3-磷酸脫氫酶功能的研究進(jìn)展

      2013-09-20 09:08:54付國(guó)良黃曉紅
      Biophysics Reports 2013年3期
      關(guān)鍵詞:端粒微管糖酵解

      付國(guó)良, 黃曉紅

      福建師范大學(xué)生命科學(xué)學(xué)院,福建省發(fā)育與神經(jīng)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,福州350108

      引 言

      甘油醛-3-磷酸脫氫酶 (glyceraldehyde-3-phosphate dehydrogenase,GAPDH)是糖酵解途徑中的一個(gè)關(guān)鍵酶,與ATP的合成密切相關(guān)。它廣泛存在于眾多生物體中,并且具有高度種屬保守序列[1,2]。GAPDH幾乎在所有組織中都高水平表達(dá),且通常在同種組織或細(xì)胞中的表達(dá)量相對(duì)恒定,因此,常被用作研究其他基因和蛋白表達(dá)的內(nèi)參照[3]。但近年來,越來越多的研究發(fā)現(xiàn),在某些作用因素下,尤其是在某些腫瘤及特定因素引發(fā)的細(xì)胞凋亡過程中,GAPDH的表達(dá)量并不恒定,其mRNA水平和蛋白質(zhì)水平會(huì)隨著各種刺激而變化[4,5]。此外,最近的研究還表明,GAPDH不是一個(gè)純粹簡(jiǎn)單的糖酵解酶,它不僅參與能量代謝,還具有許多其他生理功能,是一種參與許多亞細(xì)胞水平活動(dòng)的多功能蛋白質(zhì)。

      GAPDH的結(jié)構(gòu)特點(diǎn)

      GAPDH分子一般是由4個(gè)相同亞基組成的四聚體,但不同種屬的GAPDH亞基所含氨基酸殘基數(shù)略有差異,從330到350個(gè)不等。每個(gè)亞基可以分為兩個(gè)結(jié)構(gòu)域:催化結(jié)構(gòu)域和輔酶結(jié)合結(jié)構(gòu)域。兩個(gè)結(jié)構(gòu)域在結(jié)構(gòu)上有一些共同特點(diǎn),它們中間都為β折疊層,兩側(cè)分布著一些α螺旋。但兩者也存在一定的差異,如催化結(jié)構(gòu)域的β折疊為反平行式,而輔酶結(jié)合結(jié)構(gòu)域的β折疊主要為平行式,且催化結(jié)構(gòu)域的α螺旋主要分布在β折疊層的一側(cè),而輔酶結(jié)合結(jié)構(gòu)域兩側(cè)都有大量的α螺旋分布。在糖酵解過程中,這兩個(gè)結(jié)構(gòu)域分別對(duì)應(yīng)結(jié)合3-磷酸甘油醛和NAD+,從而催化3-磷酸甘油醛轉(zhuǎn)變?yōu)?,3-二磷酸甘油酸,同時(shí)以NAD+為受氫體生成NADH。

      GAPDH活性中心的Cys149處于β折疊與α螺旋的連結(jié)區(qū),在已知三維結(jié)構(gòu)的幾個(gè)種屬的GAPDH中,活性中心附近部位的氨基酸序列完全相同,該區(qū)域結(jié)構(gòu)穩(wěn)定,說明不同種屬的GAPDH中具有高度保守序列。在GAPDH分子中心與兩個(gè)亞基的接觸面存在S-loop區(qū),該區(qū)域是一段二級(jí)結(jié)構(gòu)含量較低的自由卷曲,它對(duì)整個(gè)分子結(jié)構(gòu)的穩(wěn)定性至關(guān)重要[6~9]。

      GAPDH的功能

      糖酵解酶活性

      催化的反應(yīng)

      在糖酵解過程中,GAPDH主要催化3-磷酸甘油醛轉(zhuǎn)變?yōu)?,3-二磷酸甘油酸,此過程需要NAD+和無機(jī)磷酸 (Pi)的參與。在GAPDH的催化下,3-磷酸甘油醛脫氫氧化,同時(shí)磷酸化,產(chǎn)生含1個(gè)高能磷酸鍵的1,3-二磷酸甘油酸,反應(yīng)中脫下的2個(gè)H離子由GAPDH的輔酶NAD+接受,生成NADH+H+。這是一個(gè)非常重要的反應(yīng),因?yàn)樵?-磷酸甘油醛的醛基氧化為羧基時(shí),會(huì)將氧化過程產(chǎn)生的能量貯存到ATP分子中[10]。

      催化機(jī)制

      GAPDH酶活性中心部位的半胱氨酸含有游離巰基。巰基是一個(gè)親核體,它會(huì)向帶電正性的原子進(jìn)攻,而底物3-磷酸甘油醛分子中的羰基碳原子帶電正性,因此,巰基會(huì)以解離的形式進(jìn)攻該羰基碳原子。在此過程中,酶分子上與該半胱氨酸鄰近的帶有孤電子對(duì)的組氨酸咪唑環(huán)上的N原子先向巰基上的H親核進(jìn)攻,使巰基形成-S:形式;然后,-S:向羰基碳原子進(jìn)攻,從而形成一個(gè)與酶相連的半縮硫醛,這時(shí),與原來羰基碳相連的氫原子會(huì)以氫負(fù)離子 (:H-)的形式離開,并與輔酶NAD+結(jié)合,于是形成了還原型的NADH和硫酯,同時(shí)有一個(gè)H+被釋放出來。NADH一旦形成就立即脫離酶分子,同時(shí),酶又結(jié)合上另一氧化型的NAD+。隨后,無機(jī)磷酸分子 (Pi)親核攻擊硫酯,使硫酯鍵斷裂,形成游離的1,3-二磷酸甘油酸,同時(shí),GAPDH恢復(fù)原狀形成游離的酶 (圖1)[10]。

      催化微管聚合

      微管是一種具有極性的細(xì)胞骨架,由微管蛋白聚合而成,它對(duì)于維持細(xì)胞形態(tài)、輔助細(xì)胞內(nèi)運(yùn)輸及細(xì)胞運(yùn)動(dòng)都至關(guān)重要。研究表明,GAPDH能夠促進(jìn)微管蛋白聚合成微管。Launay等[11]從人類結(jié)腸癌細(xì)胞系中分離出一種結(jié)合微管蛋白聚合物的蛋白質(zhì),通過聚丙烯酰胺凝膠電泳鑒定它的分子量為35 kDa,再通過微管蛋白制備的親和柱純化該蛋白,并通過酶活性和免疫印跡實(shí)驗(yàn),確定該蛋白為GAPDH。在體外微管蛋白聚合實(shí)驗(yàn)中,發(fā)現(xiàn)純化的該蛋白能引起明顯的濁度增加,電子顯微鏡觀察顯示它可加速微管蛋白成束。Kumagai等[12]的研究也有相同的發(fā)現(xiàn),他們從豬腦中分離出一個(gè)與微管蛋白結(jié)合的35 kDa蛋白,發(fā)現(xiàn)它能夠催化微管聚合,而Ca2+和秋水仙素能夠抑制該蛋白對(duì)微管的聚合作用,最終鑒定該蛋白為GAPDH。他們還研究發(fā)現(xiàn),2 mmol/L的ATP能夠?qū)APDH從微管蛋白制備的層析柱上洗脫下來,表明ATP能夠抑制GAPDH與微管蛋白的結(jié)合,并抑制GAPDH對(duì)微管的聚合,提示不與微管蛋白結(jié)合的GAPDH不具有促進(jìn)微管聚合的作用。

      圖1 甘油醛-3-磷酸脫氫酶在糖酵解途徑中的反應(yīng)機(jī)制 ①酶與底物3-磷酸甘油醛結(jié)合形成酶-底物復(fù)合物,同時(shí),酶活性部位帶有孤電子對(duì)的組氨酸咪唑環(huán)上的N原子向酶活性中心部位的半胱氨酸游離巰基上的H親核進(jìn)攻;②巰基形成-S:形式,然后,-S:向底物羰基碳原子進(jìn)攻,從而形成一個(gè)與酶相連的半縮硫醛;③與原來羰基碳相連的氫原子以氫負(fù)離子 (:H-)的形式離開,并與輔酶NAD+結(jié)合,于是形成了還原型的NADH和硫酯;④NADH一旦形成就立即脫離酶分子,同時(shí),酶又結(jié)合另一氧化型的NAD+;⑤無機(jī)磷酸分子 (Pi)親核攻擊硫酯,使硫酯鍵斷裂形成游離的1,3-二磷酸甘油酸,而GAPDH恢復(fù)原狀形成游離的酶Fig.1 The reaction mechanism of GAPDH in glycolytic pathway ①GAPDH combines with the substrate,glyceraldehyde-3-phosphate,to form enzyme-substrate complex.Meanwhile,equipped with unpaired electron on enzymatic active site,the nitrogen atom on the imidazole ring of histidine residue launches nucleophilic attack to the hydrogen atom of free sulfhydryl on the cysteine residue of enzyme activity center part;②Sulfhydryl sets up the-S:form,which then attacks the substrate,carbonyl carbon atom,to form enzyme-hemithioacetal intermediate;③The hydrogen atom leaves the carbonyl carbon atoms,which it previously connects with,in hydrogen anion(:H-)form,and then combines with the coenzymes NAD+to form the reduced NADH and thioester;④Once NADH forms,it immediately leaves the enzyme molecule.At the meantime,the enzyme combines with another oxidation type of NAD+;⑤Inorganic phosphate molecule(Pi)makes nucleophilic attack to thioester.As a consequence,the thioester bond is fractured to rebuild free 1,3-bisphosphoglycerate,and GAPDH retrieve to its initial form without substrates

      Somers等[13]通過測(cè)定游離酶在結(jié)合物平衡體系中的濃度來分析GAPDH與微管的結(jié)合,發(fā)現(xiàn)在低離子強(qiáng)度 (0.03 mol/L)時(shí),結(jié)合率非常高;而增加離子強(qiáng)度至0.1 mol/L時(shí),結(jié)合常數(shù)會(huì)明顯降低。進(jìn)一步的研究發(fā)現(xiàn),GAPDH主要是通過與微管蛋白C端的結(jié)合來加速微管聚合的。此外,研究還發(fā)現(xiàn),小GTP酶Rab2能夠刺激蛋白激酶Cι/λ(protein kinase Cι/λ,PKCι/λ) 和 GAPDH募集到膜上,隨后,PKCι/λ 磷酸化 GAPDH,磷酸化的 GAPDH高度親和微管蛋白,能夠促進(jìn)微管蛋白聚合到膜上,進(jìn)而催化微管聚合[14]。

      參與蛋白磷酸化修飾

      磷酸化是指在蛋白質(zhì)或其他類型分子上加入一個(gè)磷酸基團(tuán)的過程,磷酸化作用在生物學(xué)上具有非常重要的意義,許多蛋白質(zhì)需要經(jīng)過磷酸化修飾后才能發(fā)揮其作用。研究表明,GAPDH既能夠被其他蛋白激酶磷酸化,又可以磷酸化其他蛋白質(zhì)。在由Rab2所介導(dǎo)的來自管狀小泡叢 (vesicular tubular clusters,VTCs)的逆向運(yùn)輸中,GAPDH是必要的,此過程中,GAPDH的第41位酪氨酸會(huì)被Src激酶磷酸化。研究者用苯丙氨酸取代GAPDH的第41位酪氨酸 (GAPDH Y41F),而Src激酶沒有能力去磷酸化純化了的GAPDH Y41F,結(jié)果發(fā)現(xiàn),GAPDH Y41F阻礙了從內(nèi)質(zhì)網(wǎng)至高爾基體的物質(zhì)運(yùn)輸,從而表明第41位酪氨酸的磷酸化對(duì)于GAPDH在早期分泌途徑中的活性是必要的,而這種對(duì)于運(yùn)輸?shù)淖璧K是因?yàn)闇p少了非典型蛋白激酶Cι/λ結(jié)合到GAPDH Y41F上,從而減少了β-外殼蛋白與VTC的結(jié)合,以及隨后Rab2介導(dǎo)的逆向囊泡的形成。通過此實(shí)驗(yàn)可以說明,GAPDH的磷酸化對(duì)于其行使生物功能具有非常重要的意義[15]。而在研究GAPDH催化微管聚合的實(shí)驗(yàn)中也有相同的發(fā)現(xiàn),即在Rab2促進(jìn)VTCs形成囊泡的過程中,GAPDH必須被磷酸化后才能促進(jìn)微管結(jié)合到囊泡的膜上,在此過程中,Rab2先刺激PKCι/λ和GAPDH募集到VTCs,隨后,PKCι/λ磷酸化GAPDH,最終在早期分泌途徑中影響微管蛋白的聚合[14]。同樣,Akt2激酶磷酸化GAPDH的Thr237,并且減少它的核轉(zhuǎn)運(yùn),這對(duì)于GAPDH介導(dǎo)的細(xì)胞凋亡也是一個(gè)必要的步驟[16]。許多研究表明,GAPDH可以被多種磷酸激酶磷酸化修飾,而這些磷酸化修飾對(duì)于GAPDH行使其特定的生物功能都是必要的。

      GAPDH還能磷酸化其他蛋白質(zhì),從而表現(xiàn)出磷酸激酶活性。研究發(fā)現(xiàn),當(dāng)用ATP和GAPDH預(yù)處理培養(yǎng)的小腦神經(jīng)細(xì)胞黏著分子L1時(shí),L1會(huì)被磷酸化,隨后導(dǎo)致軸突生長(zhǎng)的加強(qiáng);而當(dāng)堿性磷酸酶存在時(shí),依賴L1的軸突生長(zhǎng)會(huì)減弱。再者,在ATP存在時(shí),添加GAPDH抗體到培養(yǎng)的小腦神經(jīng)細(xì)胞中,會(huì)抑制依賴L1的軸突生長(zhǎng)。從而表明GAPDH磷酸化L1在調(diào)節(jié)L1介導(dǎo)的軸突生長(zhǎng)方面非常重要[17]。研究還發(fā)現(xiàn),GAPDH能夠磷酸化p53的第46位絲氨酸,從而激活GAPDH介導(dǎo)的細(xì)胞凋亡途徑[18]。此外,研究還發(fā)現(xiàn),許多磷酸激酶需要與GAPDH結(jié)合才能表現(xiàn)出其激酶活性,如Nm23蛋白本身并沒有激酶活性,只有與GAPDH結(jié)合成二聚體,才能夠轉(zhuǎn)移磷酸基團(tuán)[19]。另有報(bào)道稱GAPDH還能被自身磷酸化,但是磷酸化的具體意義尚未明確[20]。

      參與膜融合和膜轉(zhuǎn)運(yùn)

      膜融合是細(xì)胞執(zhí)行功能的首要條件,而膜轉(zhuǎn)運(yùn)對(duì)于細(xì)胞的存活也至關(guān)重要,細(xì)胞內(nèi)的許多物質(zhì)運(yùn)輸過程都是通過膜轉(zhuǎn)運(yùn)來進(jìn)行的,如內(nèi)質(zhì)網(wǎng)和高爾基體間的囊泡運(yùn)輸過程等。研究表明GAPDH能夠促進(jìn)膜融合,并參與膜轉(zhuǎn)運(yùn)過程。Morero等[21]運(yùn)用5種不同的方法研究了蛋白在膜融合中的作用,結(jié)果發(fā)現(xiàn)溶菌酶、L-乳酸脫氫酶及GAPDH都能夠催化膜的融合。而且在研究的蛋白中,兔肌GAPDH是最有效的催化膜融合的蛋白質(zhì),0.1μmol/L的兔肌GAPDH就足以誘導(dǎo)磷脂膜泡的融合。進(jìn)一步的研究發(fā)現(xiàn),GAPDH催化膜的融合依賴于GTP、Rab、PKC、ATP及微管蛋白等的調(diào)節(jié),在這個(gè)過程中,微管蛋白起抑制GAPDH催化膜融合的作用。首先,GTP激活Rab募集GAPDH到微管軌道的膜泡上;隨后,PKC磷酸化GAPDH,從而改變GAPDH與微管蛋白的相互作用,使得微管蛋白的抑制作用解除;之后,磷酸化的GAPDH催化膜泡融合到靶膜上。膜融合完成后,磷酸化的GAPDH在ATP及分子伴侶的作用下從微管中釋放,并在磷酸酶的作用下脫磷酸化為原來的狀態(tài) (圖 2)[22~24]。

      圖2 GAPDH催化膜融合的機(jī)制 ①GTP激活Rab募集GAPDH到微管軌道的膜泡上,此時(shí),GAPDH催化膜融合的活性受到微管蛋白的抑制;②PKC磷酸化GAPDH,從而改變GAPDH與微管蛋白的相互作用,使得微管蛋白的抑制作用解除;③磷酸化的GAPDH催化膜泡融合到靶膜上;④膜融合完成后,磷酸化的GAPDH在ATP及分子伴侶的作用下從微管中釋放;⑤磷酸化的GAPDH在磷酸酶的作用下脫磷酸化為原來的狀態(tài)Fig.2 The mechanism of GAPDH-catalyzed membrane fusion①The GTP-activated Rab recruits GAPDH to vesicles on microtubule tracks.However,at this phase,the capacity of GAPDH in catalyzing membrane fusion is inhibited by tubulin;②Phosphorylation caused by PKC alters the interactions between tubulin and GAPDH,leading to the removal of tubulin inhibition on GAPDH;③Phosphorylated GAPDH catalyzes vesicles to fuse with the target membrane;④After membrane fusion is completed,GAPDH is released from the microtubules by ATP and chaperone proteins;⑤Dephosphorylated by phosphatase,GAPDH recovers to its initial state

      Bryksin等[25]在研究高爾基體到內(nèi)質(zhì)網(wǎng)的囊泡運(yùn)輸時(shí),發(fā)現(xiàn)GAPDH在此過程中發(fā)揮著重要作用。而Tisdale等[26]的研究則表明此過程與GAPDH的糖酵解活性無關(guān),他們將GAPDH活性中心的Cys149替換成Gly149,結(jié)果發(fā)現(xiàn),被PKCι/λ磷酸化的突變蛋白GAPDH(C149G)能夠直接與Rab2結(jié)合,然后參與膜融合和膜轉(zhuǎn)運(yùn)過程,而該突變蛋白是沒有糖酵解活性的,從而說明GAPDH催化膜轉(zhuǎn)運(yùn)的過程與其糖酵解活性無關(guān)。此外,研究還發(fā)現(xiàn),利用抗體阻礙GAPDH的融合活性位點(diǎn),會(huì)導(dǎo)致核膜組裝失敗,說明GAPDH也能夠促進(jìn)核膜融合。

      促進(jìn)細(xì)胞凋亡

      細(xì)胞凋亡是細(xì)胞的一種基本生物學(xué)現(xiàn)象,在多細(xì)胞生物去除不需要的或異常的細(xì)胞中起著必要的作用,它涉及一系列基因的激活、表達(dá)及調(diào)控。許多研究表明,GAPDH能夠促進(jìn)細(xì)胞凋亡。Sunaga等[27]在不換培養(yǎng)基但定期補(bǔ)加葡萄糖的情況下,進(jìn)行了大鼠小腦顆粒神經(jīng)元的體外培養(yǎng),發(fā)現(xiàn)神經(jīng)元不斷凋亡,進(jìn)一步的研究發(fā)現(xiàn)細(xì)胞凋亡時(shí)伴有GAPDH基因的過表達(dá)。Ishitani等[28]發(fā)現(xiàn),GAPDH的反義寡聚脫氧核苷酸片段不僅能夠抑制老化神經(jīng)元GAPDH基因的表達(dá),而且能夠促進(jìn)神經(jīng)元的存活。Guan等[29]的研究也表明,用重組人類紅細(xì)胞生成素處理大鼠,能夠通過抑制細(xì)胞核中GAPDH的過表達(dá)來降低神經(jīng)元的凋亡數(shù)量。以上結(jié)果表明,GAPDH的過表達(dá)會(huì)促進(jìn)細(xì)胞的凋亡過程,且研究表明,GAPDH促進(jìn)細(xì)胞凋亡伴隨著其在細(xì)胞中位置的改變,它會(huì)從細(xì)胞質(zhì)中轉(zhuǎn)移到細(xì)胞核或者線粒體中。NO刺激能明顯增加GAPDH的核轉(zhuǎn)位,并通過與E3泛素連接酶Siah1結(jié)合,隨后激活p53,從而誘導(dǎo)細(xì)胞凋亡[30,31]。Tarze等[32]則研究發(fā)現(xiàn),GAPDH與線粒體膜蛋白VDAC-1的結(jié)合,能夠觸發(fā)線粒體內(nèi)細(xì)胞色素C和凋亡誘導(dǎo)因子等的釋放,從而誘發(fā)凋亡。

      最新研究又表明,GAPDH發(fā)生核轉(zhuǎn)位后,其糖酵解酶活性會(huì)降低。Saunders等[33]用阿糖胞苷誘導(dǎo)神經(jīng)元凋亡,發(fā)現(xiàn)GAPDH發(fā)生核轉(zhuǎn)位后,細(xì)胞核GAPDH糖酵解酶的活性下降了60%,推測(cè)細(xì)胞通過降低GAPDH的糖酵解酶活性,使能量代謝發(fā)生障礙,從而誘導(dǎo)細(xì)胞凋亡。Nakazawa等[34]的研究也支持上述結(jié)論,他們用高效GAPDH抑制劑康寧吉克酸處理神經(jīng)元細(xì)胞株NG108-15,發(fā)現(xiàn)抑制GAPDH糖酵解酶活性可以誘導(dǎo)NG108-15細(xì)胞的凋亡,且GAPDH糖酵解活性的下降發(fā)生在NG108-15細(xì)胞凋亡之前。

      調(diào)節(jié)蛋白質(zhì)的表達(dá)

      蛋白質(zhì)的表達(dá)過程十分復(fù)雜,幾乎涉及細(xì)胞內(nèi)所有種類的RNA和幾十種蛋白質(zhì)因子。研究發(fā)現(xiàn),GAPDH能夠通過促進(jìn)tRNA的出核和調(diào)節(jié)mRNA的穩(wěn)定性來調(diào)節(jié)蛋白質(zhì)的表達(dá)。Singh等[35]將單堿基突變 (G57→U57)的甲硫氨酸t(yī)RNA顯微注射入蛙卵母細(xì)胞中,發(fā)現(xiàn)突變的tRNA出核能力減弱,進(jìn)一步研究表明主要原因是影響了tRNA與一個(gè)相對(duì)分子質(zhì)量為37 kDa的蛋白質(zhì)的結(jié)合,后證實(shí)該蛋白為GAPDH;通過免疫沉淀實(shí)驗(yàn)也確證了GAPDH/tRNA復(fù)合物的存在,且5μmol/L的NAD+能夠完全抑制GAPDH/tRNA復(fù)合物的形成,同時(shí),tRNA出核也受到抑制,說明GAPDH能夠促進(jìn)tRNA的出核,從而調(diào)節(jié)蛋白質(zhì)的表達(dá)。GAPDH還能夠通過與mRNA非編碼區(qū)中富含AU的序列結(jié)合來調(diào)節(jié)mRNA的穩(wěn)定性[36],從而對(duì)蛋白質(zhì)的表達(dá)進(jìn)行轉(zhuǎn)錄后調(diào)控。在正常細(xì)胞中,GAPDH是mRNA的減穩(wěn)蛋白,它會(huì)破壞某些蛋白mRNA的結(jié)構(gòu)、促進(jìn)這些蛋白mRNA的降解,從而減少相關(guān)蛋白的生物合成,以維持細(xì)胞內(nèi)蛋白水平的平衡[37];而在一些腫瘤細(xì)胞中,GAPDH卻能夠增加某些蛋白mRNA的穩(wěn)定性。如GAPDH對(duì)于維持卵巢癌細(xì)胞中集落刺激因子1(colony-stimulating factor-1,CSF-1)mRNA的穩(wěn)定及CSF-1的表達(dá)是非常重要的,利用RNA干擾技術(shù)下調(diào)GAPDH的表達(dá),會(huì)降低細(xì)胞內(nèi)CSF-1的mRNA穩(wěn)定性及蛋白水平[38,39]。由此可以看出,GAPDH與不同蛋白的mRNA結(jié)合,會(huì)導(dǎo)致兩種完全不同的結(jié)果,而產(chǎn)生這種結(jié)果的原因暫時(shí)還不明確,可能是因?yàn)椴煌膍RNA具有不同的下游調(diào)控因子。

      此外,研究還發(fā)現(xiàn)組蛋白的表達(dá)也受到GAPDH的調(diào)節(jié)。組蛋白是存在于染色體內(nèi)與DNA結(jié)合的堿性蛋白質(zhì),對(duì)染色體的結(jié)構(gòu)起著非常重要的作用。早期研究發(fā)現(xiàn),組蛋白2B(histone 2B,H2B)基因S期的轉(zhuǎn)錄依賴于組蛋白八聚體轉(zhuǎn)錄因子1(octamer-binding transcription factor-1,Oct-1)和 S期 Oct-1助激活劑 (Oct-1 co-activator in S-phase,OCA-S)的調(diào)節(jié),進(jìn)一步研究發(fā)現(xiàn)OCA-S主要由GAPDH和LDH組成,而OCA-S中的GAPDH能與Oct-1直接結(jié)合,表現(xiàn)出有效的反式激活潛力,復(fù)合物會(huì)在S期被選擇性募集到H2B的啟動(dòng)子上,激活H2B的轉(zhuǎn)錄,從而調(diào)節(jié)H2B的表達(dá)。而利用RNAi技術(shù)降低GAPDH的表達(dá)或是利用免疫沉淀去除GAPDH,會(huì)導(dǎo)致H2B基因轉(zhuǎn)錄水平的降低或停止[40~42]。

      參與DNA損傷修復(fù)

      DNA存儲(chǔ)著生物體賴以生存和繁衍的遺傳信息,因此,維護(hù)DNA分子的完整性對(duì)細(xì)胞至關(guān)緊要,研究表明GAPDH在DNA損傷修復(fù)中具有重要的作用。許多核苷酸類似物都能夠干擾DNA復(fù)制,從而造成DNA損傷。研究發(fā)現(xiàn),GAPDH具有識(shí)別這些核苷酸類似物的能力,GAPDH能夠連同其他蛋白一起,與帶有硫鳥嘌呤、阿糖胞苷、5-氟尿嘌呤或其它錯(cuò)配堿基的DNA雙鏈結(jié)合,形成DNA-蛋白復(fù)合物,從而啟動(dòng)DNA修復(fù)反應(yīng),而GAPDH在此過程中主要起到DNA修復(fù)識(shí)別傳感器的功能[43]。研究還發(fā)現(xiàn)GAPDH具有尿嘧啶-DNA糖苷酶 (uracil DNA-glycosylase,UDG)活性,而UDG能夠修復(fù)胞嘧啶脫氨為尿嘧啶的突變反應(yīng)。GAPDH還能夠通過還原脫嘌呤/嘧啶核酸內(nèi)切酶1(apurinic/apyrimidinic endonuclease 1,APE1)參與DNA的損傷修復(fù),APE1能夠切除DNA鏈的脫嘌呤和脫嘧啶位點(diǎn),為DNA損傷修復(fù)做準(zhǔn)備[44],它在細(xì)胞內(nèi)存在還原型和氧化型兩種形式,而氧化型的APE1是不具有催化活性的,氧化型APE1的過多存在會(huì)危及到DNA的完整性及基因轉(zhuǎn)錄調(diào)控,研究發(fā)現(xiàn)GAPDH能夠與APE1相互作用,使氧化型的APE1轉(zhuǎn)變?yōu)檫€原形式,從而恢復(fù)APE1的核酸內(nèi)切酶活性[45]。

      此外,GAPDH還可以維持端粒的長(zhǎng)度,從而提高DNA的穩(wěn)定性。研究發(fā)現(xiàn),GAPDH能夠與端粒DNA特異性結(jié)合,從而阻止端粒變短。Sundararaj等[46]用神經(jīng)酰胺處理人類肺癌細(xì)胞,結(jié)果導(dǎo)致其端粒長(zhǎng)度快速變短,同時(shí)會(huì)抑制端粒與一個(gè)蛋白的結(jié)合,后確定該蛋白為GAPDH。進(jìn)一步研究發(fā)現(xiàn),干擾GAPDH的表達(dá)會(huì)使端粒快速變短,而過表達(dá)GAPDH又能夠阻止神經(jīng)酰胺等藥物對(duì)端粒造成的損傷,從而說明GAPDH具有維持端粒長(zhǎng)度的作用。而單堿基替換實(shí)驗(yàn)研究則表明,端粒DNA重復(fù)序列TTAGGG中的 T1、G5和G6堿基,對(duì)于GAPDH與端粒的結(jié)合是必要的,且端粒DNA與GAPDH四聚體結(jié)合的摩爾比為 2∶1[47]。

      作為轉(zhuǎn)鐵蛋白受體

      鐵是生物體內(nèi)一種非常重要的微量元素,參與許多生理生化過程,細(xì)胞主要通過轉(zhuǎn)鐵蛋白受體 (transferrin receptor,TfR)來捕獲轉(zhuǎn)鐵蛋白 (transferrin,Tf)中攝取的鐵。研究表明GAPDH能夠作為TfR來參與鐵代謝過程。Tanaka等[48]在研究布氏錐蟲的鐵代謝過程時(shí),發(fā)現(xiàn)布氏錐蟲的某種分子量為40 kDa的蛋白能夠結(jié)合到牛乳鐵蛋白 (Tf家族中的一種)上,且人乳鐵蛋白、牛轉(zhuǎn)鐵蛋白及卵轉(zhuǎn)鐵蛋白都能與布氏錐蟲的該種蛋白結(jié)合,通過N-末端序列鑒定,確定該蛋白為GAPDH,從而說明GAPDH能夠作為TfR參與鐵代謝過程。Raje等[49]對(duì)巨噬細(xì)胞的研究也支持該結(jié)論,他們研究發(fā)現(xiàn)人和鼠巨噬細(xì)胞表面的GAPDH能夠與Tf相互作用,并結(jié)合形成GAPDH/Tf復(fù)合物,該復(fù)合物隨后會(huì)內(nèi)在化進(jìn)入胞內(nèi)體中,參與鐵代謝過程。

      進(jìn)一步研究表明,GAPDH/Tf復(fù)合物攝取鐵是一個(gè)低親和、高容量且可循環(huán)的過程,依賴GAPDH作為TfR獲取鐵的途徑有3種,包括網(wǎng)格蛋白介導(dǎo)的內(nèi)吞作用、脂筏內(nèi)吞作用及大胞飲作用[50]。而且,GAPDH作為轉(zhuǎn)鐵蛋白受體是基于GAPDH在細(xì)胞膜表面的定位來實(shí)現(xiàn)的,研究發(fā)現(xiàn)這種定位依賴于鐵離子的濃度,在鐵損耗時(shí),隨著結(jié)合到細(xì)胞表面Tf的增加,細(xì)胞表面GAPDH的表達(dá)量也會(huì)增加,然而,其他TfR的表達(dá)量則不變,這說明在鐵損耗時(shí),細(xì)胞更傾向于把GAPDH作為TfR來獲取Tf[51]。

      問題與展望

      近年來,隨著對(duì)GAPDH功能研究的不斷深入,發(fā)現(xiàn)GAPDH并不僅僅是一個(gè)純粹簡(jiǎn)單的糖酵解酶,而是一個(gè)參與許多亞細(xì)胞水平活動(dòng)的多功能蛋白。但是,目前對(duì)于GAPDH某些生物功能的具體機(jī)制尚不完全清楚,如膜轉(zhuǎn)運(yùn)過程中GAPDH的具體作用、GAPDH怎樣保護(hù)端粒不受損傷、GAPDH作為轉(zhuǎn)鐵蛋白受體怎樣參與鐵代謝過程、GAPDH與不同蛋白mRNA結(jié)合為什么會(huì)對(duì)mRNA的穩(wěn)定性造成兩種完全不同的結(jié)果、GAPDH在多個(gè)不同的生理途徑中發(fā)揮作用到底有沒有共同的根本基礎(chǔ)等,這些問題都有待進(jìn)一步的研究來闡明其中的奧秘。

      此外,研究還發(fā)現(xiàn)GAPDH與許多疾病有關(guān),如在研究GAPDH的磷酸化活性時(shí),發(fā)現(xiàn)GAPDH可以磷酸化乙肝病毒,調(diào)節(jié)其致病性[52];而在研究GAPDH調(diào)節(jié)蛋白表達(dá)時(shí),發(fā)現(xiàn)GAPDH可延長(zhǎng)一些與腫瘤相關(guān)的細(xì)胞因子mRNA的半衰期,最終調(diào)控腫瘤細(xì)胞生長(zhǎng)[38,39];而且研究還發(fā)現(xiàn),一些病原蟲只能依賴糖酵解途徑獲得能量,而利用抑制劑抑制GAPDH的活性或利用RNAi技術(shù)降低GAPDH的表達(dá)水平,對(duì)這些病原蟲是致死的[53]。這些發(fā)現(xiàn)都深刻地說明了GAPDH在參與各種生理活動(dòng)中的重要性,我們有理由相信,隨著研究的不斷深入和技術(shù)的不斷進(jìn)步,GAPDH的一些新功能還會(huì)相繼被發(fā)現(xiàn),而它的功能機(jī)制也將會(huì)不斷被闡明。

      1.Zhang XH,Rao XL,Shi HT,Li RJ,Lu YT.Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice.Plant Cell Tiss Organ Cult,2011,107(1):1~11

      2. Kubo H. Cloning and expression analysis of putative glyceraldehyde-3-phosphate dehydrogenase genes in Pilobolus crystallinus.Mycoscience,2011,52(2):99~106

      3.Wu YH,Wu M,He GW,Zhang X,Li WG,Gao Y,Li ZH,Wang ZY, Zhang CG. Glyceraldehyde-3-phosphate dehydrogenase:A universal internal control for Western blots in prokaryotic and eukaryotic cells.Anal Biochem,2012,423(1):15~22

      4.Du ZX,Wang HQ,Zhang HY,Gao DX.Involvement of glyceraldehyde-3-phosphate dehydrogenase in tumor necrosis factor-related apoptosis-inducing ligand-mediated death of thyroid cancer cells.Endocrinology,2007,148(9):4352~4361

      5. Ishitani R,Sunaga K,Tanaka M,Aishita H,Chuang DM. Overexpression of glyceraldehyde-3-phosphate dehydrogenase is involved in low K+-induced apoptosis but not necrosis of cultured cerebellar granule cells. Mol Pharmacol,1997,51(4):542~550

      6.Mukherjee S,Dutta D,Saha B,Das AK.Crystal structure of glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus MRSA252 provides novel insights into substrate binding and catalytic mechanism.J Mol Biol,2010,401(5):949~968

      7. Robien MA,Bosch J,Buckner FS,Van Voorhis WCE,Worthey EA,Myler P,Mehlin C,Boni EE,Kalyuzhniy O,Anderson L,Lauricella A,Gulde S,Luft JR,DeTitta G,Caruthers JM,Hodgson KO,Soltis M,Zucker F,Verlinde CLMJ,Merritt EA,Schoenfeld LW,Hol WGJ.Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25?resolution reveals intriguing extra electron density in the active site.Proteins:Struct,Funct,Bioinform,2006,62(3):570~577

      8.Frayne J,Taylor A,Cameron G,Hadfield AT.Structure of insoluble rat sperm glyceraldehyde-3-phosphate dehydrogenase(GAPDH)via heterotetramer formation with Escherichia coli GAPDH reveals target for contraceptive design.J Biol Chem,2009,284(34):22703~22712

      9. Kundu S,Roy D.Computational study of glyceraldehyde-3-phosphate dehydrogenase of Entamoeba histolytica:Implications for structure-based drug design. J Biomol Struct Dyn,2007,25(1):25~33

      10.Nelson DL,Cox MM.Lehninger principles of biochemistry(4thEd).New York:Worth Publishers,2004

      11. Launay JF, Jellali A, Vanier MT. Glyceraldehyde-3-phosphate dehydrogenase is a microtubule binding protein in a human colon tumor cell line.Biochim Biophys Acta,1989,996(1):103~109

      12.Kumagai H,Sakai H.A porcine brain protein(35 K protein)which bundles microtubules and its identification as glyceraldehyde-3-phosphate dehydrogenase. J Biochem,1983,93(5):1259~1269

      13.Somers M,Engelborghs Y,Baert J.Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules,the mechanism of bundle formation and the linkage effect.Eur J Biochem,1990,193(2):437~444

      14.Tisdale EJ.Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Cι/λ and plays a role in microtubule dynamics in the early secretory pathway.J Biol Chem,2002,277(5):3334~3341

      15.Tisdale EJ,Artalejo CR.A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events.Traffic,2007,8(6):733~741

      16.Huang QJ,Lan FH,Zheng ZY,Xie FL,Han JY,Dong LH,Xie YC, Zheng F. Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation.J Biol Chem,2011,286(49):42211~42220

      17.Makhina T,Loers G,Schulze C,Ueberle B,Schachner M,Kleene R.Extracellular GAPDH binds to L1 and enhances neurite outgrowth.Mol Cell Neurosci,2009,41(2):206~218

      18.Thangima Zannat M,Bhattacharjee RB,Bag J.In the absence of cellular poly(A)binding protein,the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. Biochem Biophys Res Commun, 2011, 409(2):171~176

      19.Engel M,Seifert M,Theisinger B,Seyfert U,Welter C.Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function.J Biol Chem,1998,273(32):20058~20065

      20. Kawamoto RM, Caswell AH. Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes.Biochemistry,1986,25(3):657~661

      21.Morero RD,Vinals AL,Bloj B,Farias RN.Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.Biochemistry,1985,24(8):1904~1909

      22. Robbins AR, Ward RD, Oliver C. A mutation in glyceraldehyde-3-phosphate dehydrogenase alters endocytosis in CHO cells.J Cell Biol,1995,130(5):1093~1104

      23.Tisdale EJ.Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway.J Biol Chem,2001,276(4):2480~2486

      24.Glaser PE,Han X,Gross RW.Tubulin is the endogenous inhibitor of the glyceraldehyde-3-phosphate dehydrogenase isoform that catalyzes membrane fusion:Implications for the coordinated regulation of glycolysis and membrane fusion. Proc Natl Acad Sci USA, 2002, 99(22):14104~14109

      25. Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from Golgi apparatus to endoplasmic reticulum.Biochemistry-Moscow,2008,73(6):619~625

      26. Tisdale EJ, Kelly C, Artalejo CR. Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. J Biol Chem, 2004,279(52):54046~54052

      27. Sunaga K, Takahashi H, Chuang DM, Ishitani R.Glyceraldehyde-3-phosphate dehydrogenase is overexpressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer's brain. Neurosci Lett, 1995,200(2):133~136

      28.Ishitani R,Kimura M,Sunaga K,Katsube N,Tanaka M,Chuang DM. An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks ageinduced apoptosis of mature cerebrocortical neurons in culture.J Pharmacol Exp Ther,1996,278(1):447~454

      29.關(guān)艷中,郭冉,念紅,金秀東.重組人紅細(xì)胞生成素通過抑制GAPDH核內(nèi)過表達(dá)減少腦缺血大鼠神經(jīng)元凋亡.生理學(xué)報(bào),2012,64(3):269~274 Guan YZ,Guo R,Nian H,Jin XD.Involvement of inhibition of nucleus GAPDH over-expression in erythropoietin's reduction of neuronal apoptosis induced by brain ischemia/reperfusion in rats.Acta physiol Sin,2012,64(3):269~274

      30.Inadomi C,Murata H,Ihara Y,Goto S,Urata Y,Yodoi J,Kondo T,Sumikawa K.Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH.Biochem Biophys Res Commun,2012,425(3):656~661

      31.Sen N,Hara MR,Kornberg MD,Cascio MB,Bae B,Shahani N,Thomas B,Dawson TM,Dawson VL,Snyder SH,Sawa A.Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis.Nat Cell Biol,2008,10(7):866~873

      32.Tarze A,Deniaud A,Le Bras M,Maillier E,Molle D,Larochette N,Zamzami N,Jan G,Kroemer G,Brenner C.GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization.Oncogene,2007,26(18):2606~2620

      33.Saunders PA,Chen RW,Chuang DM.Nuclear translocation of glyceraldehyde3-phosphate dehydrogenase isoforms during neuronal apoptosis.J Neurochem,1999,72(3):925~932

      34.Nakazawa M,Uehara T,Nomura Y.Koningic acid(a potent glyceraldehyde-3-phosphate dehydrogenase inhibitor)-induced fragmentation and condensation of DNA in NG108-15 cells.J Neurochem,1997,68(6):2493~2499

      35.Singh R,Green MR.Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase.Science,1993,259(5093):365~368

      36. Nagy E, Rigby WF. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region(Rossman fold).J Biol Chem,1995,270(6):2755~2763

      37.Rodriguez-Pascual F,Redondo-Horcajo M,Magan-Marchal N,Lagares D,Martinez-Ruiz A,Kleinert H,Lamas S.Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability.Mol Cell Biol,2008,28(23):7139~7155

      38.BonaféN,Gilmore-Hebert M,Folk NL,Azodi M,Zhou Y,Chambers SK.Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3' untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells:Possible role of CSF-1 posttranscr iptional regu lation and tumor phenotype.Cancer Res,2005,65:3762~3771

      39.Zhou Y,Yi X,Stoffer JB,Bonafe N,Gilmore-Hebert M,Mc Alpine J, Chambers SK. The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer.Mol Cancer Res,2008,6(8):1375~1384

      40.Mc Knight S.Gene switching by metabolic enzymes-How did you get on the invitation list? Cell,2003,114(2):150~152

      41.Zheng L,Roeder RG,Luo Y.S phase activation of the histone H2B promoter by OCA-S,a coactivator complex that contains GAPDH as a key component.Cell,2003,114(2):255~266

      42.Dai RP,Yu FX,Goh SR,Chng HW,Tan YL,Fu JL,Zheng L,Luo Y.Histone 2B(H2B)expression is confined to a proper NAD+/NADH redox status.J Biol Chem,2008,283(40):26894~26901

      43.Krynetski EY,Krynetskaia NF,Gallo AE,Gopal Murti K,Evans WE.A novel protein complex distinct from mismatch repair binds thioguanylated DNA.Mol Pharmacol,2001,59(2):367~374

      44.Demple B,Harrison L.Repair of oxidative damage to DNA:Enzymology and biology.Annu Rev Biochem,1994,63:915~948

      45.Azam S,Jouvet N,Jilani A,Vongsamphanh R,Yang XM,Yang S,Ramotar D.Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1.J Biol Chem,2008,283(45):30632~30641

      46.Sundararaj KP,Wood RE,Ponnusamy S,Salas AM,Szulc Z,Bielawska A,Obeid LM,Hannun YA,Ogretmen B.Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem,2004,279(7):6152~6162

      47.Demarse NA,Ponnusamy S,Spicer EK,Apohan E,Baatz JE, Ogretman B, Davies BC. Direct binding of glyceraldehyde-3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation.J Mol Biol,2009,394(4):789~803

      48.Tanaka T,Abe Y,Inoue N,Kim WS,Kumura H,Nagasawa H,Igarashi I,Shimazaki K.The detection of bovine lactoferrin binding protein on Trypanosoma brucei.J Vet Med Sci,2004,66(6):619~625

      49.Raje CI,Kumar S,Harle A,Nanda JS,Raje M.The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem,2007,282(5):3252~3261

      50.Kumar S,Sheokand N,Mhadeshwar MA,Raje CI,Raje M.Characterization of glyceraldehyde-3-phosphate dehydrogenase as a novel transferrin receptor.Int J Biochem Cell Biol,2012,44(1):189~199

      51.Rawat P,Kumar S,Sheokand N,Raje CI,Raje M.The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase(GAPDH)is a novel macrophage lactoferrin receptor.Biochem Cell Biol,2012,90(3):329~338

      52. Duclos-Vallee JC, Capel F, Mabit H, Petit MA.Phosphorylation of the hepatitis B virus core protein by glyceraldehyde-3-phosphate dehydrogenase protein kinase activity.J Gen Virol,1998,79(Pt 7):1665~1670

      53.Caceres AJ,Michels PAM,Hannaert V.Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol,2010,169(1):50~54

      猜你喜歡
      端粒微管糖酵解
      首張人類細(xì)胞微管形成高清圖繪出
      非編碼RNA在胃癌糖酵解中作用的研究進(jìn)展
      簡(jiǎn)單和可控的NiO/ZnO孔微管的制備及對(duì)痕量H2S氣體的增強(qiáng)傳感
      糖酵解與動(dòng)脈粥樣硬化進(jìn)展
      端粒蛋白復(fù)合物shelterin的結(jié)構(gòu)及功能研究進(jìn)展
      放射對(duì)口腔鱗癌細(xì)胞DNA損傷和糖酵解的影響
      18F-FDG PET/CT中病灶糖酵解總量判斷局部晚期胰腺癌放射治療的預(yù)后價(jià)值
      胸腔微管引流并注入尿激酶治療結(jié)核性胸膜炎
      抑癌基因P53新解讀:可保護(hù)端粒
      健康管理(2016年2期)2016-05-30 21:36:03
      40—65歲是健身黃金期
      宁波市| 临朐县| 宁阳县| 博野县| 新昌县| 固原市| 五台县| 乐业县| 平果县| 大冶市| 莲花县| 封丘县| 晋宁县| 平邑县| 遂昌县| 华宁县| 玉溪市| 资阳市| 胶南市| 陈巴尔虎旗| 葵青区| 塔河县| 樟树市| 梅州市| 麦盖提县| 丘北县| 怀集县| 洛宁县| 武义县| 邻水| 宝山区| 井冈山市| 南木林县| 哈密市| 正蓝旗| 应用必备| 波密县| 康乐县| 新和县| 曲水县| 南宁市|