郗艷柳
【摘 要】數(shù)學(xué)具有嚴(yán)謹(jǐn)?shù)倪壿嬻w系,數(shù)學(xué)概念的分類,定理的證明,公式法則的推導(dǎo),廣泛使用邏輯推理。因此,良好的邏輯思維能力對于學(xué)生數(shù)學(xué)學(xué)習(xí)能力非常重要。數(shù)學(xué)課堂則是培養(yǎng)學(xué)生邏輯思維能力極為有力的場地。如何利用數(shù)學(xué)教學(xué)培養(yǎng)學(xué)生的邏輯思維能力,是許多專家學(xué)者和教師們不斷努力研究的方向。筆者結(jié)合自己的中學(xué)數(shù)學(xué)教學(xué)經(jīng)驗,如何培養(yǎng)學(xué)生的邏輯思維能力及重要性也做了相應(yīng)研究。
【關(guān)鍵詞】數(shù)學(xué)教學(xué);邏輯思維;中學(xué)數(shù)學(xué)
一、數(shù)學(xué)課堂上的“教”與“學(xué)”
要正確處理好傳授數(shù)學(xué)基礎(chǔ)知識,有關(guān)數(shù)學(xué)概念、公式、定理與發(fā)展學(xué)生邏輯思維的關(guān)系;處理好培養(yǎng)運算能力、空間想象能力與發(fā)展學(xué)生邏輯思維的關(guān)系。努力做到在傳授知識的基礎(chǔ)上發(fā)展智能,在發(fā)展智能的指導(dǎo)下傳授知識,使學(xué)生在掌握知識上達(dá)到高質(zhì)量,在智能發(fā)展上達(dá)到高水平。在數(shù)學(xué)概念的教和學(xué)兩個方面,一定要重視概念的教學(xué),不能流于形式,要深刻揭示數(shù)學(xué)概念的內(nèi)涵和外延,對學(xué)生掌握概念的要求要嚴(yán)格,使學(xué)生能全面而深刻地理解概念。如學(xué)生在學(xué)習(xí)函數(shù)這個概念時,首先要讓學(xué)生弄清楚在函數(shù)概念中涉及到的兩個集合—函數(shù)的定義域和值域及它們之間元素的對應(yīng)關(guān)系,弄清這個概念,才能更好地掌握函數(shù)這個概念。在數(shù)學(xué)公式、定理的教學(xué)方面,不能僅僅背會這些公式,知道怎么用就行了,而是要讓學(xué)生掌握推導(dǎo)公式、定理的過程,掌握這些公式定理與教材其他內(nèi)容的邏輯關(guān)系,從而使學(xué)生的邏輯思維能力得到提高。
二、邏輯知識的講解
培養(yǎng)學(xué)生邏輯思維能力的一個途徑是教會學(xué)生在運用邏輯知識進(jìn)行推理論證過程中,提高他們抽象概括、分析綜合、推理證明的能力。在中學(xué)數(shù)學(xué)教材中運用了許多與邏輯知有關(guān)的數(shù)學(xué)內(nèi)容的推理證明方法。因此,在數(shù)學(xué)教學(xué)過程中,可以結(jié)合具體教學(xué)和內(nèi)容,通俗地講授一些必要的邏輯知識,使學(xué)生能運用它來指導(dǎo)推理、證明,這會有助于他們提高邏輯思維能力。例如,當(dāng)學(xué)生運用窮舉法證明問題是,經(jīng)常容易出現(xiàn)遺漏或重復(fù)等情況。那么為避免這類問題的出現(xiàn),就需要學(xué)生掌握概念的分類方法和要求。數(shù)學(xué)內(nèi)容的講授應(yīng)加強邏輯嚴(yán)謹(jǐn)性。例題、習(xí)題應(yīng)適當(dāng)增加些思考題、證明題、討論題等,借以加強邏輯思維的訓(xùn)練。長此以往,對培養(yǎng)學(xué)生邏輯思維能力會有很大幫助。
三、平面幾何與立體幾何的教學(xué)
智力的發(fā)展、邏輯思維能力的發(fā)展與知識的增長,跟年齡也有很大關(guān)系。一個人的知識可以隨著年齡的增長而不斷豐富,積累和更新,即使老年人,通過學(xué)習(xí),也還可以獲得新的知識;但一個人的智力增長最佳年齡是在從出生到十七歲,錯過了這個時期,智力的發(fā)展就會受到影響。因此在初中和高中階段,加強學(xué)生平面幾何和立體幾何的教學(xué)十分重要,它有利于學(xué)生邏輯思維能力的培養(yǎng)。教師在教學(xué)過程中語言要嚴(yán)謹(jǐn)、文字要精煉、準(zhǔn)確、規(guī)范、富有條理性邏輯性。對學(xué)生證題的敘述要從嚴(yán)要求,著力糾正學(xué)生所犯的邏輯性錯誤,對于學(xué)生不同的正確解題法,教師首先要給以肯定,以鼓勵學(xué)生不斷開闊思路,敢于創(chuàng)新。在平面幾何證題的教學(xué)中,不主張把過于艱深、不符合學(xué)生實際的難題給學(xué)生去做,在教學(xué)上要貫徹因材施教的原則,對不同類型的學(xué)生,邏輯思維能力應(yīng)有不同層次的要求。在學(xué)生解題過程中,發(fā)現(xiàn)學(xué)生可能遇到難題,教師要引導(dǎo)學(xué)生積極思考、克服困難,增強學(xué)生的解題能力,從而收到良好的教學(xué)效果。
四、章、節(jié)教學(xué)的連貫性
在數(shù)學(xué)各科、各章節(jié)的教學(xué)中,教師要善于引導(dǎo),善于歸納、總結(jié)、教給學(xué)生以規(guī)律性的知識,引導(dǎo)學(xué)生不斷形成知識新的概念結(jié)構(gòu)。初,高中數(shù)學(xué)課本的每一章,都設(shè)有小結(jié)一節(jié)。教師要重視小結(jié)的教學(xué),要突出新知識之間及新舊知識之間的邏輯關(guān)系。如平面解析幾何中的圓、橢圓、又曲線、拋物線,分別是不同的知識體系,但均可統(tǒng)一在二次曲線的概括結(jié)構(gòu)之中。在向?qū)W生講授數(shù)學(xué)歸納法時,可向?qū)W生介紹推理形式,如演繹推理、歸納推理、類比推理等。教師在教學(xué)中,學(xué)生在學(xué)習(xí)新知識、復(fù)習(xí)舊知識及探索解題方法時就要常常用到它們。這樣進(jìn)行教學(xué),不但可以調(diào)動學(xué)生學(xué)習(xí)的積極性,還可以把分散在中學(xué)各個學(xué)習(xí)階段的推理方法歸納上升到新的概括結(jié)構(gòu)。這種引導(dǎo)學(xué)生的把新舊知識和技能按不同的系列、不同的層次不斷形成新的概括結(jié)構(gòu),是發(fā)展學(xué)生邏輯思維能力的關(guān)鍵所在。
五、開拓新的教學(xué)方法
在數(shù)學(xué)教學(xué)中,應(yīng)強調(diào)啟發(fā)式教學(xué),任務(wù)驅(qū)動教學(xué),多媒體教學(xué)相結(jié)的手段。在數(shù)學(xué)概念、公式、定理、例題的教學(xué)中,在復(fù)習(xí)課、練習(xí)課中,在條件可行的情況下,盡可能組織學(xué)生的探究活動。講平面幾何和立體幾何時,可以配以多媒體教學(xué),讓學(xué)生觀察實形,加強學(xué)生對問題的分析能力,從而找出正確、簡單的解題方法。另外在課處活動中,還可以組織學(xué)生寫數(shù)學(xué)小論文、出版數(shù)學(xué)學(xué)習(xí)園地或舉辦數(shù)學(xué)智力競賽等,都是發(fā)展學(xué)生邏輯思維能力的好辦法。要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使智力活動進(jìn)入積極的狀態(tài);要培養(yǎng)學(xué)生具有堅忍不拔的學(xué)習(xí)態(tài)度,使智力水平迅速地得到提高。總之,中學(xué)數(shù)學(xué)教學(xué)是培養(yǎng)和發(fā)展學(xué)生邏輯思維能力的關(guān)鍵時期,作為教師有責(zé)任和義務(wù)去完成這項重要而艱巨的任務(wù)。為祖國、為人民培養(yǎng)出一批批有知識有能力的實用型人才。