孟純軍 李桃珍
摘 要:研究了矩陣方程AXB=C最小二乘解的秩的范圍,利用矩陣的奇異值分解以及Frobenius范數(shù)的特征,得到了秩約束下最小二乘解的表達式,并得到了最大秩和最小秩最小二乘解.
關(guān)鍵詞:最優(yōu)控制;最小二乘解;秩約束;奇異值分解;Frobenius范數(shù)
中圖分類號:O241.6 文獻標識碼:A
On the Rank Range of the Leastsquares
Solutions of the Matrix Equation AXB=C
MENG Chunjun,LI Taozhen
(College of Mathematics and Econometrics, Hunan Univ, Changsha, Hunan 410082, China)
Abstract:This paper, we considered the rank range of the leastsquares solutions of matrix equation AXB=C. By applying the singular value decomposition of matrix and the properties of Frobenius matrix norm, we have obtained the range of the rank and the leastsquares solution expression of under rank constrained. Finally, we have provided the expressions of the leastsquares solutions with maximal and minimum rank respectively.
Key words:optimal control; leastsquares solutions; rank constrained; SVD decomposition; Frobenius norm
1 引 言
約束矩陣方程的定秩求解問題與非線性規(guī)劃中的半定規(guī)劃有著密切的聯(lián)系[1-2],為解決最優(yōu)控制、魯棒優(yōu)化,以及組合優(yōu)化中的問題提供了一種有效的工具. 因此,越來越多的國內(nèi)外學(xué)者致力于矩陣方程問題的定秩研究,使得約束矩陣方程的定秩求解問題成為了數(shù)值代數(shù)的熱門研究課題之一.研究矩陣表達式的秩和矩陣方程解的秩有很多的文獻,如[3-8],但是矩陣方程的最小二乘解的定秩研究還很少.本文著重研究陣方程AXB=C最小二乘解的秩,得到最小二乘解的最大秩、最小秩以及相應(yīng)的最大(?。┲冉?,并給出了具有給定秩的最小二乘解的表達式.
本文研究的問題數(shù)學(xué)描述如下:
參考文獻
[1] 何旭初,孫文瑜.廣義逆矩陣引論[M].南京:江蘇科學(xué)技術(shù)出版社,1992.
HE Xuchu, SUN Wenyu. The generalized mverse of matrix theory[M].Nanjing:Jiangsu Science and Technology Press, 1992.(In Chinese)
[2] GENE H G,CHARLES F V L, Matrix computations[M].Third Edition. Baltimore, Maryland:The Johns Hopkins University Press, 1996.
[3] MARSAGLIA G, STYAN G P H. Equalities and inequalities for ranks of matrices[J]. Linear and Multilinear Algebra,1974,2:269-292.
[4] WOODGATE K G. Leastsquare solution of F=PG over positive semidefinite symmetric[J]. Linear Algebra and its Applications, 1996, 145: 171-190.
[5] ZHANG X, CHENG M Y. The rankconstrained Hermitian nonnegativedefinite and positivedefine solutions to matrix equation AXA*=B[J].Linear Algebra and its Applications, 2003, 370: 163-174.
[6] XIAO Q F, HU X Y, ZHANG L. The symmetric minimal rank solution of the matrix equation AX=B and the optimal approximation[J].Electronic Journal of Linear Algebra, 2009, 18: 264-273.
[7] LIU Yonghui. Ranks of solutions of the linear matrix equation AX+YB=C[J]. Computers and Mathematics with Applications, 2006, 52: 861-872.
[8] TIAN Yongge. Maximization and minimization of the rank and inertia of the Hermitian matrix expression A-BX-BX* with applications[J]. Linear Algebra and its Applications,2011, 434: 2109-2139.