張育輝,肖 寧,李忻怡
(陜西師范大學(xué) 生命科學(xué)學(xué)院,陜西 西安710062)
隨著化學(xué)工業(yè)的快速發(fā)展,化學(xué)產(chǎn)品向環(huán)境中 的排放量隨著生產(chǎn)總產(chǎn)量的上升在急劇增加.環(huán)境中部分化合物可通過(guò)干擾機(jī)體內(nèi)源激素的某些信號(hào)途徑影響動(dòng)物或人體正常的激素平衡,此類化合物稱內(nèi)分泌干擾物(endocrine disruptive chemicals,EDCs).不同EDCs的作用途徑存在差異,但它們最終均通過(guò)干擾正常的激素水平,產(chǎn)生激素效應(yīng).在機(jī)體中,與其他類固醇激素一樣,雌激素反應(yīng)由雌激素受體(estrogen receptor,ER)介導(dǎo),雌激素與ER結(jié)合后進(jìn)入胞核內(nèi),最終激活靶基因的轉(zhuǎn)錄.在人類,ER信號(hào)轉(zhuǎn)導(dǎo)紊亂可增加患激素依賴性癌癥的風(fēng)險(xiǎn),或?qū)е律芰ο陆?,或造成胎兒生長(zhǎng)和發(fā)育異常,還可改變脂肪組織的代謝水平[1].ER具有α和β兩個(gè)亞型,二者在雌激素信號(hào)轉(zhuǎn)導(dǎo)中發(fā)揮著既重疊又獨(dú)特的生理作用.研究表明,除內(nèi)源性的雌激素17β-雌二醇(E2)能與ER結(jié)合外,許多外源性配體具有類似于E2與ER的親和力,它們同樣能夠選擇性地與ERα或ERβ結(jié)合[2].目前已知,EDCs既可以通過(guò)與ER直接作用,也可以通過(guò)與芳香烴受體(aryl hydrocarbon receptor,AhR)等轉(zhuǎn)錄因子作用,間接改變基因組或非基因組途徑中ER的促轉(zhuǎn)錄活性.如雙酚A(bisphenol A,BPA)和二乙基己烯雌酚(diethyl stilbestrol,DES)等已知的EDCs均可誘導(dǎo)快速的雌激素信號(hào),對(duì)基因組或非基因組途徑中ER信號(hào)轉(zhuǎn)導(dǎo)產(chǎn)生影響[3].雖然EDCs可借助多種途徑干擾正常激素的功能活動(dòng),但多數(shù)EDCs的干擾機(jī)制是作為配體和ER直接結(jié)合,對(duì)ER信號(hào)轉(zhuǎn)導(dǎo)產(chǎn)生影響.
ER與核受體家族的其他成員有著相類似的結(jié)構(gòu),從氨基端到羧基端,ER在結(jié)構(gòu)上可分為A/B、C、D、E、F 5個(gè)功能區(qū):(1)氨基端A/B區(qū),主要為轉(zhuǎn)錄激活功能域(transcription activation function-1,AF-1),是受體兩個(gè)轉(zhuǎn)錄激活域之一,屬于異變區(qū),參與調(diào)節(jié)雌激素應(yīng)答基因的轉(zhuǎn)錄,負(fù)責(zé)配體非依賴的轉(zhuǎn)錄激活功能;(2)C區(qū)為DNA結(jié)合域(DNA-binding domain,DBD),包含兩個(gè)與識(shí)別激素應(yīng)答元件和受體二聚體化形成有關(guān)鋅指結(jié)構(gòu),能夠與靶基因中的雌激素反應(yīng)元件(estrogen response element,ERE)結(jié)合;(3)D區(qū)為鉸鏈域,受體在該區(qū)能彎曲、旋轉(zhuǎn)以改變構(gòu)象,保證以最佳的構(gòu)型與配體結(jié)合,例如可與熱休克蛋白結(jié)合,并具有核定位信號(hào)及穩(wěn)定DNA結(jié)合功能;(4)E區(qū)為配體結(jié)合域(ligand binding domain,LBD),該功能區(qū)主要是調(diào)節(jié)配體與ER的結(jié)合、受體的二聚化、應(yīng)答基因表達(dá)的激活及與輔助激活因子或輔助抑制因子的結(jié)合等;(5)羧基末端的F區(qū)是激素依賴轉(zhuǎn)錄激活功能域(transcription activation function-2,AF-2),AF-2的結(jié)構(gòu)和功能因結(jié)合的配體類型不同而不同,負(fù)責(zé)配體依賴的轉(zhuǎn)錄激活功能.
ERα曾被認(rèn)為是唯一介導(dǎo)雌激素信號(hào)的受體.自從在大鼠前列腺癌和卵巢中克隆出ERβ以來(lái),對(duì)介導(dǎo)雌激素信號(hào)的受體有了新認(rèn)識(shí)[4].編碼ERα和ERβ的基因在不同的染色體上[5].ERα和ERβ的激活功能域(AF)、配體結(jié)合域(LBD)和DNA結(jié)合域(DBD)的主要差異體現(xiàn)在:(1)激活功能域(AF).激活功能域AF-1和AF-2與輔助激活因子相互作用來(lái)調(diào)控靶基因的轉(zhuǎn)錄.N末端AF-1調(diào)控的轉(zhuǎn)錄不依賴于配體,但配體結(jié)合域中的AF-2以配體依賴的方式調(diào)控轉(zhuǎn)錄,ERα與ERβ的AF-1顯著不同,二者N端氨基酸序列只有18%的同源性,與ERβ相比較,ERα的AF-1更能增強(qiáng)雌激素誘導(dǎo)的基因表達(dá)[6].AF-2由4個(gè)α螺旋(H3,H4,H5,和H12)組成,這4個(gè)α螺旋形成疏水性凹槽,有利于與輔助調(diào)節(jié)因子的結(jié)合.(2)配體結(jié)合域(LBD).ERα和ERβ的配體結(jié)合域氨基酸序列有59%的同源性,ER的配體結(jié)合域包含與雌激素類化合物結(jié)合的口袋結(jié)構(gòu),即配體結(jié)合口袋,但是這兩個(gè)亞型在配體結(jié)合口袋中僅有兩個(gè)氨基酸不同:ERα的Leu 384,Met 421分別與ERβMet 336,Ile 373不同,在與雌激素類化合物結(jié)合時(shí),配體結(jié)合口袋的這種略微差異有助于亞型對(duì)一些化合物的選擇[2].(3)DNA結(jié)合域(DBDs).ER在雌激素反應(yīng)元件(EREs)上結(jié)合DNA后調(diào)控靶基因表達(dá).ERα與ERβ的DBD有97%的相似性,顯示其同源性很高,基因組結(jié)合位點(diǎn)有顯著的重疊,所以ER的這兩個(gè)亞型可共同調(diào)控靶基因表達(dá).需要注意的是結(jié)合配體的ERα和ERβ能形成同源二聚體或異源二聚體,與ER同源二聚體一樣,異源二聚體也能夠和EREs結(jié)合[7-8].ER異源二聚體作用的特殊性仍不清楚,因而,EDCs對(duì)ER異源二聚體活性的影響也未知.
ERα與ERβ在功能上具有既重疊又獨(dú)特的生理特性,這種生理作用的差異主要表現(xiàn)為對(duì)細(xì)胞類型依賴性的不同,ERα在肝細(xì)胞和腦內(nèi)的海馬中特異表達(dá),ERβ主要在前列腺、陰道和小腦中表達(dá)[9].通過(guò)分別敲除小鼠ERα或ERβ的實(shí)驗(yàn)表明,ERα是乳腺發(fā)育中具有調(diào)控作用的主要受體,而ERβ不是這一過(guò)程和生殖發(fā)育調(diào)節(jié)的關(guān)鍵受體[10-11],但它具有抑制乳腺組織細(xì)胞中ERα高表達(dá)的作用[12].
雌激素通過(guò)ERs調(diào)控靶基因表達(dá)發(fā)揮效應(yīng),ER對(duì)雌激素靶基因表達(dá)的調(diào)控方式有配體依賴型和非依賴型,調(diào)控雌激素靶基因表達(dá)的途徑分為基因組途徑和非基因組途徑.基因組途徑包括ER和DNA的直接作用和通過(guò)轉(zhuǎn)錄因子與DNA的間接作用;非基因組途徑是指雌激素所導(dǎo)致的激酶信號(hào)通路的快速激活.ER能調(diào)節(jié)多個(gè)信號(hào)通路,每個(gè)亞型可與不同的配體反應(yīng),這使EDCs對(duì)由ER介導(dǎo)的雌激素信號(hào)通路的作用變得相當(dāng)復(fù)雜.在EDCs影響ER信號(hào)轉(zhuǎn)導(dǎo)途徑的研究中,目前對(duì)配體依賴的ER信號(hào)轉(zhuǎn)導(dǎo)途徑的比較清楚,配體非依賴的ER信號(hào)轉(zhuǎn)導(dǎo)途徑非常復(fù)雜,并涉及多種信號(hào)通路的激活,如ER與生長(zhǎng)因子、共調(diào)解因子等通路[13].
在基因組途徑中,ER通過(guò)直接結(jié)合到EREs或借助Sp1(stimulating protein-1),AP-1(activating protein-1)等轉(zhuǎn)錄因子結(jié)合到EREs介導(dǎo)靶基因的轉(zhuǎn)錄[14-15].在經(jīng)典的基因組信號(hào)途徑中,配體與雌激素受體LBD結(jié)合后改變ER空間構(gòu)象,使ER發(fā)生二聚化,二聚化的ER結(jié)合到靶基因啟動(dòng)子EREs上,同時(shí)ER的兩個(gè)激活功能域AF-1和AF-2結(jié)合輔助激活因子,促進(jìn)靶基因的轉(zhuǎn)錄.研究表明,ERα和ERβ的結(jié)構(gòu)特征類似,該結(jié)構(gòu)有利于輔助激活因子的募集和轉(zhuǎn)錄輸出[16-17].內(nèi)源性雌激素E2等激活因子與受體結(jié)合后,受體的構(gòu)象發(fā)生改變,輔助調(diào)節(jié)因子結(jié)合位點(diǎn)被暴露,可見(jiàn)配體通過(guò)誘導(dǎo)受體構(gòu)象的改變,使受體能募集特異性輔助調(diào)節(jié)因子,進(jìn)而引起不同的反應(yīng).目前,在輔助調(diào)節(jié)因子復(fù)合物的研究中最多的核受體輔助調(diào)節(jié)因子是共激活因子p160家族,即SRC-1,SRC-2和SRC-3,調(diào)解ER活性的輔助調(diào)節(jié)因子復(fù)合物非常復(fù)雜,已有文獻(xiàn)中描述的輔助調(diào)節(jié)因子已超過(guò)300個(gè)[18].
在非基因組途徑中,ER參與某些信號(hào)轉(zhuǎn)導(dǎo)通路的激活,這些通路在幾分鐘之內(nèi)即可對(duì)雌激素產(chǎn)生應(yīng)答.ER非基因組途徑的機(jī)制仍不清楚,目前研究設(shè)想與ERα和ERβ不同的膜結(jié)合ERs(membrane-associated ERs)介導(dǎo)非基因組途徑[19].在細(xì)胞膜上的孤兒G蛋白偶聯(lián)受體30(GPR30)可介導(dǎo)雌激素的快速非基因組效應(yīng)[20],GPR30在結(jié)構(gòu)上與ERα和ERβ不同,它能介導(dǎo)MAPK或PI3激酶信號(hào)通路的激活[21-22],以及細(xì)胞內(nèi)鈣的波動(dòng)[23]或cAMP量的增加[24].
EDCs通過(guò)與內(nèi)源性雌激素競(jìng)爭(zhēng)結(jié)合ERα和ERβ的配體結(jié)合域,從而直接影響ER促轉(zhuǎn)錄的活性,引起雌激素效應(yīng).由于ER亞型組織分布的廣泛性和雌激素作用的復(fù)雜性,使得研究EDCs對(duì)正常雌激素信號(hào)干擾的方法是多種多樣的,其中最常見(jiàn)的是用EDCs直接影響類固醇激素受體活性,然后檢測(cè)雌激素信號(hào)的變化.大部分EDCs是ER的配體,它們可以和E2競(jìng)爭(zhēng)配體結(jié)合位點(diǎn),與ER結(jié)合后,使原來(lái)結(jié)合在受體上的伴侶蛋白從受體上解離,配體的結(jié)合使ER的構(gòu)象發(fā)生改變,形成二聚體,二聚化的受體與靶基因上的ERE結(jié)合,同時(shí)受體的兩個(gè)功能域被激活后可結(jié)合輔助調(diào)節(jié)因子,最終介導(dǎo)基因的轉(zhuǎn)錄.研究報(bào)道,將雄性羊頭鯉(Cyprinodon variegatus)暴露于辛基酚(OP)中,OP作為內(nèi)分泌干擾物可直接與ER結(jié)合并激活卵黃蛋白原基因的表達(dá),致使血漿卵黃蛋白原濃度升高[25].通常,EDCs需要高于內(nèi)源性激素100—1000倍的濃度,才能顯示出與內(nèi)源性激素相似的生理效應(yīng)[2].然而,EDCs在很低的濃度暴露后,可以在組織中累積,從而引起雌激素效應(yīng)[26].由于EDCs潛在的生物學(xué)作用非常復(fù)雜,并且還受組織特異性輔助因子和受體等因素的影響,所以低濃度的EDCs在有機(jī)體即可作用于ER,對(duì)機(jī)體內(nèi)分泌功能產(chǎn)生影響.另外,EDCs也可影響ER的表達(dá),壬基酚(NP)可激活魚(yú)類肝細(xì)胞ER基因轉(zhuǎn)錄,誘導(dǎo)ER mRNA合成,增加ER的表達(dá)[27].
芳香烴受體(AhR)是一種配體激活轉(zhuǎn)錄因子,是細(xì)胞對(duì)外源雌激素應(yīng)答的調(diào)解點(diǎn),屬于bHLHPAS蛋白家族,在進(jìn)化上非常保守.多環(huán)芳烴類化合物(PAHs)屬于一類EDCs,可作為AhR的配體激活A(yù)hR,AhR可間接影響ER促轉(zhuǎn)錄活性[28].與配體結(jié)合的AhR還可能調(diào)控代謝酶基因的表達(dá),其信號(hào)轉(zhuǎn)導(dǎo)途徑與ER信號(hào)轉(zhuǎn)導(dǎo)途徑有許多相似之處[29].研究表明,多氯二苯并二惡英、二苯呋喃、聯(lián)苯、多環(huán)芳香碳?xì)浠衔锏扔袡C(jī)化合物可以活化AhR[30].
2.2.1 促進(jìn)ER泛素化修飾并降解 泛素化修飾的靶蛋白被26S的蛋白酶體所降解的途徑稱之為泛素蛋白酶體途徑,該途徑是真核生物體內(nèi)最為重要的蛋白質(zhì)降解途徑.泛素蛋白酶體降解途徑可以調(diào)控機(jī)體ER水平.卡林4B泛素連接酶(cullin 4B ubiquitin ligase,)是參與靶蛋白與蛋白酶體結(jié)合的多蛋白復(fù)合物,AhR和芳香烴受體核轉(zhuǎn)位蛋白(ARNT)是卡林4B泛素連接酶復(fù)合物的組成部分.二惡英與AhR結(jié)合可促進(jìn)泛素連接酶E3復(fù)合物(CUL4BAhR)的形成,導(dǎo)致ER的泛素化修飾,形成泛素鏈,從而被26S的蛋白酶體降解.在這個(gè)復(fù)合物中,AhR起到連接酶與ER的作用,促進(jìn)了ER的泛素化修飾和降解[31].可見(jiàn)泛素連接酶復(fù)合物的形成依賴芳香烴受體的配體[32],這表明EDCs作為AhR配體,可通過(guò)與AhR的作用導(dǎo)致ER的泛素化修飾,并促進(jìn)ER降解.早期的研究還認(rèn)為AhR的配體二惡英可降解ERα蛋白質(zhì)[33].
2.2.2 與ER競(jìng)爭(zhēng)輔助激活因子 輔助激活因子由多種蛋白家族組成,如p300、P/CAF和SRC等蛋白家族,它們可與配體激活的受體結(jié)合,從而增強(qiáng)受體介導(dǎo)的基因轉(zhuǎn)錄.ER和AhR介導(dǎo)的基因轉(zhuǎn)錄依賴于與轉(zhuǎn)錄輔助激活因子的結(jié)合,并且許多輔助激活因子通常為這兩個(gè)受體共用,活化的ER和AhR可競(jìng)爭(zhēng)結(jié)合輔助激活因子,于是EDCs通過(guò)活化AhR,使其與ER競(jìng)爭(zhēng)結(jié)合輔助激活因子,間接影響ER的促轉(zhuǎn)錄活性,干擾類固醇激素信號(hào).研究表明,哺乳動(dòng)物細(xì)胞中ER和AhR輔助激活因子結(jié)合域的過(guò)度暴露會(huì)直接導(dǎo)致ER和AhR活性的減弱[34].ARNT不是經(jīng)典的轉(zhuǎn)錄輔助激活因子,但是它卻具有輔助激活因子SRC家族的許多特性,而且還是雌激素受體尤其是ERβ的輔助激活因子[35].研究表明,二惡英的抗雌激素效應(yīng)與ER和AhR對(duì)ARNT的競(jìng)爭(zhēng)有關(guān)[35-36].此外,核受體家族其它成員間也競(jìng)爭(zhēng)結(jié)合輔助激活因子,核受體中參與外源物質(zhì)代謝的組成型雄烷受體(constitutive androstane receptor,CAR)被激活后,可通過(guò)降低p160輔助激活因子GRIP-1的水平抑制ER促轉(zhuǎn)錄活性[37].
2.2.3 干擾ER介導(dǎo)的DNA轉(zhuǎn)錄 對(duì)ER靶基因啟動(dòng)子區(qū)的研究表明,AhR與ER之間還存在更為復(fù)雜的作用.活化的AhR能與ER靶基因啟動(dòng)子上游靠近ER結(jié)合位點(diǎn)的序列結(jié)合,把這段序列稱之為抑制性外源性反應(yīng)元件(inhibitory XREs).未活化的AhR也能與ER靶基因啟動(dòng)子上游靠近ER結(jié)合位點(diǎn)的序列結(jié)合,把這段序列稱之為外源性反應(yīng)元件(XREs),這種結(jié)合對(duì)ER介導(dǎo)的基因轉(zhuǎn)錄的激活是必需的[38].抑制性外源性反應(yīng)元件與外源性反應(yīng)元件的堿基組成略微不同,堿基的差異導(dǎo)致活化的AhR與抑制性外源性反應(yīng)元件結(jié)合后不能激活ER介導(dǎo)的轉(zhuǎn)錄[29].但未結(jié)合配體的AhR與外源性反應(yīng)元件結(jié)合后,可激活ER介導(dǎo)的轉(zhuǎn)錄.上述表明EDCs可通過(guò)活化AhR,使其與ER靶基因上的抑制性外源性反應(yīng)元件結(jié)合,干擾ER介導(dǎo)的轉(zhuǎn)錄活動(dòng).
EDCs通過(guò)AhR對(duì)ER的間接作用涉及AhR與ER間的交互對(duì)話(cross-talk).AhR與ER間的作用非常復(fù)雜,例如,3-甲基膽蒽(3-MC)是AhR的配體,但它誘導(dǎo)的雌激素效應(yīng)卻依賴ERα而不是AhR[39].3-MC激活ERα轉(zhuǎn)錄的能力與具有雌激素活性的代謝產(chǎn)物的轉(zhuǎn)化相關(guān).在細(xì)胞中3-MC沒(méi)有參與代謝,它起著抗雌激素的效應(yīng),這與二惡英的作用類似[40],對(duì)苯并芘(BaP)等其他AhR配體的研究也得到相似的結(jié)果[41].細(xì)胞能把3-MC、BaP等外源物質(zhì)轉(zhuǎn)化成雌激素化合物,可見(jiàn)AhR配體的雌激素效應(yīng)仍需要進(jìn)一步研究.
當(dāng)今,人類和動(dòng)物通過(guò)空氣、食物和水接觸到數(shù)以千計(jì)的化學(xué)殘留物,這些化學(xué)產(chǎn)品里有許多是EDCs,可干擾機(jī)體內(nèi)源性激素的信號(hào)途徑,影響動(dòng)物和人體正常的激素平衡,這使EDCs受到了人們的廣泛關(guān)注.EDCs可通過(guò)與ER作用影響雌激素信號(hào)轉(zhuǎn)導(dǎo),其作用方式有與ER的直接作用和通過(guò)AhR等轉(zhuǎn)錄因子對(duì)ER的間接作用,從而改變基因組和非基因組途徑中ER的促轉(zhuǎn)錄活性.雌激素或類雌激素通過(guò)ER發(fā)揮其生物學(xué)效應(yīng),ER和EDCs對(duì)配體依賴的ER信號(hào)轉(zhuǎn)導(dǎo)途徑的作用盡管已有許多的研究成果,但是其中一些機(jī)制仍不清楚,如AhR的激活物二惡英抑制ERα信號(hào)轉(zhuǎn)導(dǎo)的分子機(jī)制.EDCs通過(guò)AhR對(duì)ER的間接作用涉及了AhR與ER間的交互對(duì)話,由于交互對(duì)話中受到細(xì)胞環(huán)境、輔助調(diào)節(jié)因子等的影響,其分子機(jī)制目前仍不明了.EDCs對(duì)配體非依賴的ER信號(hào)轉(zhuǎn)導(dǎo)途徑的作用非常復(fù)雜,涉及多種信號(hào)通路的激活,這些途徑的具體過(guò)程還不清楚.由于EDCs可能通過(guò)配體依賴或非依賴的多種信號(hào)通路直接或間接地干擾基因轉(zhuǎn)錄,最終影響正常的內(nèi)分泌活動(dòng),所以未來(lái)的研究思路應(yīng)對(duì)多種信號(hào)通路進(jìn)行探討.
ER信號(hào)轉(zhuǎn)導(dǎo)的紊亂可引起腫瘤、心血管病、骨質(zhì)疏松癥等疾病的發(fā)生,因此,研究EDCs對(duì)ER信號(hào)轉(zhuǎn)導(dǎo)途徑的影響為相關(guān)疾病的治療可提供理論依據(jù),具有十分重要的理論意義實(shí)踐價(jià)值.但是,目前EDCs對(duì)ER影響的研究大多在實(shí)驗(yàn)室條件下進(jìn)行,而實(shí)際情況是人和動(dòng)物往往長(zhǎng)期接觸低劑量EDCs,因而在ER信號(hào)轉(zhuǎn)導(dǎo)途徑方面的理論是否與實(shí)際一致,也仍需多方面的驗(yàn)證.
[1]Diamanti-Kandarakis E,Bourguignon J P,Giudice L C,et al.Endocrine-disrupting chemicals:an endocrine society scientific statement[J].Endocrine Reviews,2009,30:293-342.
[2]Kuiper G,Carlsson B,Grandien K,et al.Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta[J].Endocrinology,1997,138:863-870.
[3]Nadal A,Ropero A B,Laribi O,et al.Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta[J].Proceedings of the National Academy of Sciences,2000,97:11603-11608.
[4]Kuiper G G,Enmark E,Pelto-Huikko M,et al.Cloning of a novel receptor expressed in rat prostate and ovary[J].Proceedings of the National Academy of Sciences,1996,93:5925-5930.
[5]Enmark E,Pelto-Huikko M,Grandien K,et al.Human estrogen receptor beta-gene structure,chromosomal localization,and expression pattern[J].The Journal of Clinical Endocrinology &Metabolism,1997,82:4258-4265.
[6]Zwart W,de Leeuw R,Rondaij M,et al.The hinge region of the human estrogen receptor determines functional synergy between AF-1and AF-2in the quantitative response to estradiol and tamoxifen[J].Journal of Cell Science,2010,123:1253-1261.
[7]Pettersson K,Grandien K,Kuiper G G,et al.Mouse estrogen receptor beta forms estrogen response elementbinding heterodimers with estrogen receptor alpha[J].Molecular Endocrinology,1997,11:1486-1496.
[8]Powell E,Xu W.Intermolecular interactions identify ligand-selective activity of estrogen receptor alpha/beta dimers[J].Proceedings of the National Academy of Sciences,2008,105:19012-19017.
[9]Taylor A H,Al-Azzawi F.Immunolocalisation of oestrogen receptor beta in human tissues[J].Molecular Endocrinology,2000,24:145-155.
[10]Hewitt S C,Harrell J C,Korach K S.Lessons in estrogen biology from knockout and transgenic animals[J].Annual Review of Physiology,2005,67:285-308.
[11]Harris H A.Estrogen receptor-beta:recent lessons from in vivo studies[J].Molecular Endocrinology,2007,21:1-13.
[12]Paruthiyil S,Parmar H,Kerekatte V,et al.Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2cell cycle arrest[J].Cancer Research,2004,64:423-428.
[13]Heldring N,Pike A,Andersson S,et al.Estrogen receptors:how do they signal and what are their targets[J].Physiological Reviews,2007,87:905-931.
[14]Kushner P J,Agard D A,Greene G L,et al.Estrogen receptor pathways to AP-1[J].The Journal of Steroid Biochemistry and Molecular Biology,2000,74:311-317.
[15]Saville B,Wormke M,Wang F,et al.Ligand-,cell-,and estrogen receptor subtype(alpha/beta)-dependent activation at GC-rich(Sp1)promoter elements[J].The Journal of Biological Chemistry,2000,275:5379-5387.
[16]Brzozowski A M,Pike A C,Dauter Z,et al.Molecular basis of agonism and antagonism in the oestrogen receptor[J].Nature,1997,389:753-758.
[17]Pike A C,Brzozowski A M,Hubbard R E,et al.Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist[J].The EMBO Journal,1999,18:4608-4618.
[18]Lonard D M,O'Malley B W.Nuclear receptor coregulators:Judges,juries,and executioners of cellular regulation[J].Journal of Cell Science,2007,27:691-700.
[19]Bj rnstrom L,Sjoberg M.Mechanisms of estrogen receptor signaling:convergence of genomic and nongenomic actions on target genes[J].Molecular Endocrinology,2005,19:833-842.
[20]Revankar C M,Cimino D F,Sklar L A,et al.A transmembrane intracellular estrogen receptor mediates rapid cell signaling[J].Science,2005,307:1625-1630.
[21]Migliaccio A,Di Domenico M,Castoria G,et al.Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7cells[J].The EMBO Journal,1996,15:1292-1300.
[22]Chen Z,Yuhanna I S,Galcheva-Gargova Z,et al.Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen[J].Journal of Clinical Investigation,1999,103:401-406.
[23]Improta-Brears T,Whorton A R,Codazzi F,et al.Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium[J].Proceedings of the National Academy of Sciences,1999,96:4686-4691.
[24]Aronica S M,Kraus W L,Katzenellenbogen B S.Estrogen action via the cAMP signaling pathway:stimulation of adenylate cyclase and cAMP regulated gene transcription[J].Proceedings of the National Academy of Sciences,1994,91:8517-8521.
[25]Karels A A,Manning S,Brouwer T H,et al.Reproductive effects of estrogenic and antiestrogenic chemicals on sheephead minnows(Cyprinodon variegatus)[J].Environmental Toxicology and Chemistry,2003,22:855-865.
[26]Bigsby R M,Caperell-Grant A,Madhukar B V.Xenobiotics released from fat during fasting produce estrogenic effects in ovariectomized mice[J].Cancer Research,1997,57:865-9.
[27]Yadetic F,Arukwe A,Goksoyr A,et al.Induction of hepatic estrogen receptor in juvenile Atlantic salmon in vivo by the environmental estrogen,4-nonylphenol[J].Science of the Total Environment,1999,233:201-210.
[28]Beischlag T V,Morales J L,Hollingshead B D,et al.The aryl hydrocarbon receptor complex and the control of gene expression[J].Critical Reviews in Eukaryotic Gene Expression,2008,18:207-250.
[29]Safe S,Wormke M.Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action[J].Chemical Research in Toxicology,2003,16:807-816.
[30]Poland A,Knutson J C.2,3,7,8-tetrachlorodibenzo-pdioxin and related halogenated aromatic hydrocarbons:examination of the mechanism of toxicity[J].Annual Review of Pharmacology and Toxicology,1982,22:517-554.
[31]李淑晶,劉文棟,伍會(huì)?。河?duì)雌激素受體的干擾作用[J].生命科學(xué),2008,20(5):764-767.
[32]Ohtake F,Baba A,Takada I,et al.Dioxin receptor is a ligand-dependent E3ubiquitin ligase[J].Nature,2007,446:562-566.
[33]Wang X,Porter W,Krishnan V,et al.Mechanism of 2,3,7,8-tetrachl orodibenzo-p-dioxin(TCDD)-mediated decrease of the nuclear estrogen receptor in MCF-7 human breast cancer cells[J].Molecular Cellullar Endocrinology,1993,96:159-166.
[34]Reen R K,Cadwallader A,Perdew G H.The subdomains of the transactivation domain of the aryl hydrocarbon receptor(AhR)inhibit AhR and estrogen receptor transcriptional activity[J].Archives of Biochemistry and Biophysics,2002,408:93-102.
[35]Rüegg J,Swedenborg E,Wahlstrom D,et al.The transcription factor ARNT functions as an estrogen receptor beta-selective coactivator,and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin[J].Molecular Endocrinology,2007,22:304-316.
[36]Brunnberg S,Pettersson K,Rydin E,et al.The basic helix-loop-h(huán)elix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription[J].Proceedings of the National Academy of Sciences,2003,100:6517-6522.
[37]Min G,Kim H,Bae Y,et al.Inhibitory cross-talk between estrogen receptor(ER)and constitutively activated androstane receptor(CAR).CAR inhibits ER-mediated signaling pathway by squelching p160coactivators[J].Journal of Biological Chemistry,2002,277:34626-34633.
[38]Hockings J K,Thorne P A,Kemp M Q,et al.The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1promoter by estrogen[J].Cancer Research,2006,66:2224-2232.
[39]Ohtake F,Takeyama K,Matsumoto T,et al.Modulation of oestrogen receptor signalling by association with the activated dioxin receptor[J].Nature,2003,423:545-550.
[40]Swedenborg E,R egg J,Hillenweck A,et al.3-Methylcholanthrene displays dual effects on estrogen receptor(ER)alpha and ER beta signaling in a cell-type specific fashion[J].Molecular Pharmacology,2008,73:575-586.
[41]Arcaro K F,O′Keefe P W,Yang Y,et al.Antiestrogenicity of environ-mental polycyclic aromatic hydrocarbons in human breast cancer cells[J].Toxicology,1999,133:115-127.