• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同pH值制備的TiO2和TiO2/SiO2催化劑結(jié)構(gòu)、表面性質(zhì)及光催化活性

    2011-12-12 02:41:32任成軍龔茂初侯云澤陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:無機(jī)學(xué)報(bào)化學(xué)

    仇 偉 任成軍 龔茂初 侯云澤 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都610064)

    1 Introduction

    TiO2photocatalyst has drawn great attention due to its stability,lower cost,and nontoxicity.1However,its applications were restricted heavily by its limited photocatalytic activity.There is a desired need to improve the photocatalytic activity of TiO2from industrial point of view.Many efforts have been devoted in the past to inhibit crystal growth,to increase surface area and to retard phase transformation by incorporating another inorganic oxide,such as SiO2,2-6ZrO2,7,8and Al2O3,9into TiO2photocatalysts.Silica is selected as a dopant in our study for following reasons:(1)TiO2/SiO2is acting as a better catalyst; (2)SiO2aqueous sol precursor is cheap and non-toxic.

    It is well known that the photocatalytic activity mainly relies on its physicochemical properties,such as the phase composition,the crystallite size,the specific surface area,the pore size distribution,the surface acidity,and the particle morphology. Given here are a few reports relating to the effect of media acidity on the microstructure of photocatalysts.Huang et al.10pointed out that the crystallization and particle sizes of titania were dependent upon the precursor used,the reaction temperature,and the media acidity.Pottier et al.11suggested that the Cl/ Ti molar ratio,the aging conditions,and the acidity were the key factors determining the crystalline phases,the particle size,and morphologies of particles.Zhang et al.12revealed that the H2O2/Ti molar ratio and the pH values of the precursor played a key role in phase formation.Yu et al.13studied the effect of pH on the microstructures and the photoactivity of titania,which was prepared by hydrothermal method using tetrabutyl titanate.

    In our work TiO2and TiO2/SiO2catalysts were prepared at different pH values by a precipitation method with TiOSO4and/ or SiO2sol as precursors,respectively.The effect of pH on the formation and properties of TiO2and TiO2/SiO2are different from above studies due to the differences in the preparation procedures and the precursor used.14The phase structure,surface area,surface morphology of particles,surface acidity,and surface hydroxys of the as-prepared photocatalysts will be discussed.

    2 Experimental

    2.1 Catalyst preparation

    SiO2-doped 5%(mass fraction)TiO2was prepared from the aqueous solutions containing TiOSO4and SiO2sol.The solutions were precipitated using ammonium hydroxide to adjust the pH values(such as 7,9,and 11,respectively).The precipitates were filtered,rinsed with distilled water until sulfate ions were removed completely,then dried at 100°C and calcined at 650°C for 3 h.The samples obtained from pH 7,9,and 11 media are denoted as TS7,TS9,and TS11,respectively.The pure TiOcatalyst was prepared by the same method.The TiOsamples labeled with T7,T9,and T11 mean that they were prepared from the media of pH 7,9,and 11,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on a DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm),with a scanning rate of 0.05(°)·s-1.The tube voltage and current were 35 kV and 25 mA,respectively.XRD patterns were measured from 20°to 80°.The average crystallite size of anatase can be estimated by the Scherrer equation:D=0.89λ/(βcosθ).Lattice aberrance was calculated from ε=β/tgθ.Herein,β is the halfheight width of the(101)diffraction peak and θ is the Bragg angle of the(101)diffraction peak.The SEM images of the particles were measured on a Hitachi S-4800 scanning electron microscope.Fourier transform infrared(FT-IR)spectra were taken on Thermo Nicolet NEXUS-670 from 4000 to 400 cm-1.

    N2adsorption-desorption isotherms were collected on QUADRASORB SI,an Automated Surface Area&Pore Size Analyzer(Uuantachrome Instruments)at-196°C.All samples were degassed at 300°C for 3 h before conducting the analyses.The BET specific surface areas were calculated from adsorption data at a relative pressure ranged from 0.05 to 0.35. The total pore volumes were calculated at a relative pressure of 0.981.Mesopore size distributions were calculated from adsorption bands using the Barrett-Joyner-Halenda(BJH)method.

    The diffuse reflectance UV-Vis spectra were recorded on Pgeneral TU-1901 spectrometer,operated in the diffuse reflectance mode,for the wavelength within the range of 200-800 nm.The band gap energy(Eg)was calculated using the equation,Eg=hc/λint.Where,h is Plank′s constant(4.135×10-15eV· s),c the velocity of light(3×108m·s-1),and λintthe wavelength corresponding to the intersection of the extension of linear part of the spectrum and the x-axis.

    The NH3-TPD spectra were obtained in a quartz tubular micro-reactor.80 mg of the sample was heat-treated in a flowing Ar at 400°C for 60 min,and cooled to 80°C before taking the measurement.A mixture of 2%NH3-98%Ar was used to flow through the sample and adsorption took place at 80°C for 60 min.Then,the sample was heated from 80 to 800°C at 10°C·min-1in the flowing Ar carrier gas.The amount of desorbed NH3was monitored by a thermal conductivity detector.

    Degradation of benzene was carried out in a 165 L of selfdesigned batch reactor equipped with 3 germicidal lamps(3×8 W,λ=253.7 nm).Athin layer of powder sample(0.3 g)was distributed evenly onto an aluminum foil(12 cm×24 cm).Benzene,without further purification,was used to evaluate photocatalytic activity of samples.The required quantity of liquid benzene was injected into the reactor.Once dark-adsorption equilibrium has been reached,photocatalysis gets started by turning on the UV light source.The initial concentration of benzene was 80 mg·m-3and its concentration was monitored every 30 min by GC 2000-II gas-phase chromatogram equipped with a flame ionization detector(FID)and GDX101 column. The determination of CO2concentration in the reactor was performed with a gas chromatograph(GC 2000-II)equipped with a FID and a methane converter.

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 shows that a mixture of anatase-TiO2and rutile-TiO2is obtained from pure TiO2prepared at pH 7,9,and 11,respectively.The peaks and the crystal planes were identified with the help of JCPDS-‘International Centre for Diffraction Data’. Crystal planes(101),(004),(200),(105),(211),(204),(220), (215)match well with those of the anatase phase of TiO2(Card No.73-1764).And crystal planes(110),(101),(301)match well with those of the rutile phase of TiO2(Card No.21-1276). It is also noticed that the diffraction peaks of rutile phase become more evident with increasing the pH values.This observation is different from the investigation by Yu13and Jin15et al. Yu and Jin reported that the intensities of anatase diffraction peaks became stronger with increasing pH values,but the intensities of brookite diffraction peaks decreased gradually.It is well known that the basic unit is octahedral TiO6in titania.Octahedra in anatase are arranged in zigzag chains along(221) plane,while rutile octahedra form linear chains parallel to (001).16,17Based on the experiment results obtained,it is supposed that the orientation of the third octahedron becomes more favorable to the formation of a rutile nucleus at the presence of high concentration of OH-.The TiO2clusters grow further on the nucleus and then form the rutile phase.The formation mechanism of rutile in our work is not in agreement with that proposed by Yanagisawa and Ovenstone.18Perhaps,the phase formation has correlation with the preparation procedure and the precursors used.The mechanism of phase formation for the reaction of TiOSO4and NH3·H2O under the basic conditions will be studied in the future.

    Only anatase-TiO2is observed from TiO2/SiO2.Crystal planes(101),(004),(200),(105),(211),(204),(220),(215) match well with those of the anatase phase of TiO2(Card No. 73-1764).No SiO2diffraction peaks appear,which indicates that the silica exists in an amorphous phase.The results suggest the Si dopant retard the phase transformation from anatase to rutile,which is coincident with other′s observations.19-22XRD patterns of TiO2/SiO2show the broad diffraction peaks of anatase phase compared to pure TiO2,moreover,the peaks become broader with increasing the pH values,indicating that a TiO2nanocrystallite is formed.22

    Fig.1 XRD patterns of pure TiO2and TiO2/SiO2catalysts prepared at different pH values

    The content of phase and the crystallite size of materials are listed in Table 1.It can be seen that crystallite size of anatase-TiO2reduces slightly for all the samples when pH values rise. This result is quite different from the results reported by Yu et al.13The crystallite size of the samples decreases considerably when SiO2is doped into TiO2photocatalyst.The reason for this could be the existence of SiO2,which limits the growth of TiO2grains.Lattice aberrances of anatase-TiO2become big when either the pH values increase or the SiO2is incorporated into TiO2from Table 1.

    3.2 SEM image analysis

    Fig.2 shows the SEM images of TiO2and TiO2/SiO2catalysts prepared at pH 7 and pH 11.It can be seen that the surface morphologies of the as-prepared particles are quasi-spherical and most of them partially overlap to each other.The size of particles is mainly within the range from 10 to 25 nm.The diameters of titania particles observed in SEM images are a bit larger than the average crystal sizes estimated by XRD.The size of TiO2/SiO2particles is slightly smaller than pure TiO2,indicating that the SiO2used may limit the aggregation of TiO2particles.

    3.3 Textural properties

    The textural properties of the as-synthesized materials are summarized in Table 1.It can be seen that the BET surface ar-eas of these materials increase as the pH values arise,which is in agreement with the result reported by Li et al.2However, this is inconsistent with the observation of Yu13and Jin15et al. Yu and Jin reported that the BET specific surface areas decreased slightly with increasing the pH values.The surface area of TiO2/SiO2catalysts is drastically larger than that of pure TiO2,although they were prepared at the same pH value.The result confirms that the SiO2doping restrains the growth of TiO2crystal.This is again,in agreement with the observations reported in other literature.2-6,20,22The pore volumes grow slightly as the pH increases for all of the as-synthesized samples. The pore volume of TiO2/SiO2catalysts increases considerably compared to pure TiO2catalyst prepared at the same pH.This implies that more pollutants are likely adsorbed in the mesopores of TiO2/SiO2.

    Table 1 Microstructure characteristics and rate constants of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.2 SEM images of TiO2(a,b)and TiO2/SiO2(c,d)catalysts prepared at pH 7(a,c)and pH 11(b,d)

    The pore size distributions of TiO2and TiO2/SiO2are shown in Fig.3.The TiO2samples have an open distribution of pore size ranging from 3 to 25 nm.The TiO2/SiO2samples,however,have a relatively narrow pore size distribution,mostly ranging from 3 to 10 nm,except the sample prepared at pH 7.The pore size of the samples is reduced when the SiO2is added onto TiO2at pH 9 or pH 11.A narrow pore size distribution likely affords enough residual time for the reactions between the molecules of the pollutant adsorbed and the photo-generated oxidizing radicals.

    Fig.3 Pore size distribution of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.4 Diffuse reflectance UV-Vis spectra of TiO2and TiO2/SiO2 catalysts prepared at different pH values

    3.4 Diffuse reflectance UV-Vis spectra

    Fig.4 gives the diffuse reflectance UV-Vis spectra of both pure TiO2and TiO2/SiO2catalysts.The absorption edges of the TiO2appear to have a little red shift at the high pH value.This may be attributed to the increase of the rutile content.Compared to pure TiO2,Si-doped TiO2results in slight blue shift for the absorption edge owing to the broad band gap of SiO2.23As shown in Table 1,the plot of transformed Kubelka-Munch function versus the energy of light affords a series of band gap energy for all the samples studied.But the difference of band gap energy is small for all the samples.A small portion of rutile phase in mixed phase merely causes a little variation in band gap among the TiO2samples prepared at different pH values.A low content of SiO2(only 5%)results in no significant effect on the band gap of the TiO2/SiO2materials.

    3.5 NH3-TPD analysis

    Fig.5 NH3-TPD profiles of TiO2and TiO2/SiO2catalysts prepared at different pH values

    The results of the NH3-TPD measurement are illustrated in Fig.5.The NH3desorption peaks of the six samples are clearly observed from 200 to 220°C,and their acid strengths are very similar to each other.They are all classified as mid-strong acid. The peak area of the samples increases gradually with increasing the pH for both TiO2and TiO2/SiO2.The result demon-strates that the acid amount of the samples gets higher as the pH value increases.This can be explained that the higher pH, the larger surface area,the more acid sites are exposed on the large surface of samples.The peak area of SiO2-doped TiO2samples greatly increases,compared to pure TiO2prepared at the same pH.The incorporation of SiO2enhances the surface acidity of catalysts due to the strong acidity of SiO2.24Thereinto,TiO2/SiO2sample prepared at pH 11 has the highest amount of surface mid-strong acid.

    3.6 FT-IR spectrum analysis

    Fig.6 depicts the FT-IR spectra of pure titania and the as-synthesized TiO2/SiO2at different pH values.The absorption bands in the range of 400-600 cm-1are attributed to Ti-OTi vibrations,25while the sharp peak about 1610 cm-1is assigned to the bending vibrations of O-H in chemisorbed water.The broad absorption peak appearing near 3410 cm-1relates to a stretching vibration of the surface adsorbed water and hydroxyl groups.26,27The broad absorption peak increases considerably with increasing the pH value.In addition,these bands become stronger in SiO2-doped samples than in pure TiO2samples.This suggests that the addition of silica and the high pH environment bring more surface hydroxyl groups to the photocatalysts.

    3.7 Photocatalytic activity

    Fig.7 shows that the photocatalytic activity is enhanced considerably with increasing the pH values for both TiO2and TiO2/ SiO2photocatalysts.The photocatalytic activity of TiO2/SiO2catalysts is improved markedly compared to pure TiO2catalysts prepared at the same pH environment.The rate constants calculated are listed in Table 1.As shown in Fig.7,the degradation of benzene carried out easily,however,the mineralization of benzene was relatively difficult.Probably,the intermediates in the photocatalytic process were adsorbed strongly on the active sites of catalysts.Therefore,these intermediates were more difficult to be degradated.The photoactivity of the samples is much interrelated to their surface properties,for example,surface area,surface acidity,and surface OH-,etc.Surface area,surface acidity,and surface hydroxy groups of the as-synthesized photocatalysts increase significantly either when the pH values go up or when the SiO2is doped into TiO2.Therefore,more active sites may participate in the photocatalytic reaction of benzene.The benefit of higher acidity is also observed in different catalytic reactions.28-30More surface hydroxyl groups may be trapped in photoinduced holes,and then form hydroxyl radicals(·OH)with high oxidation capability.25

    Fig.6 FT-IR spectra of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.7 Degradation and mineralization of benzene on TiO2(a) and TiO2/SiO2(b)catalysts prepared at different pH values

    3.8 Durability of catalyst

    Fig.8 demonstrates the durability of TiO2/SiO2catalyst via 5 h reaction every cycling.It can be seen that the photocatalytic activity of the catalyst declines slightly with use times when the reaction runs from cycling 1 to 6.Photocatalytic oxidation over TiO2/SiO2can be kinetically retarded due to the accumula-tion of partially oxidized intermediate species on the catalyst surface.Whereas,the activity of the catalyst becomes steady from cycling times 6 to 10,and the catalyst has better activity. Perhaps,the intermediates continue to be degraded under ultraviolet irradiation.

    Fig.8 Changes of photocatalytic activity of TiO2/SiO2catalyst with cycling times

    4 Conclusions

    Low cost and better activity TiO2and SiO2-doped TiO2photocatalysts have been prepared by a precipitation method. Their structure,surface properties,and photocatalytic activity are strongly dependent on the pH values in the preparation process.

    (1) Kim,D.S.;Kwak,S.Y.Appl.Catal.A:Gen.2007,323,110.

    (2) Hu,Y.F.;Li,Y.X.;Peng,S.Q,;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報(bào),2008,24(11),2071.]

    (3) Bao,N.;Zhang,F.;Ma,Z.H.;Wei,Z.T.;Sun,J.;Liu,F.Acta Chim.Sin.2007,65(23),2786. [包 南,張 鋒,馬志會(huì),魏振濤,孫 劍,劉 峰.化學(xué)學(xué)報(bào),2007,65(23),2786.]

    (4) Chen,Y.H.;Shen,J.;Zhang,Z.Chin.J.Catal.2008,29(4), 356. [陳垚翰,沈 俊,張 昭.催化學(xué)報(bào),2008,29(4),356.]

    (5) Kang,C.H.;Guo,T.;Jing,L.Q.;Cui,H.C.;Zhou,J.;Fu,H.G. J.Inorg.Mater.2009,24(2),229.[康傳紅,郭 桐,井立強(qiáng),崔虎成,周 佳,付宏剛,無機(jī)材料學(xué)報(bào),2009,24(2),229.]

    (6) Liu,Z.H.;Su,X.J.;Hou,G.L.J.Inorg.Mater.2010,25(9), 911.[劉朝輝,蘇勛家,侯根良.無機(jī)材料學(xué)報(bào),2010,25(9), 911.]

    (7)Wang,G.P.;Qiu,W.;Ren,C.J.;Chai,J.J.;Dong,W.;Chen,Y. Q.;Gong,M.C.Chin.J.Catal.2009,30(9),913.[王光平,仇 偉,任成軍,柴軍軍,董 偉,陳耀強(qiáng),龔茂初.催化學(xué)報(bào), 2009,30(9),913.]

    (8)Wang,E.J.;Yang,Y.H.;Cao,Y.A.Acta Chim.Sin.2009,67 (24),2759.[王恩君,楊輝云,曹亞安.化學(xué)學(xué)報(bào),2009,67 (24),2759.]

    (9)Yang,C.S.;Wang,Y.J.;Shih,M.S.;Chang,Y.T.;Hon,C.C. Appl.Catal.A:Gen.2009,364,182.

    (10)Huang,W.P.;Tang,X.H.;Wang,Y.Q.;Koltypin,Y.;Gedanken, A.Chem.Commun.2000,1415.

    (11) Pottier,A.;Chanéac,C.;Tronc,E.;Mazerolles,L.;Jolivet,J.P. J.Mater.Chem.2001,11,1116.

    (12) Zhang,Y.;Wu,L.Z.;Zeng,Q.H.;Zhi,J.F.J.Phys.Chem.C 2008,112,16457.

    (13)Yu,J.G.;Su,Y.R.;Cheng,B.;Zhou,M.H.J.Mol.Catal.A: Chem.2006,258,104.

    (14)Aguado,J.;van Grieken,R.;López-Mu?oz,M.J.;Marugán,J. Appl.Catal.A:Gen.2006,312,202.

    (15) Bai,Y.;Sun,H.Q.;Jin,W.Q.J.Inorg.Mater.2008,23(2),387. [柏 源,孫紅旗,金萬勤,無機(jī)材料學(xué)報(bào),2008,23(2),387.]

    (16) Li,Y.;White,T.J.;Lim,S.H.J.Solid State Chem.2004,177, 1372.

    (17) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109,12309.

    (18) Yanagisawa,K.;Ovenstone,J.J.Phys.Chem.B 1999,103, 7781.

    (19) Lim,S.H.;Phonthammachai,N.;Pramana,S.S.;White,T.J. Langmuir 2008,24,6226.

    (20) He,C.X.;Tian,B.Z.;Zhang,J.L.J.Colloid Interface Sci. 2010,344,382.

    (21) Tobaldi,D.M.;Tucci,A.;Skapin,A.S.;Esposito,L.J.Eur. Ceram.Soc.2010,30,2481.

    (22)Dong,W.Y.;Sun,Y.J.;Lee,C.W.;Hua,W.M.;Lu,X.C.;Shi, Y.F.;Zhang,S.C.;Chen,J.M.;Zhao,D.Y.J.Am.Chem.Soc. 2007,129,13894.

    (23) Cho,K.;Chang,H.;Park,J.H.;Kim,B.G.;Jang,H.D.J.Ind. Eng.Chem.2008,14,860.

    (24) Bonelli,B.;Cozzolino,M.;Tesser,R.;Di,Serio M.;Piumetti, M.;Garrone,E.;Santacesaria,E.J.Catal.2007,246,293.

    (25)Hou,Y.D.;Wang,X.C.;Wu,L.;Chen,X.F.;Ding,Z.X.; Wang,X.X.;Fu,X.Z.Chemosphere 2008,72,414.

    (26) Prinetto,F.;Ghiotti,G.;Occhhiuzzi,M.;Indovia,V.J.Phys. Chem.B 1998,102,10316.

    (27) Marc?,G.;Augugliaro,V.;Rives,V.;Tilley,R.D.;Venezia,A. M.J.Phys.Chem.B 2001,105,1033.

    (28)Akurati,K.K.;Vital,A.;Dellemann,J.P.;Michalow,K.; Graule,T.;Ferri,D.;Baiker,A.Appl.Catal.B:Environ.2008, 79,53.

    (29) Onfroy,T.;Clet,G.;Houalla,M.J.Phys.Chem.B 2005,109, 14588.

    (30)Wang,X.C.;Yu,J.C.;Liu P.;Wang,X.X.;Su,W.Y.;Fu,X.Z. J.Photochem.Photobiol.A:Chem.2006,179,339.

    猜你喜歡
    無機(jī)學(xué)報(bào)化學(xué)
    無機(jī)滲透和促凝劑在石材防水中的應(yīng)用
    石材(2020年9期)2021-01-07 09:30:04
    致敬學(xué)報(bào)40年
    加快無機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    有機(jī)心不如無機(jī)心
    山東青年(2016年2期)2016-02-28 14:25:31
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 亚洲av男天堂| 国产99久久九九免费精品| 亚洲精品日本国产第一区| 中文字幕亚洲精品专区| 免费在线观看完整版高清| 精品福利永久在线观看| 婷婷丁香在线五月| 色播在线永久视频| 久久人人97超碰香蕉20202| www.999成人在线观看| 免费看十八禁软件| 日本猛色少妇xxxxx猛交久久| 国产在视频线精品| 男女午夜视频在线观看| 成人亚洲欧美一区二区av| 亚洲人成电影免费在线| 黄片播放在线免费| 久久久精品区二区三区| 18禁国产床啪视频网站| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 男男h啪啪无遮挡| 免费在线观看影片大全网站 | 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| netflix在线观看网站| 亚洲精品国产av蜜桃| 一二三四社区在线视频社区8| 欧美日韩成人在线一区二区| 国产高清国产精品国产三级| 亚洲精品成人av观看孕妇| 成年动漫av网址| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 欧美国产精品va在线观看不卡| 99久久综合免费| 国产日韩欧美视频二区| 黄片小视频在线播放| 国产成人精品久久二区二区91| 首页视频小说图片口味搜索 | 久久免费观看电影| 久久久久精品国产欧美久久久 | 妹子高潮喷水视频| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区| 欧美大码av| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 国产福利在线免费观看视频| 亚洲精品国产一区二区精华液| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 久久精品国产亚洲av高清一级| xxx大片免费视频| 免费在线观看视频国产中文字幕亚洲 | 久久 成人 亚洲| 悠悠久久av| 在线精品无人区一区二区三| 免费在线观看黄色视频的| 久久青草综合色| 欧美亚洲日本最大视频资源| 九草在线视频观看| 久久这里只有精品19| 丝袜美足系列| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| 成人亚洲精品一区在线观看| 七月丁香在线播放| 最近手机中文字幕大全| 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲欧美精品综合一区二区三区| 蜜桃在线观看..| 一区二区三区精品91| 一级毛片电影观看| 午夜两性在线视频| 亚洲国产精品999| 中文欧美无线码| 50天的宝宝边吃奶边哭怎么回事| 狠狠精品人妻久久久久久综合| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 男女边摸边吃奶| 精品一区在线观看国产| 国产无遮挡羞羞视频在线观看| 1024香蕉在线观看| 国产一区二区三区av在线| 校园人妻丝袜中文字幕| 欧美+亚洲+日韩+国产| 久久国产精品大桥未久av| 亚洲精品乱久久久久久| a级毛片黄视频| 欧美变态另类bdsm刘玥| 国产黄频视频在线观看| 亚洲,一卡二卡三卡| 久久久久久久国产电影| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 手机成人av网站| 亚洲人成网站在线观看播放| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| videos熟女内射| 久久人妻熟女aⅴ| 啦啦啦在线观看免费高清www| 欧美日韩av久久| 免费看不卡的av| 波多野结衣一区麻豆| 国产1区2区3区精品| 亚洲精品一区蜜桃| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 免费高清在线观看日韩| 成人三级做爰电影| 久久精品久久久久久久性| 久久久久精品人妻al黑| 99热网站在线观看| 欧美日韩av久久| 久久av网站| 亚洲人成电影免费在线| 日本欧美国产在线视频| 亚洲视频免费观看视频| 人人妻人人澡人人看| 丰满少妇做爰视频| 美女午夜性视频免费| 又大又爽又粗| 亚洲 欧美一区二区三区| 亚洲国产精品国产精品| 国产精品久久久久久人妻精品电影 | 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性bbbbbb| 在线天堂中文资源库| 十分钟在线观看高清视频www| 五月天丁香电影| 1024香蕉在线观看| 国产一区二区在线观看av| 一本大道久久a久久精品| 成年动漫av网址| 欧美成狂野欧美在线观看| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 亚洲美女黄色视频免费看| 91精品国产国语对白视频| 少妇精品久久久久久久| 一区二区三区精品91| 91精品国产国语对白视频| 国产精品久久久av美女十八| 国产色视频综合| 好男人视频免费观看在线| 久久精品熟女亚洲av麻豆精品| 国产色视频综合| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 欧美日韩成人在线一区二区| 午夜91福利影院| 美女中出高潮动态图| 嫁个100分男人电影在线观看 | 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 自线自在国产av| 99香蕉大伊视频| 一本综合久久免费| 久久亚洲国产成人精品v| 黄色片一级片一级黄色片| 热99国产精品久久久久久7| 国产不卡av网站在线观看| 女警被强在线播放| 国产精品一区二区精品视频观看| 老汉色av国产亚洲站长工具| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 久久中文字幕一级| 久久热在线av| 极品少妇高潮喷水抽搐| a级毛片在线看网站| 丁香六月欧美| 午夜免费观看性视频| 一区在线观看完整版| 欧美人与性动交α欧美软件| 欧美黑人欧美精品刺激| 国产成人欧美在线观看 | 女警被强在线播放| 一二三四在线观看免费中文在| 国产一区二区三区综合在线观看| 色综合欧美亚洲国产小说| 另类精品久久| 国产女主播在线喷水免费视频网站| 久久久久久久久免费视频了| 午夜影院在线不卡| 观看av在线不卡| 在线 av 中文字幕| 亚洲中文av在线| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 亚洲国产精品国产精品| 只有这里有精品99| 国产在视频线精品| 99re6热这里在线精品视频| 亚洲免费av在线视频| 一级黄片播放器| 久久女婷五月综合色啪小说| 搡老乐熟女国产| 人人妻,人人澡人人爽秒播 | 亚洲自偷自拍图片 自拍| 人妻 亚洲 视频| bbb黄色大片| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| 久久精品亚洲熟妇少妇任你| 岛国毛片在线播放| 久久影院123| 免费黄频网站在线观看国产| 欧美日韩福利视频一区二区| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 一个人免费看片子| 国产极品粉嫩免费观看在线| 国产亚洲一区二区精品| 男女免费视频国产| 国产成人精品久久二区二区免费| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站 | 欧美在线黄色| 亚洲av成人精品一二三区| 一级黄片播放器| 欧美激情高清一区二区三区| av国产精品久久久久影院| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 亚洲熟女毛片儿| 成年美女黄网站色视频大全免费| 午夜福利视频精品| 久久av网站| av网站在线播放免费| 自线自在国产av| 免费人妻精品一区二区三区视频| 亚洲精品国产av成人精品| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 日本wwww免费看| 日韩中文字幕欧美一区二区 | 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 一级毛片我不卡| 欧美黑人欧美精品刺激| 国产视频首页在线观看| 午夜影院在线不卡| 两人在一起打扑克的视频| 国产亚洲一区二区精品| 精品福利永久在线观看| 不卡av一区二区三区| 女人久久www免费人成看片| av天堂久久9| 精品国产一区二区三区四区第35| 成人国产av品久久久| 亚洲精品av麻豆狂野| 一区二区日韩欧美中文字幕| 777米奇影视久久| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 水蜜桃什么品种好| 99国产精品一区二区蜜桃av | 男的添女的下面高潮视频| 色播在线永久视频| 国产精品.久久久| 制服人妻中文乱码| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 一区二区三区精品91| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久男人| av在线播放精品| 18禁国产床啪视频网站| 精品一区在线观看国产| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 国产精品偷伦视频观看了| 97人妻天天添夜夜摸| 99国产综合亚洲精品| 丁香六月欧美| 岛国毛片在线播放| 日日夜夜操网爽| 欧美黄色片欧美黄色片| 大片电影免费在线观看免费| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 久久这里只有精品19| 飞空精品影院首页| 亚洲天堂av无毛| 亚洲中文字幕日韩| 久久99精品国语久久久| 日韩中文字幕欧美一区二区 | 中文字幕亚洲精品专区| 最黄视频免费看| 亚洲成人免费电影在线观看 | 国产高清视频在线播放一区 | 我的亚洲天堂| 国产成人一区二区在线| 久久热在线av| 欧美黑人欧美精品刺激| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 黄色a级毛片大全视频| 亚洲视频免费观看视频| 国产高清国产精品国产三级| 国产91精品成人一区二区三区 | 十分钟在线观看高清视频www| 嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频 | 国产成人精品久久久久久| 大片免费播放器 马上看| 岛国毛片在线播放| 男男h啪啪无遮挡| 看免费成人av毛片| 又粗又硬又长又爽又黄的视频| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 搡老岳熟女国产| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 777米奇影视久久| 国产成人系列免费观看| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| e午夜精品久久久久久久| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 国产麻豆69| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 国产在线观看jvid| 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| 精品亚洲成a人片在线观看| 99久久精品国产亚洲精品| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 69精品国产乱码久久久| 麻豆乱淫一区二区| 如日韩欧美国产精品一区二区三区| 热re99久久精品国产66热6| 中文欧美无线码| 一边摸一边做爽爽视频免费| 久久性视频一级片| 蜜桃国产av成人99| 免费在线观看黄色视频的| 亚洲专区中文字幕在线| 久久热在线av| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 国产欧美日韩一区二区三区在线| 视频区图区小说| 男人舔女人的私密视频| 国产成人免费观看mmmm| 美女午夜性视频免费| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 亚洲av美国av| 啦啦啦在线免费观看视频4| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 性高湖久久久久久久久免费观看| 欧美乱码精品一区二区三区| 男女免费视频国产| 亚洲欧美日韩另类电影网站| 欧美成狂野欧美在线观看| 国产精品一区二区精品视频观看| 只有这里有精品99| 777久久人妻少妇嫩草av网站| 亚洲中文日韩欧美视频| 国产高清不卡午夜福利| av电影中文网址| 久久久国产精品麻豆| 大片免费播放器 马上看| 大陆偷拍与自拍| 婷婷色综合www| 久久人妻熟女aⅴ| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 国产成人欧美| 亚洲伊人久久精品综合| 欧美在线黄色| 搡老乐熟女国产| www.999成人在线观看| 日日爽夜夜爽网站| 欧美激情高清一区二区三区| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 欧美人与善性xxx| 国产99久久九九免费精品| 一二三四社区在线视频社区8| av在线播放精品| 精品久久久久久久毛片微露脸 | 在现免费观看毛片| 亚洲一区二区三区欧美精品| 黄色 视频免费看| 女警被强在线播放| 国产精品久久久av美女十八| 精品一区在线观看国产| 黄色视频不卡| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 一边摸一边抽搐一进一出视频| 久久精品成人免费网站| 欧美亚洲日本最大视频资源| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 一级毛片电影观看| 看免费成人av毛片| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 免费女性裸体啪啪无遮挡网站| 老司机在亚洲福利影院| 亚洲精品久久久久久婷婷小说| 每晚都被弄得嗷嗷叫到高潮| 亚洲免费av在线视频| 成年动漫av网址| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 在线 av 中文字幕| 国产色视频综合| 亚洲精品国产av蜜桃| 久久久久久亚洲精品国产蜜桃av| 免费少妇av软件| 高清av免费在线| 亚洲第一青青草原| 精品高清国产在线一区| 久久99一区二区三区| 国产精品免费视频内射| 日本色播在线视频| 一个人免费看片子| av天堂久久9| 欧美日本中文国产一区发布| 一本久久精品| 中国美女看黄片| 国产一级毛片在线| 日韩大片免费观看网站| 成人午夜精彩视频在线观看| 一级毛片女人18水好多 | 亚洲一区中文字幕在线| 最新的欧美精品一区二区| 老司机靠b影院| 亚洲伊人久久精品综合| 少妇精品久久久久久久| 精品第一国产精品| 国产av精品麻豆| 国产精品免费视频内射| 国产欧美日韩综合在线一区二区| 搡老岳熟女国产| 成人18禁高潮啪啪吃奶动态图| 黄色一级大片看看| 热99国产精品久久久久久7| 亚洲人成电影观看| 午夜免费成人在线视频| 男女高潮啪啪啪动态图| 九草在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲激情五月婷婷啪啪| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 99re6热这里在线精品视频| 一级毛片我不卡| 91精品伊人久久大香线蕉| 男女之事视频高清在线观看 | 在线看a的网站| 建设人人有责人人尽责人人享有的| 国产成人av教育| 免费少妇av软件| 久久久久久久久免费视频了| 久久中文字幕一级| 亚洲成人免费电影在线观看 | 成人午夜精彩视频在线观看| 免费一级毛片在线播放高清视频 | 国产在线免费精品| a级毛片黄视频| 麻豆国产av国片精品| 亚洲欧美色中文字幕在线| 欧美久久黑人一区二区| 欧美日韩亚洲综合一区二区三区_| 一级a爱视频在线免费观看| 99精品久久久久人妻精品| 国产精品麻豆人妻色哟哟久久| 成人18禁高潮啪啪吃奶动态图| 久久国产精品大桥未久av| 97精品久久久久久久久久精品| 日本av免费视频播放| 波多野结衣av一区二区av| 久久国产精品人妻蜜桃| 国产男女超爽视频在线观看| 一级黄片播放器| 少妇人妻久久综合中文| 国产又色又爽无遮挡免| 99久久99久久久精品蜜桃| 男女边摸边吃奶| 99久久人妻综合| 伦理电影免费视频| 久久国产精品大桥未久av| 亚洲五月色婷婷综合| 少妇人妻久久综合中文| a级片在线免费高清观看视频| 99久久综合免费| 免费看十八禁软件| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 性色av乱码一区二区三区2| 日韩中文字幕欧美一区二区 | kizo精华| 欧美乱码精品一区二区三区| 国产黄频视频在线观看| 国产精品久久久av美女十八| xxxhd国产人妻xxx| 天天操日日干夜夜撸| 纯流量卡能插随身wifi吗| 国产精品三级大全| 波野结衣二区三区在线| 亚洲熟女毛片儿| 一本—道久久a久久精品蜜桃钙片| 亚洲男人天堂网一区| av不卡在线播放| 婷婷色综合大香蕉| 男女无遮挡免费网站观看| 丁香六月欧美| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播 | 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 日韩av不卡免费在线播放| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 免费观看人在逋| 丝袜在线中文字幕| 成人三级做爰电影| 看十八女毛片水多多多| 国产视频一区二区在线看| 两人在一起打扑克的视频| 一本一本久久a久久精品综合妖精| av不卡在线播放| 亚洲人成电影免费在线| 午夜福利一区二区在线看| 99久久综合免费| 免费人妻精品一区二区三区视频| 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 日韩一本色道免费dvd| av在线app专区| 国产精品一区二区免费欧美 | 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 亚洲精品第二区| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 一级a爱视频在线免费观看| 一级毛片 在线播放| 人人妻人人爽人人添夜夜欢视频| 国产老妇伦熟女老妇高清| bbb黄色大片| 熟女av电影| 久久久久网色| 极品人妻少妇av视频| 男女床上黄色一级片免费看| 手机成人av网站| 免费不卡黄色视频| 99国产精品免费福利视频| 黄色视频在线播放观看不卡| 国产成人免费观看mmmm| 捣出白浆h1v1| 午夜激情av网站| 最新在线观看一区二区三区 | 激情五月婷婷亚洲| 免费女性裸体啪啪无遮挡网站| 在线亚洲精品国产二区图片欧美| 黑人猛操日本美女一级片| 免费观看人在逋| 久久久久久久国产电影|